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ABSTRACT. We consider functional perturbations of the nonoscillatory equation

�.rn�1�xn�1/ C pnxn D 0:

Let Sk be the set of all real sequences of the form Y D fyng1

nDk
. For each n > k, let fn.Y / denote a

real-valued functional of Y 2 Sk . We give sufficient conditions on ffn.Y /g1

nDkC1
for the equation

�.rn�1�yn�1/ C pnyn D fn.Y /; n > k;

to have a solutionbY 2 Sk that behaves in a precisely defined way like a given solutionbX of the unperturbed

equation as n ! 1. A specific family of nonlinear functional perturbations is considered in detail.

AMS (MOS) Subject Classification. 39A11.

1. INTRODUCTION

Throughout this paper all quantities are real. We consider functional perturbations of

the equation

(1.1) �.rn�1�xn�1/C pnxn D 0

under the standing assumption that frng1 and fpng1 are infinite sequences of real numbers

with rn > 0, and (1.1) is nonoscillatory. In this case there is an integer k and sequences

X1 D fx1ng1

nDk
and X2 D fx2ng1

nDk
of positive numbers that satisfy (1.1) for n > k, such

that

(1.2) rn.x1nx2;nC1 � x1;nC1x2n/ D 1; n � k;

and

(1.3) lim
n!1

x2n

x1n

D 1:

The solutions X1 and X2 are said to be recessive (or principal) and dominant (or nonprin-

cipal), respectively, and X1 is unique up to a positive constant multiplier [3]. Let

�n D
x2n

x1n

:
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From (1.2) and (1.3),

(1.4) ��n D
1

rnx1nx1;nC1

> 0 and lim
n!1

�n D 1:

Let Sk be the set of real sequences Y D fyng1

nDk
. For each n > k, let fn.Y / de-

note a real-valued functional of Y . We give sufficient conditions on ffn.Y /g
1

nDkC1
for the

functional equation

(1.5) �.rn�1�yn�1/C pnyn D fn.Y /; n > k;

to have a solution bY 2 Sk that behaves in a precisely defined way like a given solution

bX of (1.1) as n ! 1. The case where fn.Y / D fnyn has previously been considered in

[1, 4, 5]. Some nonlinear and nonhomogeneous perturbations were also considered in [1].

2. PRELIMINARY CONSIDERATIONS

We impose the metric

d.X; Y / D

1X

nDk

1

2n�k

jxn � ynj

1C jxn � ynj

on Sk . If fY�g is a sequence in Sk , then lim�!1 Y� D Y with respect to this metric if and

only if lim�!1 y�n D yn for every n � k. Moreover, Sk is complete; i.e., .Sk; d/ is a

Frechét space.

We use the following lemmas to obtain our results. The first is a special case of the

Schauder–Tychonoff theorem [2, Corollary 0.1, p 405].

Lemma 2.1. If U is a closed; convex; and compact subset of a Frechét space and T is a

continuous mapping of U into itself; then T has a fixed point in T .U/:

Lemma 2.2. Suppose that
P1

nDk umx2m converges; and let

(2.1)  n D sup
`�n

ˇ̌
ˇ̌
ˇ

1X

mD`

umx2m

ˇ̌
ˇ̌
ˇ ; n � k:

Then
P1

mDk umx1m also converges;

(2.2)

ˇ̌
ˇ̌
ˇ

1X

mDn

umx1m

ˇ̌
ˇ̌
ˇ �

2 n

�n

; n � k;

and

(2.3)

ˇ̌
ˇ̌
ˇ

1X

mDnC1

.x2m � x1m�n/um

ˇ̌
ˇ̌
ˇ �  nC1; n � k:
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Proof. Define gn D
P1

mDn umx2m. If k � n < N , summation by parts yields

NX

mDn

umx1m D

NX

mDn

umx2m

�m

D

NX

mDn

gm � gmC1

�m

D
gn

�n

�
gN C1

�N

C

NX

mDnC1

gm

�
1

�m

�
1

�m�1

�
:(2.4)

From (1.4) and (2.1),

(2.5)

1X

mDnC1

jgmj

ˇ̌
ˇ̌ 1
�m

�
1

�m�1

ˇ̌
ˇ̌ �

 nC1

�n

; n � k;

and limN !1 gN C1=�N D 0. Therefore (2.4) implies that
P1

mDn umx1m converges and

satisfies (2.2).

If k � n � N , summation by parts yields

NX

mDnC1

.x2m � x1m�n/um D

NX

mDnC1

�
1 �

�n

�m

�
.gm � gmC1/

D �

�
1 �

�n

�N

�
gN C1 C �n

NX

mDnC1

�
1

�m�1

�
1

�m

�
gm:

Letting N ! 1 and invoking (2.5) yields (2.3). �

The following elementary lemma motivates the choices of transformations of Sk whose

fixed points are solutions of (1.5).

Lemma 2.3. If
P1

nDkC1 qnx1n converges; then

´n D �x1n

n�1X

`Dk

.��`/

1X

mD`C1

qmx1m; n � k;

is a solution of

(2.6) �.rn�1�´n�1/C pn´n D qn; n > k:

If
P1

nDkC1 qnx2n converges; then

´n D

1X

mDnC1

.x2mx1n � x1mx2n/qm; n � k;

is a solution of .2:6/:
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3. GENERAL RESULTS

Theorem 3.1. Let bX be a given solution of .1:1/ for n � k; and let f�ng1

nDkC1
be a

sequence of positive numbers: Let U1 be the set of all Y 2 Sk such that

(3.1)

ˇ̌
ˇ̌yn �bxn

x1n

ˇ̌
ˇ̌ � �nC1 and

ˇ̌
ˇ̌�
�
yn �bxn

x1n

�ˇ̌
ˇ̌ � 2�nC1

��n

�nC1

; n � k:

Suppose that

(i) ffn.Y /g
1

nDkC1
is defined if Y 2 U1I

(ii) If fY�g is a sequence in U1 such that lim�!1 Y� D Y; then lim�!1 fn.Y�/ D

fn.Y /; n > kI

(iii)
P1

mDkC1 x2mfm.Y / converges for every Y 2 U1; and there is a sequence f�ng1

nDkC1

such that

(3.2) sup
`�n

ˇ̌
ˇ̌
ˇ

1X

mD`

x2mfm.Y /

ˇ̌
ˇ̌
ˇ � �n; n > k; Y 2 U1;

(3.3) �n � �n; n > k;

and limn!1 �n D 0: Then .1:5/ has a solution bY 2 Sk such that

(3.4)

ˇ̌
ˇ̌byn �bxn

x1n

ˇ̌
ˇ̌ � �nC1 and

ˇ̌
ˇ̌�
�byn �bxn

x1n

�ˇ̌
ˇ̌ � 2�nC1

��n

�nC1

; n � k:

Proof. U1 is closed, convex, and compact. From (iii) and Lemma 2.2 with um D fm.Y /,

we can define T1 on U1 by

.T1.Y //n Dbxn C

1X

mDnC1

.x2mx1n � x1mx2n/fm.Y /; n � k:

Then

(3.5)
.T1.Y //n �bxn

x1n

D

1X

mDnC1

.x2m � x1m�n/fm.Y /;

and

�

�
.T1.Y //n �bxn

x1n

�
D �.��n/

1X

mDnC1

x1mfm.Y /;

so (3.2) and Lemma 2.2, with um D fm.Y /, imply that

(3.6)

ˇ̌
ˇ̌.T1.Y //n �bxn

x1n

ˇ̌
ˇ̌ � �nC1; n � k;

and

(3.7)

ˇ̌
ˇ̌�
�
.T1.Y //n �bxn

x1n

�ˇ̌
ˇ̌ � 2�nC1

��n

�nC1

; n � k:

Hence, (3.1) and (3.3) imply that T1.U1/ � U1.
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Now suppose that fY�g1
�D1 is a sequence in U1 such that lim�!1 Y� D Y . We want

to show that lim�!1 T1.Y�/ D T1.Y /; i.e., that

(3.8) lim
�!1

.T1.Y�//n D .T1.Y //n; n � k:

If � > 0, choose N > k C 1 so that �n < �=4 if n > N . Then (3.2) implies that

(3.9)

ˇ̌
ˇ̌
ˇ

1X

mDn

.fm.Y�/� fm.Y //x2m

ˇ̌
ˇ̌
ˇ � �=2; � � 1; n > N:

With N now fixed, (ii) implies that there is a �0 such that

NX

mDkC1

jfm.Y�/� fm.Y /jx2m < �=2; � � �0:

This and (3.9) imply that

(3.10)

ˇ̌
ˇ̌
ˇ

1X

mDn

.fm.Y�/� fm.Y //x2m

ˇ̌
ˇ̌
ˇ < �; n > k; � � �0:

Therefore, (3.5) and Lemma 2.2 with um D fm.Y�/ � fm.Y / imply that

j.T1.Y�//n � .T1.Y //nj D

ˇ̌
ˇ̌
ˇ

1X

mDnC1

.x2m � x1m�n/.fm.Y�/ � fm.Y //

ˇ̌
ˇ̌
ˇ � �x1n;

n � k, � � �0, which implies (3.8). Now Lemma 2.1 implies that there is a bY 2 U1 such

T1.bY / D bY ; i.e.,

byn Dbxn C

1X

mDnC1

.x2mx1n � x1mx2n/fm.bY /; n � k;

and Lemma 2.3 implies that bY satisfies (1.5). Setting Y D bY D T .bY / in (3.6) and (3.7)

verifies (3.4). �

Theorem 3.2. Let bX be a given solution of .1:1/ for n � k; and let f�ng1

nDkC1
be a positive

sequence: Let U2 be the set of all Y 2 S such that

(3.11)

ˇ̌
ˇ̌yn �bxn

x2n

ˇ̌
ˇ̌ � �nC1 and

ˇ̌
ˇ̌�
�
yn �bxn

x2n

�ˇ̌
ˇ̌ � 2�nC1

��n

�nC1

; n � k:

Suppose that

(i) ffn.Y /g
1

nDkC1
is defined if Y 2 U2I

(ii) If fY�g is a sequence in U2 such that lim�!1 Y� D Y; then lim�!1 fn.Y�/ D

fn.Y /; n > kI

(iii)
P1

mDkC1 x1mfm.Y / converges for every Y 2 U2; and there is a sequence f�ng1

nDkC1

such that

(3.12) sup
`�n

ˇ̌
ˇ̌
ˇ

1X

mD`

x1mfm.Y /

ˇ̌
ˇ̌
ˇ � �n; n > k; Y 2 U2;
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limn!1 �n D 0; and

(3.13) max.b�n; �nC1/ � �nC1; n � k;

where

(3.14) b�n D
1

�n

n�1X

`Dk

�`C1��`:

Then .1:5/ has a solution bY 2 Sk such that

(3.15)

ˇ̌
ˇ̌byn �bxn

x2n

ˇ̌
ˇ̌ � b�n and

ˇ̌
ˇ̌�
�byn �bxn

x2n

�ˇ̌
ˇ̌ � .b�n C �nC1/

��n

�nC1

; n � k:

Proof. U2 is closed, convex, and compact. From (iii), we can define T2 on U2 by

(3.16) .T2.Y //n Dbxn � x1n

n�1X

`Dk

.��`/

1X

mD`C1

fm.Y /x1m; n � k:

Then

.T2.Y //n �bxn

x2n

D �
1

�n

n�1X

`Dk

.��`/

1X

mD`C1

fm.Y /x1m

and

�

�
.T2.Y //n �bxn

x2n

�
D

��n

�n�nC1

n�1X

`Dk

.��`/

1X

mD`C1

fm.Y /x1m

�
��n

�nC1

1X

mDnC1

fm.Y /x1m:

Therefore (3.12) and(3.14) imply that

(3.17)

ˇ̌
ˇ̌.T2.Y //n �bxn

x2n

ˇ̌
ˇ̌ � b�n; n � k:

and

(3.18)

ˇ̌
ˇ̌�
�
.T2.Y //n �bxn

x2n

�ˇ̌
ˇ̌ � .b�n C �nC1/

��n

�nC1

; n � k:

Now (3.11) and (3.13) imply that T2.U2/ � U2.

Now suppose that fY�g1
�D1 is a sequence in U2 such that lim�!1 Y� D Y . We want

to show that lim�!1 T2.Y�/ D T2.Y /; i.e. that,

(3.19) lim
�!1

T2.Y�/n D T2.Y /n; n � k:

Let � > 0. The argument used to obtain (3.10) shows that there is an integer �0 such that
ˇ̌
ˇ̌
ˇ

1X

mDn

.fm.Y�/ � fm.Y //x1m

ˇ̌
ˇ̌
ˇ < �; n > k; � � �0:
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Therefore, from (3.16),

j.T2Y�/n � .T2Y /nj � �x1n

n�1X

`Dk

��` D �x1n.�n � �k/; n � k; � � �0:

This implies (3.19). Now Lemma 2.1 implies that there is a bY 2 U2 such that T2.bY / D bY ;

i.e.,

byn Dbxn � x1n

n�1X

`Dk

.��`/

1X

mD`C1

fm.bY /x1m; n � k;

and Lemma 2.3 implies that bY satisfies (1.5). Setting Y D bY D T2.bY / in (3.17) and (3.18)

verifies (3.15). �

Note that limn!1
b�n D 0. To see this, suppose � > 0. Since limn!1 �n D 0, there is

an integer N such that �m < � ifm > N . Therefore, (3.14) implies that

b�n <
1

�n

NX

`Dk

.��`/�`C1 C �; n > N C 1:

Hence, lim supn!1
b�n � �. Since � is arbitrary, it follows that limn!1

b�n D 0.

4. A SPECIFIC RESULT

Now we consider the equation

(4.1) �.rn�1�yn�1/C pnyn D ��˛
n an

nX

`Dk

b`y


`
; n > k:

We will need the following lemmas.

Lemma 4.1 (Abel-Dini Theorem). If s > 0 then

1X ��n�1

�sC1
n

< 1:

Lemma 4.2. If �nC1 D O.�n/ and s; t are real; then

(4.2)

1X

mDn

�s
m��

t
m D O.�sCt

n / if s C t < 0;

and

(4.3)

nX

mDkC1

�s
m��

t
m�1 D

8
<
:
O.�sCt

n / if s C t > 0;

O.1/ if s C t < 0:

Proof. For (4.2), it suffices to show that �s
m��

t
m D O

�
��sCt

m

�
. By the mean value theorem,

�s
m��

t
m D t�s

mu
t�1
m ��m and ��sCt

m D .s C t/vsCt�1
m ��m;
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where �m < um; vm < �mC1. Therefore

�s
m��

t
m

��sCt
m

D
t

s C t

�
�m

vm

�s �
um

vm

�t�1

;

which is bounded for all m.

The proof of (4.3) is similar. �

Theorem 4.3. Suppose that .¤ 0; 1/ is real; c > 0; and

(4.4) An D

n�1X

`Dk

a`x1`; Bn D

n�1X

`Dk

b`x


1`
; Cn D

n�1X

`Dk

A`b`x


1`
n � k;

are bounded: Suppose also that one of the following hypotheses holdW

H1 W i D r D 1; j D 2; ˛ > 1; and � D ˛ � 1:

H2 W i D 1; j D r D 2; ˛ > max.1;  C 1/; ˛ ¤ 2; � D ˛ � max. C 1; 1/;

(4.5) ���
n D O.��n�1/;

and

(4.6) �nC1 D O.�n/:

H3 W i D r D 2; j D 1; 0 < ˛ � max.; 0/ < 1; ˛ ¤ 2; .4:6/ holds; and

(4.7) � D ˛ � max.; 0/:

Then .4:1/ has a solution bY 2 Sk such that

byn � cxrn

xin

D O.���
nC1/ and �

�byn � cxrn

xin

�
D O

 
��n

��C1
nC1

!

if c�1 is sufficiently small.

Proof. Let 0 < � < 1 and let U be the set of all Y 2 Sk such that

(4.8)

ˇ̌
ˇ̌yn � cxrn

xin

ˇ̌
ˇ̌ � �c

��Cr�i
k

��
nC1

and

(4.9)

ˇ̌
ˇ̌�
�
yn � cxrn

xin

�ˇ̌
ˇ̌ � 2�c��Cr�i

k

��n

��C1
nC1

; n � k:

To avoid annoying repetition, we invoke the boundedness of fAng, fBng and fCng re-

peatedly without stating that we are doing so. We also use summation by parts repeatedly

without stating this explicitly, and without verifying in advance that the infinite series that

arise from this are convergent. They are, in fact, all absolutely convergent, as our subse-

quent estimates will show. To avoid unnecesary and annoying subscripts, we will use the

symbolM (as in junj � M jvnj) as a generic constant throughout this proof; thus, the value

of M may be different in each appearance. It is to be understood throughout that M is
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independent of Y 2 U and c. If gn is a functional of Y , we write gn.Y / D O.cvn/ to

indicate that jgn.Y /j � Mc jvnj, n � k, for all Y 2 U and c > 0. Finally, whenever we

invoke Lemma 4.2 we are also invoking (4.6).

Under all three hypotheses,

(4.10) � D

8
<
:
˛ � j C 1 � .r � 1/ if  > 0;

˛ � j C 1 if  < 0:

It is to be understood throughout the proof that whenever we state that a quantity isO.���
n /

or O.c���
n /, we are invoking (4.10).

It is convenient to work with the variable ´n D yn=xin. Then (4.8) and (4.9) become

(4.11) j´n � c�r�i
n j � �c

��Cr�i
k

��
nC1

and

(4.12) j�.´n � c�r�i
n /j � 2�c��Cr�i

k

��n

��C1
nC1

; n � k:

Note that if Y 2 U and

j�n � c�r�i
n j � j´n � c�r�i

n j; n � k;

then

(4.13) c.1� �/�r�i
n � �n � c.1C �/�r�i

n ; n � k:

From (1.5) and (4.1),

fn.Y / D ��˛
n an

nX

`Dk

b`y


`
; n > k:

We will show that

(4.14)

1X

mDn

xjmfm.Y / D O.c���
n /

under all three hypotheses. Then we will apply Theorems 3.1 and 3.2 obtain the conclu-

sions.

To establish (4.14), we write

1X

mDn

xjmfm.Y / D cIn CZn.Y /;

where

(4.15) In D

1X

mDn

xjmfm.Xr/ D

1X

mDn

��˛
m amxjm

nX

`Dk

b`x


r`
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and

(4.16) Zn.Y / D

1X

mDn

xjmfm.Y / � cIn D

1X

mDn

��˛
m amxjm

mX

`Dk

�
y



`
� cx



r`

�
b`:

It suffices to show that

(4.17) In D O.���
n /

and

(4.18) Zn.Y / D O.c���
n /; Y 2 U; c > 0:

We begin with (4.17). Recall that xjm D �
j �1
m x1m and xr` D �r�1

`
x1m. From (4.4) and

(4.15),

(4.19) In D

1X

mDn

�j �˛�1
m amx1m

mX

`Dk

�
.r�1/

`
b`x



1`
D

1X

mDn

�j �˛�1
m hm�Am;

with

(4.20) hm D

mX

`Dk

�
.r�1/

`
�B`:

If r D 1 then hm D BmC1 D O.1/. If r D 2 then

hm D �
mBmC1 �

mX

`DkC1

B`�
�
�



`�1

�
D

8
<
:
O.�


m/ if  > 0;

O.1/ if  < 0:

In either case,

(4.21) hm D

8
<
:
O.�

.r�1/
m / if  > 0;

O.1/ if  < 0:

From the second equality in (4.19),

In D �En � Fn � Gn;

where

(4.22) En D �j �˛�1
n hnAn;

(4.23) Fn D

1X

mDnC1

Am�
j �˛�1
m �hm�1;

and

(4.24) Gn D

1X

mDn

AmC1hm�
�
�j �˛�1

m

�
:
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From (4.21) and (4.22), En D O.���
n /. From (4.4), (4.20), and (4.23)

Fn D

1X

mDnC1

Am�
j �˛�1C.r�1/
m bmx


1m D

1X

mDnC1

�j �˛�1C.r�1/
m �Cm

D ��
j �˛�1C.r�1/
nC1 CnC1 �

1X

mDnC2

Cm�
�
�

j �˛�1C.r�1/
m�1

�
D O.���

n /:

From (4.21) and (4.24), Gn D O.���
n / if r D 1 or  < 0, while if r D 2 and  > 0 then

jGnj � M

1X

mDn

�.r�1/
m j��j �˛�1

m j D O.���
n /

by Lemma 4.2. We have now verified (4.14) under all three hypotheses.

Turning to (4.18), substituting

y` D ´`xi` D �i�1
` ´`x1` and xr` D �

.r�1/

`
x1`

into (4.16) and invoking (4.4) yields

(4.25) Zn.Y / D

1X

mDn

�j �˛�1
m gm�Am;

where

(4.26) gm D

mX

`Dk

�
´



`
� c�

.r�i/

`

�
�

.i�1/

`
�B` D Pm �Qm �Rm;

with

(4.27) Pm D BmC1.´

m � c�.r�i/

m /�.i�1/
m ;

(4.28) Qm D

mX

`DkC1

B`�
.i�1/

`
�.´



`�1
� c�

.r�i/

`�1
/;

and

(4.29) Rm D

mX

`DkC1

B`.´


`�1
� c�

.r�i/

`�1
/��

.i�1/

`�1
:

From (4.25),

Zn.Y / D �Sn � Tn � Un;

with

(4.30) Sn D �j �˛�1
n gnAn;

(4.31) Tn D

1X

mDn

AmC1gm��
j �˛�1
m ;
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and

Un D

1X

mDnC1

Am�
j �˛�1
m �gm�1

D

1X

mDnC1

�j �˛�1C.i�1/
m .´

m � c�.r�i/
m /�Cm (from (4.4) and (4.26))

D �Vn �Wn �Xn;

with

(4.32) Vn D �
j �˛�1C.i�1/
nC1 .´


nC1 � c�

.r�i/
nC1 /CnC1;

(4.33) Wn D

1X

mDnC2

Cm�
j �˛�1C.i�1/
m �.´


m�1 � c�

.r�i/
m�1 /;

and

(4.34) Xn D

1X

mDnC1

CmC1.´

m � c�.r�i/

m /��j �˛�1C.i�1/
m :

To complete the proof, we must show that Sn, Tn, Vn, Wn and Xn are O.c���
n / under

all three hypotheses. We consider the three cases separately.

Case 1: Suppose H1 holds.

From (4.11), (4.12), (4.13), and the mean value theorem,

(4.35) ´
n � c D O.c���

nC1/

and

(4.36) �´
n D O

 
c ��n

��C1
nC1

!
:

From (4.27) and (4.35), Pm D O.c���
mC1/. By Lemma 4.1,

(4.37)

1X ��n

��C1
nC1

< 1;

so (4.28) and (4.36) imply that Qm D 0.c/. From (4.29), Rm D 0. Hence, from (4.26),

gm D O.c/. Therefore, from (4.30) and (4.31), Sn D O.c���
n / and Tn D O.c���

n /.

Moreover, (4.32) and (4.35) imply that Vn D O.c��2�
nC1/. From (4.33), (4.36), and (4.37),

jWnj � Mc

1X

mDnC2

���
m

��m�1

��C1
m

D O.c���
nC2/;

by Lemma 4.1. Finally, from (4.34) and (4.35),

jXnj � Mc

1X

mDnC2

���
m j����

m�1j D O.c��2�
nC1/:

This concludes the proof of (4.18) under the hypothesis H1.
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Case 2. Suppose H2 holds.

From (4.11), (4.13), and the mean value theorem,

(4.38) ´
m � c�

m D O.c����1
m /:

Therefore, from (4.27),

(4.39) Pm D O.c����1
m /:

To deal with Qm (see (4.28) with i D 1 and r D 2), we denote

(4.40) ˚` D �.´


`�1
� c�



`�1
/:

By the mean value theorem,

´


`
� c�



`
D �

�1

`
.´` � c�`/ and ´



`�1
� c�



`�1
D �

�1

`�1
.´`�1 � c�`�1/;

where

(4.41) j�` � c�`j � j´` � c�`j; j�`�1 � c�`�1j � j´`�1 � c�`�1j;

and, from (4.13),

(4.42) c.1 � �/�` � �`; �`�1 � c.1C �/�`:

Now we can write

˚` D 
�
�

�1

`
� �

�1

`�1

�
.´` � c�`/C �

�1

`�1
�.´`�1 � c�`�1/;

and so, by the mean value theorem,

(4.43) j˚`j � j. � 1/jbu�2

`
j��`�1j.´` � c�`/C j j�

�1

`�1
j�.´`�1 � c�`�1/j ;

where

(4.44) c.1� �/�` �bu` � c.1C �/�`:

However,

j��`�1j � j�` � c�`j C c��`�1 C j�`�1 � c�`�1j

� j´` � c�`j C c��`�1 C j´`�1 � c�`�1j (from (4.41))

D c��`�1 CO.c���
` / D O.c��`�1/

from (4.5) and (4.11). Now (4.11), (4.12), (4.40), (4.42), (4.43), and (4.44) imply that

(4.45) �.´


`�1
� c�



`�1
/ D O

 
c ��`�1

�
��C2

`

!
:

From this and (4.28),

jQmj � Mc

mX

`DkC1

��`�1

�
��C2

`

D

8
<
:
O.c/ if  < ˛=2;

O.c���1/ if  > ˛=2;
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by Lemmas 4.1 and 4.2. (Note that if  > 0 then  � �� 1 D 2 � ˛.) Since Rm D 0 (see

(4.29) with i D 1), this, (4.26), and (4.39) imply that

(4.46) gm D

8
<
:
O.c/ if  < ˛=2;

O.c�
���1
m / if  > ˛=2:

From this and (4.30),

Sn D

8
<
:
O.c�1�˛

n / if  < ˛=2;

O.c�
�˛��
n / if  > ˛=2I

hence, Sn D O.c���
n /. From (4.31) and (4.46),

jTnj � Mc

1X

mDn

j��1�˛
m j D O.c�1�˛

n /

if  < ˛=2, and

jTnj � Mc

1X

mDn

����1
m j��1�˛

m j D O.c��˛��
n /

if  > ˛=2, by Lemma 4.2; hence, Tn D O.c���
n /.

From (4.32) and (4.38), Vn D O.c�
�˛��
nC1 /. From (4.33), (4.45), and Lemma 4.1,

jWnj � Mc

1X

mDnC2

�1�˛
m

��m�1

�
��C2
m

� Mc���
nC2

1X

mDnC1

��m�1

�
˛�C1
m

D O.c���
nC2/:

Finally, from (4.34) and (4.38),

jXnj � Mc

1X

mDnC1

����1
m

ˇ̌
��1�˛

m

ˇ̌
D O.c�

�˛��
nC1 /;

by Lemma 4.2.

Case 3. Suppose that H3 holds. We first note that since ˛ ¤ 2 ,  ¤ �.

Now (4.35) and (4.36) hold. From (4.27) and (4.35), Pm D O.c�
��
m /. From (4.28)

and (4.36),

jQmj � Mc

mX

`DkC1

�
���1

`
��`�1 D

8
<
:
O.c�

��
m / if  > �;

O.c/ if  < �;

by Lemma 4.2. From (4.29), (4.35), and Lemma 4.2,

jRmj � Mc

mX

`DkC1

���
` ��



`�1
D

8
<
:
O.c�

��
m / if  > �;

O.c/ if  < �:

Therefore, from (4.26),

(4.47) gm D

8
<
:
O.c�

��
m / if  > �;

O.c/ if  < �:
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From this and (4.30),

Sn D

8
<
:
O.c��2�

n / if  > �;

O.c��˛
n / if  < �I

hence, Sn D O.c���
n /: From (4.31) and (4.47), Tn D O.��˛

n / if  < �, and

jTnj � Mc

1X

mDn

���
m ���˛

m D O.c��2�
n /

if  > �, by (4.7) and Lemma 4.2. In either case, Tn D O.c���
n /. From (4.32) and (4.35),

Vn D O.c��2�
nC1/. From (4.33) and (4.36),

jWnj � c

1X

mDnC2

��˛���1
m ��m�1 D O.c��2�

nC2/;

by Lemma 4.2. Finally, from (4.34) and (4.35),

jXnj � Mc

1X

mDnC1

���
m ���˛

m D O.c��2�
nC1/;

by Lemma 4.2.

To complete the proof, we apply Theorems 3.1 and 3.2 with �n D �c��Cr�i
k

���
n . (If

i D 1 as in H1 and H2, compare (4.8) and (4.9) with (3.1); if i D 2 as in H3, compare (4.8)

and (4.9) with (3.11).) Under all three hypotheses, we have shown that if (4.8) and (4.9)

hold, then
1X

mDn

xjmfm.Y / D O.c���
n /:

Thus, under H1 and H2 (where j D 2), (3.2) holds with �n D Mc���
n , so �n=�n < 1

for n > k if c�1 is sufficiently small. Hence, Theorem 3.1 implies the conclusion. Under

H3 (where j D 1), (3.12) holds with �n D Mc���
n . Therefore, since � < 1 in this case,

(3.14) and Lemma 4.2 imply that

b�n �
Mc

�n

n�1X

`Dk

���
`C1��` � M1c

���
n :

Hence, (3.13) holds if c�1 is sufficiently small, so Theorem 3.2 implies the conclusion.

�

5. AN EXAMPLE

It is clear that fAng1

nDk
, fBng1

nDk
, and fCng1

nDk
in (4.4) are bounded if, for exam-

ple, fAng1

nDk
is bounded and

P1
jb`jx



1`
< 1. However, they may be bounded even ifP1

a`x1`,
P1

b`x


1`
, and

P1
A`b`x



1`
all diverge. For example, if

a` D
a cos.`t1 C s1/

x1`

and b` D
cos.`t2 C s2/

x


1`
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where a, b ¤ 0, s1 and s2 are abitrary,

0 < t1; t2 < 2�; t1 ¤ t2; and t1 C t2 ¤ 2�;

then fAng1

nDk
, fBng1

nDk
, and fCng1

nDk
are bounded but divergent.

For a specific example, consider the equation

(5.1) �

�
�yn�1

n.n � 1/

�
C

2yn

n2.n2 � 1/
D ann

�˛

nX

`D1

b`y


`
; n > 1;

where

a` D
a cos.`t1 C s1/

`
; b` D

cos.`t2 C s2/

`
; ` � 1;

and the constants are as above. The solutions of the unperturbed equation

�

�
�xn�1

n.n � 1/

�
C

2xn

n2.n2 � 1/
D 0; n > 1;

that satisfy (1.2) are x1n D n and x2n D n2. Note that �x1n D 1 and �x2n D 2n C 1.

Theorem 4.3 implies the following assertions for sufficiently small c�1:

(i) If ˛ > 1 then (5.1) has a solution bY D fbyng1
nD1 such that

byn � cn

n
D O.n1�˛/ and �

�byn � cn

n

�
D O.n�˛/;

which implies that

byn D
�
c CO.n1�˛/

�
n and �byn D c CO.n1�˛/:

(ii) If ˛ > max. C 1; 1/, ˛ ¤ 2 , and � D ˛ � max. C 1; 1/, then (5.1) has a

solution bY D fbyng1
nD1 such that

byn � cn2

n
D O.n��/ and �

�byn � cn2

n

�
D O.n���1/;

which implies that

byn D
h
c CO.n���1/

i
n2 and �byn D

h
c CO.n���1/

i
.2nC 1/:

(iii) If 0 < ˛ � max.; 0/ < 1, ˛ ¤ 2 , and � D ˛ � max.; 0/, then (5.1) has a

solution bY D fbyng1
nD1 such that

byn � cn2

n2
D O.n��/ and �

�byn � cn2

n2

�
D O.n���1/;

which implies that

byn D
h
c CO.n��/

i
n2 and �byn D

h
c CO.n��/

i
.2nC 1/:
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