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ABSTRACT. We consider functional perturbations of the nonoscillatory equation
A(rp—1Axp—1) + pnxn = 0.

Let & be the set of all real sequences of the form ¥ = {y,}>° . For each n > k, let f,(Y) denote a

real-valued functional of ¥ € &. We give sufficient conditions on { f (Y)};Z, |, for the equation
A(rp—14Ayn—-1) + pnyn = fu(Y), n>k,

to have a solution Y € &} that behaves in a precisely defined way like a given solution X of the unperturbed

equation as n — o0. A specific family of nonlinear functional perturbations is considered in detail.

AMS (MOS) Subject Classification. 39A11.

1. INTRODUCTION

Throughout this paper all quantities are real. We consider functional perturbations of
the equation

(1.1) A(rp—1Ax,-1) + PnXn =0

under the standing assumption that {r,, }°° and { p, }°° are infinite sequences of real numbers
with r, > 0, and (1.1) is nonoscillatory. In this case there is an integer k and sequences
X1 = {x1n )2, and X, = {x2,}°2, of positive numbers that satisfy (1.1) for n > k, such
that

(1.2) Fn(X1nX2,041 — X1 n41X2n) = 1, n >k,
and
(1.3) lim 22 = oo

The solutions X; and X, are said to be recessive (or principal) and dominant (or nonprin-
cipal), respectively, and X; is unique up to a positive constant multiplier [3]. Let

X2n
Pn = .
X1n
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From (1.2) and (1.3),

1
(1.4) Apy = — >0 and lim p, = oo.
nX1nX1,n+1 n—00
Let 8 be the set of real sequences ¥ = {y,}°°,. For eachn > k, let f,(Y) de-
note a real-valued functional of Y. We give sufficient conditions on { f,(Y)}72, ., for the
functional equation

(1.5) A(rn—lAyn—l) + pnyn = fn(Y)v n>k,

to have a solution Y € 8 that behaves in a precisely defined way like a given solution
X of (1.1) as n — oo. The case where f,(Y) = f,y, has previously been considered in

[1, 4, 5]. Some nonlinear and nonhomogeneous perturbations were also considered in [1].

2. PRELIMINARY CONSIDERATIONS

We impose the metric
1
d(X.Y)=Y_

n=k

|Xn — ynl
2=k 1 + |xp — yul

on 8. If {Y,} is a sequence in 8, then lim,_, o, Y}, = Y with respect to this metric if and
only if limy,_,o yun = yn for every n > k. Moreover, 8 is complete; i.e., (8, d) is a
Frechét space.

We use the following lemmas to obtain our results. The first is a special case of the
Schauder—Tychonoff theorem [2, Corollary 0.1, p 405].

Lemma 2.1. If U is a closed, convex, and compact subset of a Frechét space and T is a

continuous mapping of U into itself, then T has a fixed point in T (U).

Lemma 2.2. Suppose that Y o, UmXam converges, and let

(2.1) Yy = sup UmXom|, n>k.
tzn m={
Then Y _ UmX1m also converges,
le%s) 20,

(2'2) Z umxlm S w ’ > kv

m=n pn
and
(23) Z (x2m - xlmpn)um = 1//n+1, n= k.

m=n+1
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Proof. Define g, = ano:n UmXom. If k < n < N, summation by parts yields

N N N @ — g
g D
m=n m=n Pm m=n Pm
g g N 1 1
X S g (L1
Pn PN m=n+1 Pm Pm—1
From (1.4) and (2.1),
00 1 .
2.5) S gl | - ——| < ¥ s
m=n+1 Pm Pm—1 Pn

and limy 0 gn+1/pn = 0. Therefore (2.4) implies that Y X1, converges and
satisfies (2.2).

If k < n < N, summation by parts yields

N N

Pn
Z (x2m - xlmpn)um = Z (1 - _) (gm - gm-H)
m=n+1 m=n+1 m
N
Pn 1 1
=—(1——)gN+1+Pn Z ( __)gm-
PN m=n+1 Pm—1 Pm
Letting N — oo and invoking (2.5) yields (2.3). U

The following elementary lemma motivates the choices of transformations of §; whose
fixed points are solutions of (1.5).

Lemma 2.3. IfY > +19nX1n converges, then

n—1 00
Zn ==X Y _(Ap0) D GmXim, n =k,
{=k

m={+1

is a solution of
(2.6) A(rpn—1A2n—1) + PnZn = qn, n >k.

IFY 2, +1 9nX2n converges, then

o0
In = E (X2mX1n — X1mX2n)qm, N >k,
m=n-+1

is a solution of (2.6).
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3. GENERAL RESULTS

Theorem 3.1. Let X be a given solution of (1.1) for n > k, and let {on}32, | be a
sequence of positive numbers. Let Uy be the set of all Y € &k such that

San+1 and 'A (yn_xn)
X1in

~

yn_xn

A
520',1_1_1 pn’ n>k.

3.1 =
Pn+1

Xin
Suppose that

D Sa (V)32 is defined if Y € Uy;

(i) If {Y,} is a sequence in Uy such that lim, o Y, = Y, then lim, . f,(Y)) =
fn(Y),n>k;

(iil) Y i 11 Xom fm(Y) converges forevery Y € Uy, and there is a sequence {¢,}°° ;. |
such that

3.2) sup

{>n

<¢n, n>k, Y eU,

Z Xom fm(Y)
=/

(3.3) ¢n <0n, n>k,

and lim,,_, o ¢, = 0. Then (1.5) has a solution Y € 8k such that

2(=57)
X1n

Proof. U, is closed, convex, and compact. From (iii) and Lemma 2.2 with u,, = f,,(Y),

An_jc\n An
Y <2 —% n>k.

3.4) >
Pn+1

< ¢n+1 and

X1n

we can define 77 on U; by

(T (Y Nn =Fn+ Y (XomXin — XimX2n) fu(¥), 1 > k.

m=n+1
Then
Ty (Y))n — Xn >
3.5) & = Z (X2m — X1mPn) fm(Y),
X1n m=n+1
and

A ((TI(Y))n — Xn

X1n

)=—<Apn> Y Ximfu(Y),

m=n+1

so (3.2) and Lemma 2.2, with u,,, = f;,,(Y), imply that
(Th(Y))n — Xn

(3.6) ' < Pny1, n=>k,
X1n
and
T\(Y n_An A n
(3.7) 'A (M)' <22 n>k.
X1n Pn+1

Hence, (3.1) and (3.3) imply that 77(U;) C U;.
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Now suppose that {Y,,}7° | is a sequence in U; such that lim, . ¥, = Y. We want
to show that lim,, o, 77(Y,) = T1(Y); i.e., that

(3:8) Iim (T (V) = (T, 7 = k.

If € > 0,choose N > k + 1 so that ¢, < €/4ifn > N. Then (3.2) implies that

3.9 <e€/2, v>1, n>N.

D Un (V) = fn (V) Xom

With N now fixed, (ii) implies that there is a vy such that
N

D 1) = fu(V)lxam < €/2, v = vy,

m=k+1
This and (3.9) imply that

<e, n>k, v>v,.

D Un (V) = fn(Y))Xom

m=n

Therefore, (3.5) and Lemma 2.2 with u,, = f,,(Y}) — f(Y) imply that

(3.10)

> (am = Ximpn) (fn(Vs) = fn ()| < €x1a,

m=n+1

(T2 (Yo))n — (T2 (Y ))n| =

n >k, v > vy, which implies (3.8). Now Lemma 2.1 implies that there is a Y U, such
T.(Y)=7Y;ie.,

yn = Sc\n + Z (X2mxln - leXZn)fm(/Y\), n= k,

m=n+1

and Lemma 2.3 implies that Y satisfies (1.5). Setting ¥ = Y = T(?) in (3.6) and (3.7)
verifies (3.4). [

Theorem 3.2. Let X be a given solution of (1.1) forn > k, and let {0}, . | be a positive
sequence. Let U, be the set of all Y € & such that

n_An A n
A(y x)'§20n+1 b >k
X2n Pn+1

~

yn_xn

X2n

(3.11)

< Opn+1 and

Suppose that

) { (V)12 i, is defined if Y € Us:
(i) If {Y,} is a sequence in Uy such that lim, o Y, = Y, then lim, . f,(Y)) =
oY), n > k;

(iii) ano:kﬂ X1m Jm(Y) converges for every Y € Uy, and there is a sequence {¢n }o i, 4
such that

(3.12) sup

{>n

<¢n, n>k, Y eU,,

Z X1m fm(Y)
m={




6 FUNCTIONAL PERTURBATIONS

lim,, o ¢ = 0, and

(3.13) max(dn, Pns1) < Ons1, 1>k,
where

n—1
(3.14) Z¢K+IAP€

Then (1.5) has a solution Y € 8k such that

< an and 'A (yn —xn)

X2n

~ ~

Yn—X

X2n

(3.15)

~ Apy
S(¢n+¢n+1)pp , n>k.

n+1

Proof. U, is closed, convex, and compact. From (iii), we can define 75 on U, by

n—1 [oe]
(3.16) (Ta(V))w =Rn —X1n Y _(Ap0) D> fu(¥)Xtm. n>k.
{=k m={+1
Then
~ n—1
GO =% L0 S f
X2n Pn  Zk m=L+1
and
(I2(Y)n — 35,1)
A A m(¥Y)X1m
(BO) 2o S o 3 gt
A,on
m Y m-
ont1 an;Llf( )X1

Therefore (3.12) and(3.14) imply that

(3.17) L = Xn| b, n>k
X2on
and
(3.18) 'A (M) < @t o) 2P ws i
X2on Pn+1

Now (3.11) and (3.13) imply that 75(U;,) C U,.

Now suppose that {Y,}5°, is a sequence in U, such that lim,,« ¥, = Y. We want
to show that lim,, o, 72(Y,) = T>(Y); i.e. that,

Let € > 0. The argument used to obtain (3.10) shows that there is an integer v such that

D (V) = fu()xim| <€, n>k, v >

m=n
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Therefore, from (3.16),
n—1

(T2Yo)n = (TaY )l < €x1n ) Ape = €x1a(pn — px). 7=k, v =y
L=k

This implies (3.19). Now Lemma 2.1 implies that there is a Y € U, such that Tz(?) = /Y;

i.e.,

n—1 0
yn = Sc\n — X1n Z(APK) Z fm(Y)xlm, n= k,
=k m={+1
and Lemma 2.3 implies that Y satisfies (1.5). Setting ¥ = Y = Tz(?) in (3.17) and (3.18)
verifies (3.15). H

Note that lim,_, o an = 0. To see this, suppose € > 0. Since lim,—, o ¢, = 0, there is
an integer N such that ¢, < € if m > N. Therefore, (3.14) implies that

N

~ 1

on < p—Z(APekal +e€, n>N+1.
" 1=k

Hence, lim sup,,_, . an < €. Since € is arbitrary, it follows that lim,,_, » an = 0.

4. A SPECIFIC RESULT

Now we consider the equation

4.1) A(rp—1Ayn-1) + pnyn = p,%an Zbgyé’, n>k.
=k

We will need the following lemmas.

Lemma 4.1 (Abel-Dini Theorem). Ifs > 0 then

2\ AP

Z [s)-f—ll <0
Pn

Lemma 4.2. If p,+1 = O(py) and s, t are real, then

(4.2) D onAph, = 0@ if s+1<0,
and
S 05 ifs+1>0,
(4.3) Y AP, = .
M 0(1) ifs +1<0.

Proof. For (4.2), it suffices to show that p$, Ap!, = O (Aps,™). By the mean value theorem,

s ApL, = tosuly Apm  and  ApStt = (s + 0)vi T Apm,

m
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where o, < Upm, Vm < Pm+1. Therefore
s t—1
PnAPw _ L (Pm (tm
Apst! s+t \ vy, U ’

which is bounded for all m.

The proof of (4.3) is similar. UJ

Theorem 4.3. Suppose that y(# 0, 1) is real, ¢ > 0, and

n—1 n—1 n—1
(44) An = Za(ﬁxlﬁv Bn = Zb(ﬁxi/g, Cn = ZA(ﬁb(ﬁxi/g n = k,
{=k {=k {=k

are bounded. Suppose also that one of the following hypotheses hold.:
Hy:i=r=1j=2a>1l,and X =a—1.
Hy:i=1,j=r=2,a>max(l,y + 1), # 2y, A = a —max(y + 1, 1),

(4.5) pnt = O(Apa-1),
and
(4.6) Pn+1 = O(pn)

Hy:i=r=2,j=1,0<a—max(y,0) <1, a # 2y, (4.6) holds, and
4.7) A = o —max(y,0).

Then (4.1) has a solution Y € 8 such that

An - rn An - rn A n
Pn=Cm _ 03 ) ana A(L_ﬁ;):0<%%)
Xin Xin Prt1

if ¢”7 is sufficiently small.

Proof. Let 0 < 6 < 1 and let U be the set of all Y € & such that

_ A+r—i
(48) M S chk)k
Xin P41
and
Yn — CXpn A+r—i Apn
4.9) Al ———— || = 20cp; 7 = k
Xin pnil

To avoid annoying repetition, we invoke the boundedness of {A4,}, {B,} and {C,} re-
peatedly without stating that we are doing so. We also use summation by parts repeatedly
without stating this explicitly, and without verifying in advance that the infinite series that
arise from this are convergent. They are, in fact, all absolutely convergent, as our subse-
quent estimates will show. To avoid unnecesary and annoying subscripts, we will use the
symbol M (asin |u,| < M|v,|) as a generic constant throughout this proof; thus, the value
of M may be different in each appearance. It is to be understood throughout that M is
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independent of ¥ € U and c. If g, is a functional of Y, we write g,(Y) = O(c"v,) to
indicate that |g,(Y)| < Mc”|v,|,n > k,forall Y € U and ¢ > 0. Finally, whenever we
invoke Lemma 4.2 we are also invoking (4.6).

Under all three hypotheses,

ao—j+1—(r—1 ify >0,
4.10) 4 J ( )Y Y
a—j +1 ify <0.

It is to be understood throughout the proof that whenever we state that a quantity is O(p, 1)
or O(c?p,*), we are invoking (4.10).

It is convenient to work with the variable z,, = y,/x;,. Then (4.8) and (4.9) become

) p/H—r—i
(@11) 20— o) < B P
Pr+1
and
4.12 A r=iy| <« 20 A+r—i A,On >k
( . ) | (Zn_cpn )|— cpk /’L-f—l’ n_
n+1
Note thatif Y € U and
1$n — cp;—i| <lzn — CPZ_iL n>k,
then
(4.13) c(1—0)pl " <ty <c(1+0)p.~", n=>k.

From (1.5) and (4.1),
Fu¥) = 0y%an > byl n> k.
=k
We will show that
(4.14) > Xjmfm(Y) = 0 p,*)

under all three hypotheses. Then we will apply Theorems 3.1 and 3.2 obtain the conclu-

sions.

To establish (4.14), we write
2 Xim S (V) = € Ly + Zn(Y),
where

(4.15) I, = Z Xjm fm(Xy) = Z P AmX jm Zbﬁxrﬁ
m=n m=n =k
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and
416)  Zu(¥) =D Xjmfu(Y) =Ly =D prfamxjm y_ (v] —cxl}) b
m=n m=n =k

It suffices to show that

(4.17) I, = O(p;*)
and
(4.18) Z,(Y)=0("p;*), YeU, c>0.

We begin with (4.17). Recall that x;, = pﬁ},_lxlm and x,y = pz_lxlm. From (4.4) and
(4.15),

(4.19) L= ph* amxim Zpér_l)yngilﬁ = i hmAAp,
m=n {=k m=n

with
(4.20) hm =Y _py " AB,.
t=k

If r = 1then h,, = By+1 = O(1).If r = 2 then
" O(pl) ify >0,
hm = phBmi1— Y BeA(p)_)) = '
L=k+1 0(1) lf'}/ < 0.
In either case,

O(pw ") ify > 0.
o(1) if y <0.

4.21) B =

From the second equality in (4.19),

In:_En_Fn_Gn,

where

(4.22) E, = p™*  h,A,,

(4.23) Fo= Y Awply® ' Ahpo,
m=n+1

and

(4.24) Gn =Y Amtr1hmA (p}*7").
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From (4.21) and (4.22), E,, = O(p;’l). From (4.4), (4.20), and (4.23)

Z Amp] —a—1+(r— l)ybmxi/m — Z pj —a—1+(r— l)yAC

m=n+1 m=n+1
_ _pn+1 1+(r— I)VC Z C A (p] —a—1+(r— 1)1’) — O(p;/l)
m=n-+2

From (4.21) and (4.24), G, = O(p;*) ifr = 1 or y < 0, while if » = 2 and y > 0 then

Gy, |<M2p(’ VY| ApL 7 = O(py*)

by Lemma 4.2. We have now verified (4.14) under all three hypotheses.
Turning to (4.18), substituting

i—1 r—1
Ve = ZyXig = Ple Zgxye and Xy = PE 'x

into (4.16) and invoking (4.4) yields

(4.25) Zu(Y) = pr T gm A,

where

(4.26) gm = Z( e pér 1)1/) péi_l)yAB@ - P, — Qm — R,

=k

with

(4.27) Py = Bpi1(22, —cyp(r l)l/)p(l Dy

(4.28) Om= > Bup{ V" A@E]_ — ")
(=k+1

and

(4.29) R, = Z BK(ZZ L —c pér ll)y)Ap(l 1)1/.
(=k+1

From (4.25),

Zn(Y) =8, =T, —U,,

with
(4.30) Sy =pl ™ g, Ay,
(4.31) T, = Z Am+18mApp 7",

m=n

11
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and
Un = Z Ampm o= lAgm 1
m=n+1
= Z pime= 1=y (v _ 0¥ =Yy AC,  (from (4.4) and (4.26))
m=n-+1
= _Vn - Wn - Xn,
with
(4.32) Va —'Pn+1 e Dy(zn+47__c pg;{)y)6h+4,
(4.33) W, = Z Cmp;"i—a—ﬁ(i—l)yA(Z’l; e ,Of,: i)y),
m=n-+2
and
(4.34) X, = Z Cni1(2), — ¢ (r z)y)Apj —a—1+(i-1)y
m=n+1

To complete the proof, we must show that S,,, Ty, V,, W, and X, are O(c” p,, ’1) under
all three hypotheses. We consider the three cases separately.

Case 1: Suppose H; holds.
From (4.11), (4.12), (4.13), and the mean value theorem,

(4.35) 22 —c¥ = 0(c"p,t))
and
Apn
(4.36) Azl =0 <c ﬁl)
Pn+t1
From (4.27) and (4.35), P, = O(cypmH) By Lemma 4.1,
2. Ap,
(4.37) T < 00
Pr+1

so (4.28) and (4.36) imply that Q,, = 0(c?). From (4.29), R,, = 0. Hence, from (4.26),
gm = O(c?). Therefore, from (4.30) and (4.31), S, = O(c?p,*) and T, = O(c”p;*).
Moreover, (4.32) and (4.35) imply that V,, = O(cyp;}r’}) From (4.33), (4.36), and (4.37),

> — Apm—l _
(Wal < Mc” Y~ pr = = 0(c7 o),

m=n-+2 m

by Lemma 4.1. Finally, from (4.34) and (4.35),

Xal < Mc” Y p AP = 0, 7).

m=n+2

This concludes the proof of (4.18) under the hypothesis H;.
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Case 2. Suppose H; holds.

From (4.11), (4.13), and the mean value theorem,
(4.38) zh —c’pl, = O(c?pl ).
Therefore, from (4.27),
(4.39) P = O(c¥pl7*h,
To deal with Q,, (see (4.28) withi = 1 and r = 2), we denote
(4.40) Q= A(z] ,—c"p,_))

By the mean value theorem,

2y —c’p) =y8 Nze—cpe) and  zj_ —cVpl_ =y (ze1 —cpe),

where
(4.41) 18e — cpel < |ze —cpel,  |Se—1 — cpe—1| < |ze—1 — cpe-1l,
and, from (4.13),
(4.42) c(1—=0)pe <, le—1 <c(1+0)pg.
Now we can write
=y ( 7 - Z__f) (z¢ —cpe) + v8 -, Aze—1 — cpe),

and so, by the mean value theorem,

(4.43) D] < ly(y = DIy | Ale1|(ze — cpo) + Y167 |Azer — cpe)]
where

(4.44) c(1—0)pe <ug <c(1+0)py.

However,

|ACe—1] < |&e — cpe| + cApe—1 + |Loe—1 — cpo—1]
<l|z¢ —cpe| + cApe—1 + |ze=1 — cpe—1| (from (4.41))
= cApr—1 + O(cp*) = O(cApe—y)
from (4.5) and (4.11). Now (4.11), (4.12), (4.40), (4.42), (4.43), and (4.44) imply that
Apy_
(445) AL, — o)) = 0 (cxp—ﬁ) |

Py
From this and (4.28),

Api—r | O(c7) ify <a/2,

|Qm| < Mc? s
ezkzﬂpé R oYy ity > )2,
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by Lemmas 4.1 and 4.2. (Note thatif y > Otheny —A — 1 = 2y —«.) Since R,, = 0 (see
(4.29) with i = 1), this, (4.26), and (4.39) imply that
O(c? ify <w/2,
(4.46) gm = ) Ca v /
ooy ) ify >a/2.
From this and (4.30),
O(c?pi™) ify <a/2,
O’pl ™™ ify >a/2;

hence, S, = O(c”p;’l). From (4.31) and (4.46),

Sn =

|Tul < Mc? Y | Apy ] = O(c?py™)

m=n

ify <a/2,and

Tul < Mc” >~ o727 Apy | = O(c”py ™)

if y > a/2, by Lemma 4.2; hence, T,, = O(c”p;’l).
From (4.32) and (4.38), V,, = O(c”p’-*"*). From (4.33), (4.45), and Lemma 4.1,

n+1
00 00
Apm— Apm—
y § : 1—a m—1 Yy —A § : m—1 Yy —A
|Wn| = Mc pm A—y+2 = Mc pn+2 a—y+1 — O(C Pn+2)~
m=n+2 m m=n+1 Fm

Finally, from (4.34) and (4.38),

Xal < Mc” Y pn 7 Ay = Ol

m=n+1

by Lemma 4.2.
Case 3. Suppose that H3 holds. We first note that since o # 2y, y # A.

Now (4.35) and (4.36) hold. From (4.27) and (4.35), P,, = O(cypi’,,_’l). From (4.28)
and (4.36),

” o pl™) ify > A,
Qml < Mc” Y pl ™ Apey = ' 7
(=k+1 O(c?) ify <A,
by Lemma 4.2. From (4.29), (4.35), and Lemma 4.2,
m y y—A .
\Ry| < Mc? Z AP = O(c’om ©) ify >4,
Therefore, from (4.26),
O(c’pli™) ify> A,
O(c?) ify <A.

(4.47) gm =
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From this and (4.30),
O(c?p; %) ify > A,
O(c”p,*) ify <A;
hence, S, = O(c”p,*). From (4.31) and (4.47), T, = O(p, %) if y < A, and

Sy =

Tl < Mc? Y~ ph*Ap,* = O(c” p, ™)
if y > A, by (4.7) and Lemma 4.2. In either case, T,, = O(c”p;’l). From (4.32) and (4.35),
Vi = O(c? p,;24). From (4.33) and (4.36),

Wal <¢” 37 o Apms = O 0;3%).

m=n+2

by Lemma 4.2. Finally, from (4.34) and (4.35),

Xul < Mc” Y~ p AL = 07 p, ).

m=n-+1
by Lemma 4.2.

To complete the proof, we apply Theorems 3.1 and 3.2 with 0,, = ch,’lJ“r_ip; Aoaf
i = 1 asin H; and H,, compare (4.8) and (4.9) with (3.1); if i = 2 as in H3, compare (4.8)
and (4.9) with (3.11).) Under all three hypotheses, we have shown that if (4.8) and (4.9)
hold, then

> Xjm fm(¥Y) = O(c” ™).

Thus, under H; and H, (where j = 2), (3.2) holds with ¢, = Mcyp;’l, SO ¢n/on < 1
for n > k if ¢¥~! is sufficiently small. Hence, Theorem 3.1 implies the conclusion. Under
Hj; (where j = 1), (3.12) holds with ¢, = Mcyp;’l. Therefore, since A < 1 in this case,
(3.14) and Lemma 4.2 imply that

n—

1
D PrhApe = Mic? .t
l=k

R 14
%SMC

n

Hence, (3.13) holds if ¢”~! is sufficiently small, so Theorem 3.2 implies the conclusion.
OJ

5. AN EXAMPLE

It is clear that {A,}° ., {B,}° ., and {C,}>°  in (4.4) are bounded if, for exam-

n=k’ n=k’

ple, {A4,}°2, is bounded and Y |b¢|x], < co. However, they may be bounded even if
Cagxie, Y. bex?,, and >_°° Aybgx?, all diverge. For example, if
14 1

acos({t; + s1) cos(Lty + 52)
a; = and by = ———F——
X1¢ X1e
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where a, b # 0, s1 and s, are abitrary,
0<t,tp <2m, ll#lz, and 11+127é27'[,

then {A4,}°° ,, {B,}° ., and {C,}°2, are bounded but divergent.

For a specific example, consider the equation

Ayn—l 2yn — -

5.1 A =aun“ bey!, n>1,
-1 (MWAJ+ﬁan @™ ) b
where

Lt 14

aﬁzacos( 1+s1)’ bﬁzcos( 2+s2), 0> 1,

14 Ly

and the constants are as above. The solutions of the unperturbed equation
A)Cn_l 2)Cn
A + =0, n>1,
(n(n — 1)) n?(n?—1)

that satisfy (1.2) are x1, = n and x,, = n?. Note that Ax;, = 1 and Ax,, = 2n + 1.
Theorem 4.3 implies the following assertions for sufficiently small ¢¥~!:

() If & > 1 then (5.1) has a solution Y = {3, }2°_ | such that

Vn —cn Vn —cn

=0n'"¥) and A( ) =0n™%),

which implies that

Vn=[c+0m"™|n and Ay, =c+ O0@®'™).

(i) If ¢ > max(y + 1,1), @ # 2y, and A = « — max(y + 1, 1), then (5.1) has a
solution ¥ = {¥n}22 | such that

o~ _ 2 A~ _ 2
In N O(n™) and A (u) = 0™,
n n
which implies that
o =[c+ 00 N]n? and A7, =[c+ 00| @n+ 1.

(i) If 0 < o — max(y,0) < 1, @ # 2y, and A = o — max(y,0), then (5.1) has a

solution Y = {3,122, such that

Vp —cn?

S~ 2
—— =00 and A(y"n—j”) = 0™,

which implies that

Vn = [c + O(n_’l)] n®> and Ay, = [c + O(n_’l)] 2n +1).
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