THIS REPORT IS INCOMPLETE

‘'This report was prepared by E, Norman, W.bTrench,'and R. Drake

under Contract No. NAS 8-20347, Research ;g_Mefhods.gi'Generating

Liapunov Functiohs, for the George C. Marshall Space Flight Center of

the National Aeronautics and Space Administration. The work was

administered under the technical direction of the Resources Management
Qffice, Aero-Astrodynamics Laboratory, George C. Marshall Space Flight

Center, with C. C. Dearman acting as project manager.


Owner
Text Box
    THIS REPORT IS INCOMPLETE


RESEARCH IN METHODS
. OF GENERATING

LIAPUNOV FUHCTIONS

Subnitted by

E. Norman, W, Trench, R. Drake

Final Report
Contract No. NAS 8-20347

Control No. DCNI 6-75-0054 (IF)

August 11, 1967

Drexel Institute of Technology

Philadelphia, Pennsylvania 19104



. Abstract

.'ihié':eéort giyeé fhe resulté’of a number of attempts to find ﬁnder—
lyiné principles.uﬁiting fhelmany methgﬁs for generatiﬁg Liapunov functions
for ﬂonlinear sysfems of ordinary differéntiél equatioqs.» Oqucoﬁclusionsﬂ
ind?cate thaﬁ if géneral principles‘exist‘for the'generation'of Liapunov
functions they lie veryAdéep, and are ﬁot tdAbe fouﬁd among the methods

now in use,
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Summary . N

The report falls naturally into two parts. Part I éiyeé aAc;itiqué _
of the methods now in usé for the géneration of Liapunov functions‘fdr
nonlinear systems of ordinary differential equations, The critique is
illustrated by a technique for generating Liapunov functions which we call
the "Conservative Spring Concept", This-technique,_which we émphasiée _
is not really é new method, is capéble of solving a large numberﬁof
previously published examples,

Part IT of this report is a description of somé partial results
obtained for the stability analysis of systems of autonﬁmous ordinary
differential equations whose right hand sides are homogeneoué polynomial
forms. |

The report is concerned exclusively with the problem of Liapunov
stability or asymptotic stability of an isolated_singulafbpoint; usually

the origin,



" I, The purpose of this research was to try to uncover any general prinéiples
that may.exist for the systematiq‘generation of Liapunov functions. After
looking for quite some timé at the various methodé used to generate Liapunov
functions for the analysis of the stability of systems of autonomous differ-
ential equations it is our opinion that, despite the great bulk of published
material, little progress ﬁas béen made. Our efforts to deal with the
problem of the systematic generation of Liapunov functions has led us to feel
that a specifie, father than a general, approach is most likely to succeed
in tﬁe long run, It is, in faét, the very generality, or seeming generality,
of the various methods now in use for finding Liapunov functions which is
their principal weakness. The authors of the various methods claim general-
ity, but they always end up applying their methods to basically the same‘
classes of second, third, and a few fourth order systems, % The exceptions
to this rule, which we know of, are high order systems describing certain
rigid body motions, and control theory problems with high order linear parts
combined with a single nonlinear element. The methods of obtaining Liapunov
functions in these two areas are for the former, to consider a linear combina-
tion of first integrals, and for the latter to comsider a quadratic form plﬁs
an inﬁegral for the nonlinear element.

Most of the methods studied are, as claimed, very general in principle,
but they all suffer from the f&llowing defects in practice,
(i) A large améunt of computation is ;equired for.highAorder
systems, This is the least serious defect.

*It should be understood that we are here talking of practical procedures

and not of the very substantial body of theoretical results.
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thé evolution of the method. Each new type of equation is further removed
from the original idéé. As the analogy grows weaker édditional assumptions
must be introduced until finally there are gaps to be filled in by a judi-
cious choice of functions.

In summary, we believe at ;his point that effective progress in the
problem'of generating iiapunov functions has not been made méinly because
the proposed methods are too general. We feel that one should consider
each order of nonlinear system in turn with respect to classifying the
various types Sf nonlinearities according to how they affect the stability
of the system. The Comservative Spring method préseﬁted in this report is
not really a new method. It serves to illustrate the pitfalls of general-
ity and also serves to illustrate the possibilities of fhe above type of

classification.



.- The Conservative Spring Concept of Generating Liapunov Functions

1. Motivation.
The differential equation governing the motion of an undamped nonlinear
spring is

<0 x4 ggx.) =0 ; g(0) =0 .

. The total energy of the system at any time is given by the function

, T
A % :
,V:‘E"" G(x) 5
: X : o ' ' o .
where G(x) = j- g(s) ds. Differentiating V with respect to time along

a trajectéry of (1) yields

i

V.=x % +g( x = % (-g() +xgm = 0.

Hence if we requi;é that
G(x) > 0 for x +70 s

the function V becomes a Ligpunov function for (l).énd we may conclude that

(1) is stable,

L, o
2. Lienard's equation,

' - - .
We may consider Lienard's equation

@2 | o n ot E(x) x +g®) =0

as representing the motion of a non-conservative spring. We attempt to cast



equation (2) into a form which resembles (1). Let

x . o
F(x) g f(s) ds o -,
. o : :

G(x)

L]

% .
j g(s) ds ,
o -

and rewrite ‘(2) as

L[5 +2@) + g =0

]

By analogy with (1) we choose the function
11 2
(3) Vv = ) [x + F(X)J + G(x)

as a candidate for a Liapunov function. Note that now V no longer represents
the total energy. Differentiating V with respect to t along a trajectory of

(2) yields
V o= -g(x) F(x) .

We may conclude that (2) is asymptotically stable in a regibn  defined by

the conditions

g(x) F(x) > '0 for | x| <a,‘x+0‘-

G(x) < L => ]x]<'a
Q = { (&, x) / V<Ll .

Complete details of the analysis ma§ be found in [ 5 1.

-



. We now éompére, by means of several examples, the proposed Liapunov
function given in equation (3) with the Liapunov function obtained by other
methods.®

Examplé A, Van—dér Pol's equation

x4 e (l—xz)fx<'+,x =0

it

. X ' : 3
 F(x) € g '(1_82) ds = ¢ (x - %‘)
.o . ) o :

i

_ o x -
Ce(x) S sds = =
e A .

a 1[ W.x3]2 2
R e (x - 3‘)4 .+.Z

"8 ¥ =~ -5y

<
i

The_Liapﬁnov fﬁnction given Ey this analysié is equal to 1/2 of the
Liaﬁunov function given.by Infante {2;p 741},

Examéle B. Infaﬁte {2;p 78} considers a ﬂon;symmetrical oscillator
with équation

"X 4+ ax + bx + X2'= 0 ; a, b constants > 0.
Here

2

F(x) = ax, G(x) =‘% X +‘% x3

In éccordance with (3) we take

# The method with which we are comparing will be denoted by the name of its

- author; references are to section and page of the report | 6 1.
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#

1 2 b 2.1 .3
2 [x + aij f 2 Ax f 3 X

- <
"

- (bx + x2) ax = - ax2 (b +x).

This is the same Liapuﬁov function as obtained by Infante.
Example C. Infante {2;p 81} considers a nonlinear damped pendulum
with equation |
| ; + (& cos x) ; + 'sin x=0; >0,
Here |
F(x) = €sinx , Gx) =1~ cos #

and

\Y %[x +ssin'x]2 + (1 - cos %) ,

. 2
V=-¢sin x,

This is the same Liapunov function as obtained by Infante.

Example D. A globally stable oscillator.

x + e (1 - x2,+ x4) ; + x3 =0
Here .
: ps xS ‘x4
F(x) =e (x-3-+35) , 6(x) =
~ and
-1 = z_] L=
Veglxte -5 +3 *%
. 2
V= - ex4 a- %— +'§i )
5

Again, our Liapunov function is the same as that given by Infante {2;p 82}.
Szego {7;p 46} using a method not related to the energy concept obtains the

function



1 4 ° 2.

VS='2-3 + x s
VS=2£X2(l—x2-+x4) .

Example E. Schultz and Gibson {5;p 28} comnsider the following example

by means of the variable gradient technique,

X + (L4 £ +x ) x+8x £) =0

Here
' ) X ) X
F(x)=x+5 f(s) ds + S sf/(s) ds = x (1 + £(x))
o o . ,
X
G(x) = B j s £(s) ds .
0

In accordance with (3) we set
X

[z +=xa +2an]? + & S s £(s) ds

o

v

S8 @ @+ £(&)).

«
Il

The conditions for global asymptotic stability are

- xfx)>0 ;3 x+0

g >0

£ > 1

The Liapunov function obtained by Schultz and Gibson is



x e . ' X

(x + ;)2 + 2 S' s [f(si +‘s ffs)] ds + 28 -y‘ s £(s) ds
. .' [e} i ) ] 0 . .

=
]

W

n

-2 E(f(x') +x£0) # 8’ £@]
The,Liapunov fung?ion W'giﬁeé.fﬁe follo%igé éqndi;ions.fof global asymptotic
stability | v |
850
f(x);f_xff%) >0
f(x)‘>AO for _x.+;0
3. :A more generai sgcbnd orée# equation,
The Equat?on | |
@ X +»£(;<) X + g(x) x +h(x) =0
is éne step removed from the Liéharé equation;‘wejtherefbre aim to put it

into a form similar to (2).

Let y(x) = exp [S f(s) ds] = exp [-_F(x)j .
: o .,

Multiplying (4) by y gives

) (x+£@ ) y@ + @ y&® x +hEx) y& =0
Definé - - : %
cw-] 86 y(s) ds , B () = | B(s) y(s) ds .

‘0 o

-]



a - .

Since y = x f(x) 'y(x) we may write (5) in -t_he form

%t [x’ y + G] + h(x) y(x) =0
‘.By analogy with (3) we take as a candidate for a Liapunoﬁ function

" N .

veg [ =y +e@]? +E@

Differentiating with respéct to t:.a_l'ong a trajectory of (4) yields
V= x 0 (exp [FGI - exp [zy(x)‘]) - h(x) G exp [F(x)] .

V would have the same form as in (3) if the first term above were zero.

This can be accomplishéd by modifying V by use of the function

" ' , .
. H(x) f= S h(s) exp [2F(s)] ds

°
in place of HE) .
Our Liapunov function now becomes

i ' ) . R '\: N
1 e re01 + 80 *EHE

i

(6) v

- h(x) G(x) exp [F(x)] .

<
I

The function G(x) is not really needed'in ((-6); if we delete it from the

definition of V in (6) we get the alternate form

~11-



A . n
) V = %‘Xz exp [2F(x)] + H(x) ,

V= - % g(x) exp [2F(x)] .

Example, Infante {2;p 83} considered the problem of liquid motion in

a surge tank, and derived the governing differential equation

B a(l+x® B

v 2 ° 2 2 .
x + 3 x2+ B )[zg'-l+—2-g-x].x

Using the alternate form (7) we obtain the function

<
n

. - 2 -
%-xz exp [2“—21:] + jo[s—6+(-i-_-!_8—g)aexp [2 -%—sJ ds,

22 2 2 - 2
- _.B x [20& _ 20 ] a J
v e ()2 R 1+ —-—-B X exp L-Z --*—B | X

%

for the analysis of the stability of (8), which is the same as the
Liai)unov function given by Infante.
4., The general second order equation.

We turn now to the most general second order equation,

®) %+ Ex® =0 3 X(0,0) =0 .

-12-



In order to get equation (9) into a form amenable to our previous analysis

~ 9% 32% . . .
we assume that —— and - exist and are continuous., Write.
0% - 3%

X(x,%) = h(x) + g(x) % + £(x) £ + X(x,%)

’

Py

where (x,%) = o(iz) as X -~ 0, Equation (8) now takes the form

;;+ £(x) }';2 + g(x) x + h(x) + }E(x,fc) =0 .

By analogy with the analysis of eciuation (4) we adopt the foliowing form

as a candidate for a Liapunov function,

2

©) Ve ap 2R+ @
wheJI:e . X X
F(x) = g f(s) ds 3 ’ﬁ(x) = 5 h(s) exp [2F(s)] ds.
) o . :

V= - [}'{2 g(x) + % %(x,}'{)] exp [2F(x)] .

The funetion (9) will be a Liapunov function for (8). if h(x) and
g(x) are positive in some neighborhood of the qrigin; the extent of the
region of asymptotic stability will depend on the nature of the

function X(x,X).

=13~



" Example. Rayleigh's equation,
S X - %— x3 + Ux +x=0,

Here h(x) = x, g(x) = ﬁ. 'and'f(x) = 0; thus
< S
Z%S. 12, 2
o gds é.E(X, f * )4 |

<
1 &
hﬂ% .

REERrS (1 - 223)
R
In this éase V is the usual qua&ratic form,

5.. Third order equatioﬁs.
In this section we consider the third order equation

(10) 2+ () %"+ g(x) + h(x) = 0.
Again, our aim is to put'the new equation into a form résembling a previously

L 3

treated equation, Define F(x), G(x), and H(x) inAthe usual way, and write
equation (10) as 1 e L

d
(ll)_ v

, ‘X + F(xj] + g(x) + h(x) = 0
'The first two terms of (11) suggest the function

v, =%[:"£<_+ raol? + e(x) .

This, however takes no account of the third term h(x). We-therefére, seek

“l4-



a Liapunov function in the form

V=V, +V, ,

1 .2
where Vl is as above, and Vziis to be determined so as to simplify the
resulting expression for V. Since V = Vl + V2 it is simpler to choose

V2 so as to simplify V and further require that V2 be given as a derivative.
‘Differentiating V with respect to time along a trajectory of (10)

yields

V= x + F(le[j— g(x) - h(xi} + g(;).; +.62

- - g(X)F(x) + [‘}2 - h(x) ¥ - h(x) 'F(:':)] .

The first term above, - g(x) F(x), corresponds to previous results and
should be retained.
In order to choose Vz we assume that F(x) has a continuous first

derivative; write

F(x) =a x+ vu. ,
and

F(x) h(x)

i

axh@) + [F& - ax] hx)

& a5+ (F@ - 2 x)ne .

This suggests that we take
L] d ® .
Vo =—1{ x h(x) + a H(x)]

2 dt

] S



Then

V2 - hkx).;.A; ﬁ(x)_F(;),= ;2 h’(x) +-[a; - F(x)]Ah(x) f-

We thus, adopt as a candidéte for a Liapunov functipnifor equation (1),

w ; %[x +FG] 7 +66) + xbG) + 2 HE)

<
f

_[g(:})' Fr@]F@® + 86 +axh@ .

Example, Barabashin's equation,
For the equation

LI L] .

- (13) x +ax +g& +h) -0 |

The above analysis gives the Liépunov function |

< o
i

: "‘2&'[; + a }'{]2 + G(}.c) + a Hx) + ;.; h(’_‘)

V=-axgx + xz'h'(x) .

The V given here is the same as that obtained by Walker {2;p 87} using his
modification of Infanté's integral method; it yi.eid's ‘the foliéwing set of

sufficient conditions for global asymptotic stability
ag@ -1 @ >0 3 i+ 0

p.4

Ca > 0};; X h(x)-> 0 s xT+0

16~



[x + a x] 3. g(s)‘ds + a S h(s) ds > ;.: h(x)

o - o

Schultz {5,p 39} and Pur1 {5,p 46} treat Barabashln s equatlon by

the variable gradlent method Puri obtalns the function

X

vl e - So_ms) ds+_§>‘g<s) ‘ds-t;h‘(x)';(

‘}P=:-x2[ &i—’ﬁ)-h(x)]
which yields alﬁost the samé conditions for global ésymptotic stability as
dogs the function V.
6. Some other forms.

In this section we presént‘thfee exam?ies which aig‘not in any of the
forms specifiea in the pre&ious éections. Thesejéxamples aré intended to
illustrafe the gapé that developf_"éé.'a mephod(fo; genefatigg Liapunov
funct@ons is extended, |

Example A. Walker'{Z;p 89} studied the equation

(14) ' x +bx + (x + c x) =0,

' This equation is not of the form of equatioh (10), but bears some similarity

to it.

] 7=



Write (14) as

d a8 L

. *m
ar = + bx).+ (x + cx) = 0
and let
* .ol
R *i2 (z + cx)™
V= 3 lx #bxl" + iy T vV,
where .
L, kL - ‘ .
(x + cx) _ N S : ‘
Cm T 1) = G(x) = i (x + cx) dx
Differentiating we get
% = - (b - ;Q -; (x + c;<)m + %
c 2

This form of V does not suggest an appropriate form for V if, hQWBVer,

20
%9 e . e °

we do not replace x by - bx - (x+cx)m in the evaluation of V we obtain

the expression

L) ° LI ® * P L]

(15) V=(b—%)xx+b(b—%)xx+v

The order of x is now reduced by extracting an exact differential from

‘the first two terms of (15). Thus,

The choice of V2 is now cleaf,
® _ g_ [ - ® @ - 02] . -3;

~18~



With this choice of V, we get

2

_ l{;o' : l_' 2 Ll _ ‘2 1 i ¢ mt+l
V=3 + 2 xj} + 2c2 (be . 1) x™ + D) (x + cx) .

\.I=—-(b—%);<2 .

The Liapunov function obtained here is the same as that oﬁtaineﬁ by
Walker. |

Ingwerson {7;p 39} and Szego {8;p 52} comnsider éqﬁation (14) %or
the case m = 3, and obtain very similar results. Ingwerson uses é liﬁear
analogy in his work while Szego uses a modification of Zubov's techniqué.

Example B. Ingwerson {7;p 45} considers the third order system

.2
(16) x + b, x + (b2 + c2b3) x + b4 (x + CZX) + b

1 x=0 J

3

Let

y=X + cé'x

With this notation equation (16) becomes

da f*° : D 2
3 L* + bl x|+ b2 x + b3iy + b4 v

1
o
°

Since the coefficient of =x in the above equation is unity, it would be more

convenient to make the coefficient of x in y equal to unity. Thus, let

-19-



and our equation now becomes

é__ [-a s = ° . 2 2 _ . .
It X +blifb2x+b3022 + b, c z = 0 .

We now take V of the form

iy ' 2 2 2
V—2£x +'plx +b2_§é<___ +b3c2 + b, ¢

Differentiation yields

e _ . .2 o~ 2:' - ' 2(_- 2 . —x—— o »
an V-—-—blbzx -Lbl- tHf)?’cz x+c2+b4c2 x+c2] x + V:2

We mnow look for an appropri’.ate derivative in the second term of (17)

to choose as V2. After some rearrangement of terms we find that

~20-



Then

® [ Y " bc ® Zb i
- - 2 _ _ 2 4°2 g )
V= blb2 X ‘blCZ'l)-[:bBX (l + 5 X -+ 3 X ]
3 3
.o b, . b.c. 2 - 2b,c
_ 1 N2, 202 372 zZ 472 2
V = > x + blx) + 5 X + > . {l +—--—-—-—b3. ]

; b - 2
(- 2)2 < (e st =)
2 "3 .

The above function gives the following sufficient conditions for

asymptotic stability:

b.e . ”
1+ 4 2 (1; + %5 ) > 0

Ingwerson claims global stability, but his Liapunov function is not

given in the report,

-21-



" Example C, Our last ekampie is a fourth order equation considered by
Walker-{Z;p 96}

e % ae » 8 e LY L4

(18) " X+ 4x _+ 52 + 2x + cx3 =0,

Even though equation (18} is of é relativeiy:simpie forﬁ, containing only
one gonlinearity, a good deal of-ingenuity is.required to produce a Liapunov
fuﬁcfion. | ’ |

_“The térmsliq (lé)Aﬁéy be grouped, énd thevéquation rewritten as

LI ] LRI Y ese’ .. L .

(x + x ) + 3 (x + x Y+ 2 (x + x) +,cx3 = 0 ,

This suggests that we let

y =x+x .

aﬁd write the equation in the forﬁ
d LI L] L) 3 .
(19) EE( y +3y) + 2y +cx” = 0
Eéuation (19) suggests that we try to construct a Liapﬁnév function
in the form
® 0 .Z 'I2
)

v = %‘ (y + 3y +y o+ ¥V, .

22~



Differentiating,

® L] ®ae L) L)

= - 6y2 - 3 (x + x + 3x + 3x ) + V2

= - 6y2 + 3cx2 ( xx+ 4x ) - dt [:xB (x + 4 ) + -'X%J + V .

We thus take

which yields

- L 2 L L ] *

(20) Ve=-b6(x +5° +3ex2 (x x + 4x2)

The above form of V does not lead to satisfactory stability criteria;

therefore we shall redefine V2 . Equation (20) may be written as

. e 2 0.2 ~2—:-'1:"'0 e 189 0'2
=—6(1-2x2)(x+3§—)2—%% Gxo X -opR X -TyH X

Redefine V2 as

L[] ..—.‘— e é ﬂ A._z;];...i— '.2
v c x" (x + 4x) + 7 X + Pl ") .

2

in the expression for V . With this definition of V2 we get the final result,

The last term of the new V, is designed to simplify the last three terms

-

-23-



V‘=.%(y+3y)2+(x,x,><) -,2;2 1
(21) ' :
1 1
V =-6 (l-—2cx2)(x + 282)2 - __]é_:i x2 x2 .

The Liapunov functién defined in:(il) yields the followiﬁg stability

criteria:

V is positive definite if
: 2
¢ >0 and ex© < 1

V is negative definite if

¢ >0 and 2cx2 < 1.

Yy




II. An attempt waé made by Dr. J, P, Clay to find out if any theory could
be Qeveléped regarding the pnderlyiﬁg structure of the class of all Liapunov
functions (yielding asymptétic stability) admittea By a given system of
differential equatiouns. Coinéident with this, the class of all systems of
differential equations (of a given type) which admitted a given Liapunov
function was studied. |

This attempt yielded only a few results of_an eleﬁentary nature, and
was abandoned as being pfemature. The generality of the approach was far
too great to yield concrete results until more is known about specific
classes of equations and their associated Liapunov functions,

The following is a brief description of Dr, Clay's ideas.

Let W be a closed neighborhood of the origin in n-dimensional
Euclidean space, and let V(x) be a positive definite mapping of W into
the reals‘havihg continuous first partial derivatives.

We define

Ly(W) = {£/£: W~ E'; £ (0) = 0; VV - £ is negative definite} .

Basically LV(W) represents the set of all autonomms systems of
differential equations for which the origin is an asymptotically stable

isolated singular point, and for which V is a Liapunov function.

The following results hold:

@) £, ge LV(W) 4 | f+ge LV(W)

(2) £ ¢ Lv(w) and o > 0 = of ¢ LV(W) '

~25



(3 LV(w) C C(v; En) = the set of continuous fuhctions

on W into'En.
4) LV(W) is a convex topological semi-group of C(W; EY).

Let £:W + E" with £(0) = 0 and £ continuous.

We define

Lf(W) = {V/V:W > R; V has continuous first partial derivatives;

V is positive definite; VV.f is negative definite}.

Assuming that the system.é_= gkg) has an asymptotically stable
singular point at the origin, then Lf(W) is the set of all Liapunov
functions defined on W for the system é_= £(x).

The following results hold:

(1) For any V., V_ ¢ Lf(W), and o > 0

2
@ v, + v, & L_f_(W)
(ii) &Vl € Pi(w)

(i1) v V, ¢ _i,i(W) .

(2) IfVe Lf(W), then Se (V){ﬂy_yg(W) +=¢, for any ¢ > 0, Here

S, (V) = {V* / sup [V(x) - V*(@)] < ¢ }
T X .

- =



- (3) Lf(w) is a convex topologicél semi~ring of the ring of continuous

functions on W into R,

Ag attempt was maéé é& igvestigate the strPcture of Lf(w) and LV(W)
using topology, élgebra; and_fﬁnctioﬁalAanalysis but no substantive results
were obtained, ' | | |

The maihAbody of this parf 6f the rép§rt’§onéists éf bur efforts to
uncover Sbme structure of a more‘épecific ciass.of differential equations,
Sﬁecifically, ﬁe'wished to classify'in‘a meaningful way those systemé of
autoﬁomousdifferential'equations which admit df“a quadratic form as a
Liapunov funétion for fhg determination of the stébiliﬁy or instability of
the origin., | | | |

We considered theisystEm

(@ x = f@; £ =0,
where £(x) is an analytic function of x.

It is well known that if (a) has the form

® x =ax+I@ ,

-_ﬁheré A is a constant nxn‘matrix and F is aﬁalytic with no terms
of degree less than two, then (a) adﬁits of a quadratic form as a Liapunov
function if the eigenvalues of A either all have negative real parts or at
'1east‘oﬁe eigenvalue has a poéitive real part. 'We.conjectured that if the
matrix A has no eigenvalue with a posi;ive real part, and also no>eigenvalue
of multiplicity greater than one with zero real part, then (b) admits of a
quadratic Liapunov function. This conjecture turned out fo.be false as the

following example shows.
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(c) . .

«
i

For the system (c)

0 1

0 -1

with eigenvalues xl = @, Aé = -1, However, for any quadratic form

%‘ (ax2 + 2bxy + cy2)

we get

(b-c) y2 + (a-b) xy + bx5 + cyx4 .

R
it

Along the line v = 0, % = bx5 which may take on both positive and negative
values in any neighborhood of the origin.

On the other hand, ome can produce any number . of exémples of equations
which admit of a quadratic Liapunov function (or;’in fact, of any given
Liapunov function) by the following device.

ﬁét V(x) be a given positive définite function, and let P(x) Be any
sign constant scalar function. Then if G(x) is such that Eﬁg}' VW(x) =0

the equation

@ x = P& W+ G
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has ¥(x) as a Liapunov function. The characterization given in (d) is, of
- ’ i ’ ) .

n a useful form except to produce examples,

i

course, not
The next section of this report describes our efforts to broaden the

scope of the problem in order to achieve meaningful results.
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‘Equations with homogeneous right hand sides

1. Introductionm,
We devoted considerable effort to systems of the form

1) . xl = b, @); i=1,....m,

where bl, 2,.;.,bn'are hdmogengous polygomials as a first step toward
finding conditions on the more general system

@) . , ,=f,@®; 1= Leeesm

which imply the existence of a homogeneousvpolynomial Liaﬁunov function. -

.Suppose the right.side of (2) is anélytic in (xl,...,xn). Then

X, =) £..@®3 1=1,...,n,
j=1

- where fij(g) is a homogeneous polynomial of degree j,

_‘If fil*O for some i, thén @) has a 1iﬁear part;‘ﬁﬁis is fhe classical
situation studied by Liapunov. Suppose k > 1 is the smallest integer for '
Whiéh fig¥0 for some i, If k is.even, (2) is unstable. [1;p96]. Hence we
assume that kA=k2m + 1, in which case (2) éan be written
- (3) } % = bi<_£g) + g, (®); 1= 1,eee,m,
where bi is a homogeneous poi&nomial of degree ém + 1, and giAcontéins only
highef degreé terms. If V(gl i§ a Liapunov'fungtion for (1) (v pésitive
Adefinité, and V < 0) it‘is also a Liapunov function for.(3); hence our
interest in‘(l); - |

It foliows iﬁmediatelyvfrom homogeneity [13;p97] that if (l)-is
asymptotically staBle, it is asymptotically stable in the large; thus we

shall alwayé_refef m¢re1y to asymptotic stability.
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"As a Starting point for the investigation of the existence of homo~
geneous Liapunov functioms for (1) we considered generalizing the foilowing
theorem of Liapunov [2]: ‘

- : ) n

)

Theérem 1. If the eigenvalues of the matrix A= (a,.), .
. o : 3T, =1
have negatiﬁe real'partsAand if U is a negative definite homogeneous form
‘of degree 2k, then there exists a positive definite homogeneous form Q of
degree 2k such that
- a o | | .

(4) Y (2 a;; %, ) 3@ =u.

: i=1 =1 37 ax,

This theorem guarantees the existence of Liapunov functions (and

asymptotic stability) for the lipear system

o n
(5) ' X, =) a,, % 3 i=1,...,n.

An analogue for the nonlinear system (1) would give conditions on the

functions b,,...,b_ such that, for a given negative definite form U of
1 n ,
degree 2k + 2m, there is a positive definite homogeneous form Q of degree

2k that satisfies
. coom o ' :
(6) I b, 3Q = U@

This question, however, is not well posed unless we restrict U; if V is

of degree 2m + 2k it has

2m + 2k 4+ n -1

n-1"
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coefficients, while, if Q is of degree 2k it has only

2k +n-1
n-1
coeffiéienté. Hence fér m > C, the dimensipn af fhe space of homogeheous
éolynomials which can be written in‘the.form>of the ieftlside of (6) is
lower than the dimension éfléhe épace of hom&ééneous U'$ of degree
2m + 2k. Thus it is ﬁeéessary tb.add.the,ekp;igit assumption that U lies
in the lower dimensional subsﬁgce of homogeneous poiynomials which can

be written in the form (6) for any homogeneousvh of degree 2k,

2. Thé eigen~polynomial problem.

The hypothesis of théorem 1 on the eigénvaiues of A is necessary and’
sufficient for the origin to be agymptotically étaﬁie for (5). The
classical notion of eigenvalue can be géneraliéed for (1) byAcalling a
homogéneous polynomial A(x) of degree 2m an eigen—polynoﬁial of the set
{bi,;..,bn} of index 2k if there exists a non—priviél homégeneoﬁs polynomial

P(x) of dégree 2k + 1 such that

%)) I b.(x 3B = A®PE.
i=1 Bxi

We call P an eigen-form of‘{bl,...,ba}.> (It is notAnecessary~for
{bl"”’bn } and P to be odd and A even to make good sense algebraically,
but ﬁe restrict our attention to this case because it is the ohly>one of
interest in stability theory.)

‘This is a generalization of the classical eigenvalue problem: if

k=m= 0, A reduces to a constant, and
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. n.
P(x) =) o, x,
j=1 1 3»

where bij and aj are constants. Now (7) reduces to

n n n
. b, . x.y = A . X,
' izl al(jzl 13 1) Loy

Thus A is an eigenvalue of B = (b,,

eigenvector of BT.
The relevance of the above discussion to systems of the férm (1) is
as follows:
If x (t) is a trajectory of (1), relation (7) implies that
_d PC(E)) = A(x()) PGx(t));
dt

hence

’ t
P(x(t)) = P(x(0)) expff A (x(t) ds] .
0 .

So that if A is negative definite, P(x) approaches zero along any trajectory
of (1). |

As far as we know thére ié no well developed theory of eigenﬁ:olynomials
and eigen-forms as defined here, ﬁe haye confinéd our attention t§ the case

k = 0, for which (7) takes the form

. . n )
(8) b, (x) = Ax) . X, '
z oy i X 2.9 (izl o xl) ,
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with constants Upseeest o The eigen~form
) _ n

n
y = Z o, X
=3 * 1

satisfies the equation

v = A@&E) v

along a trajectory'of 0.

Suppose now that there are n linearly independent eigen~forms

(which implies that the matrix A

eigen~polynomials Al’ XZ,...,An,

we

i=1,...,n

(aij) is non-singular) with associated

then (1) is equivalent to

L] . -1 .
yi = Ai [A- X(t)] Yi ; 1= l""sn’

vhere y(t) = (yl(t),...yn(t)).

This is the analogue of the

diagonal form for (5). The question of the

existence of n linearly independent eigen-forms, or more appropriately, the

determination of all canonical forms for (1), reQﬁires an analogue of the

. Jordan canonical form for matrices. We have not attempted to develop such

a theory because we thought it wise to see first if we could settle the

question of stability for the diagonal system. Our efforts in this direction

are reported in sections 4 through 8. However, we did obtain an algebraic

formulation of the eigen~polynomial problem for k=0, which we report here

for completeness.
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a) Ay (2,0) <05 2, (0,%,) <0

b) at every'(xl,xz) + (0,0) at legs? one of Al (Xl?XZ)

and Az <X1’X2> is negative,

‘Proof:  The proof makes use of the basic relation (15) which holds along

any trajectory of (14).

(15) d 0L -2 =Gn a0 M x & P9 4
dt axl 3x2

This relation is obtained by applying Euler's identity for homogeneous

functions:

3 x, + 3% X, = 2m)
9xX 1 ax 2
1 2
to the derivative Of'xl - AZ along a trajectory. It is clear from (15)
that a line along which kl = Az is a trajectory of (l4). Moreover (15)

shows that kl - AZ is eéual to its initial value times an expomential,
and hence 11 - AZ does not change sign along any trajectory.

We prove first thaﬁ every trajectory of (14) approaches the origin
(quasi~asymptotic stability), It follows immediately frém the representa-
tion (13) and hypothesis (a) that any trajectory which starts on one of the
coordinate axes must approach ;he origin, and in fact, monotoniéaliy. Now
‘assume that Xl(O) + 0 and xz(O) + 0. Since AZ - ll does mot change sign
along a tfajectory we may assumé without loss of génerality that

From (13)

’ . t . . v
..Xz(t) =% exp [ f D,y () - A & )Y ds] s
Xl(t) x,(0) L4 ~ . '
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X ~ ~ . .
so that -}—(—2- approaches a limit % (possibly infinite, but not zero). Define

v

H
v

Y '
N

+ e

» .

N -

= ".X o = X
T : r

THen El-and 52 appréach limits:

1
lim E. =&, = o 1482 .
L 1 1
(16) o
lim E. = £ = 1442 .
t » o« 2 2

Now, Ay (Ei,é;) - A (61,52) 3_.0 and i; follows'f?om hypothgsis (b) that

"Xl _(51,52)= -c where ¢ > 0. Thus there exists a T such that t > T implies.

. o 2m
a7) | Al(xl,xz) < - 2 T

From (13)

N G 2n
.S‘IXl(T)| exp [:- Tl 5* (x(s)) ds]

' | t
le(t)l = !xl(T)l exp [S A, (5(5_)) ds]
. o T ‘

T

: ..t '_ 2m
o< lx (T)l exp [- = g (Xl(s)> ds}‘
- "1 _ 2
. ' o . T
‘From (17), |x1] is decreasing for t > T3 ‘therefore it has a limitl ;11 .
The assumption that | ;1 [40, along with the last inequality of (18), leads

to a contradiction. Hence lim xl(t) = 0. Since £l=[= 0 (bécause L F0 in
’ ‘ X t+o '

(16) - and r = 1 » lim r (t) = 0, which completes the first part of the
gl t -w . . . .

proof. =~
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The above proof shows that once a trajectory of (14) enters a portion

of the plane in which both A and}k2 are mnegative it remains theré and

1

r(t) * 0 monotomically. Thus, starting at a point where r(xl(O), XZ(O)) = fo

and say Xl(xl(O),x (0)) < 0 the maximum value r can assume is less than

xlz(O) + n2 where nis the number of smallest absolute value such that
B AZ (xl(O),n) = 0, Hypothesis (a) now assures us that xlz(O)'+ n2 can be
made as small as desired‘by choosing T, sufficiently small, This cdmpletes

the proof of the theorem.

5. A conjecture on the diagonmal case for general n.
We sought to generalize theorem 2 with the following conjecture:
Conjecture 1. The system

19 ! .
as)y X, = Ai &) x, 3 1= 1, 2,...,m,

where Al,...,ln are real homogeneous polynomials of degree 2m, ig
asymptotically stable if and only if for any partition [il,...,ik],
[ik+l""’in] of N=1[1,...,n] into disjoint subsets, (either of which may

be empty) at least one of the polynomials Xi ,...,Ai is negative at any
1 k

non-zero point on the hyperplane x, = X, = = xi = 0,
etl T2 “n

We expendéd considerable gffoft to prove this conjecture, but‘without
-'success. At this point we can only surmise that either the hypothesis is
ioo weak; or the theorem is very deep. The crucial defect in our attempts
to prove it seems to be the lack of a‘generaiiZation of thé relation (15)

" which implied that A, - Ay is sign constant along & trajectory.

1
We have obtained some partial results which are presented here,

In the following discussion we may assume that no trajectory intersects.
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a coordinate hyper—plane, for if xn(to) =0 fgr some to _>_ 0, then‘

X,Il(t) =0 for ¢t ito’ and (19) reduces to a s}ystem-of n ~ 1 equationms

whichAsatisfy thé hyperthés:is of the co_nﬁecture with n replaced by n - l.-
Lemma 1 Let the .gysteu}‘(l9) satisfy the hypbthésis of conjecture 1,

and let x(t) be a t_rajectéry al’oné Which 'one_of the ii dominates the othersA

for sufficiently large vt. | Tt;gﬁ lim _}5(t)‘ = 0.;
, ‘ ' .o toe
© Proof: Without ioss; of generalify, assun;e.thét
| YAAn(;'_c_(t)) - Ai(gg(t)) >0 t > T, i= l,_..‘.,n—l.
: Fr.omA 13, if t _>_f

t
xn(t) X1‘1 (T) exp [ S
% (©) T x (D) |

{x &()) - Ai(z(g))é]ds H
T. : -

X
hence

, being non-decreasing for t > T, approaches a limit B

-

(possibly infinite, but not zero). Let

1/2
2 2

r-—(xl +...+xn)
and E,. =% ; i=1,...,n.

1 T o

- o s ‘ . -1/2

Then = lim £, (t) = E, = 1 ( Lo+l +e.tl 41 ’
. £ T\ 1 R

. where Sl,n = 1. Suppose Ei + O.for i in the set [11,....,‘11(] and Ei = 0 for

.o . , o . T 2 2 _
i din [1k+l,...,1n]. The first set is not empty (51pce El .+ aes T+ En 1,

and by hypothesis contains an integer j such that )‘5 (El,...,ig'n) = -¢ (o >0).

As in (18), there is a Tl > T such that for t > 'I.’l .
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(20) | x (t)l < | x, (1)} ;xp [.--—"- jt x, (s)) ‘2“‘]
: 3 -— i 1 ‘2 3 - ds o
1

Lim lxj(t)l exists because [xj(t)l is decreasing for t z_Tl, and the
to : : ' :

assumption that this limit is not zero leads to a contradiction via (20).

. _ . X, ) . -
Thus lim xj(t) = 0, and since r = 3 and Ej +=0, it follows that

| Sl .
’ : A : ' gJ

lim r(t) = 0. This completes the proof of.the lemma.
toe ‘ ' o

'Corollary'l. 'If Al;;"’xn satisf§ the hypothesishof conjecture 1
and An - Xi is positive semi—definite for 1 < i < n-1, thep the sys;em 19)
‘is'asymptoticélly stable. ‘

Coréllary 2. If Al,..., An satisfy the hypothesis of conjecture 1
raﬁd if_g(f) is‘a trajectory for which Ei,...,in apéroach limits, then

lim x(t) = O.
L A

"If 1lim £ = £ exists for i = 1,...,0, Corollary 2 implies that
troo

-Ai(gl,'.‘,-én) i 0 ; i=l,...o,n‘o

Thus‘the hypothesis of conjectu;e‘l and the assuﬁbtioﬁ that gl,...,gn
have limits are incompatable, uhless‘the former implies the existence of
at least one point where Al"‘f’An afe'all nonjpositive. This is true for
n = 2, but we havevnot been able to show it for n > 2, In conjecfure~2
(Section 8) we strengthen.our hypothesig so as to remove thié difficulty.
.Howe§er, thé‘stronger hypothesis broﬁght us no closer to a solutiom.
6. An estimate,

_"In trying to translate the hypothesis of conjecture 1 into usable fbrm,

we discovered the following lemma.
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Lemma 2. Let xl,..,,xn satisfy the hypothgsis qf conjecture 1; Ilet

S = [il,iz,...,ik] and N-§5 = [i let

AEELRRFL N

2 ' 2
g @= 1 %
: ieS

and 7 r2 69) = Z x.2

N-S ieN-S *~ .,

For each S + N, there exists a constant A(S) such that if

(21) Ai(x) > 0 ; ieS

then

(22) P ®<a®r? @ .
s N-5

Proof., If (22) is false for some sef S, then for each integer j

there exists a point _}_c_(J) which satisfies (21) and for which

(2 @@y s

Qﬁ(j)) .
N-S . .

From the homogeneity of Ai’ g{_(J? can be normalized so that

(23) r? @9y -1,

Then

(24) r? @9 <1

' - N-S -

‘and. o e
r.7.(35(3'))‘ _ rsz (E‘(j))'_k §_z Dy <1 +%

"~

hence {_}5(3) } is a bounded sequence and has a limit point X . From (23)
fsz (x) =1, and from (24), r 2_(_15) = 0. Therefore x is a non~zero point
: N-8 : . :

A

on the hyperplan_e defined by X, = 0 for i ¢ N-S, From the hypothesis of
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coﬁjécture 1, Ai(é) <0 for atlleast one.i € 5, This is a contradiction;
the definition of é.and the continuity of %i'imply thé: Ay (%)_i_>0 . This
proves lemma 2. ' |

Lémma 2 at first éeemed £o be quite promiéing. Taking S to be the set
of all i for whicﬁ_ki > 0 at any>given ﬁoint, and N-S tpe non-empty set of
all i for which Ai < 0, if‘égn be seen'that.(ZZ) give;.an uppe? bound for
the sum of the squareé of those bbordinates whose absolute values are in-
créasing, in terms 6fba similar sum of terms whose‘absolute values are
deéreasing.~ In fact (22) can be replacéd by |

P2 < @AFAG) @ .
- . -S

Over any-period of time during which no Aichangés sign; this gives’a
decreasing upper bound for the distance from ;ﬁe tfajéctory to the origin.

We have not been able to use this seemingly favorable state of affairs

to prove the conjecture.

7. Two theorems.

In attempting an induction proof of conjecture 1 we were led to write

(19) in the form

. X, = ()\i(xl’lo.,xn—i,Ao) + Xn ¢i(‘§)) Xi ; i = l’a.-,n-l,-_
@) -
n anE) X0

where ¢iAis homogeneous of degree 2m~-1,

- ‘Theorem 3. Let the system
(26) V1= A Opee ¥y 0 ¥y 5 2= Lheeeuntd,

be asymptotically stable. Then there ié a constant 0 < § < 1 such that if.
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lin(t)‘ <8 aiong'é tréjectory of (25), then lim x(t) =
. . . . . ' -..-t_m_. i o
Proof. We use a device due to Zubov.{l]. The asymptotic stability of
(26) 1dp11es that any trajectory (;) of (26) satisfies

e g | = oc _1’2‘“ a8 toe .

- (Krasonskii 3D,
© Zubov showed that this guarantees the existence of a Liaoonoﬁ function
‘VV(ylg...,§n l) contlnuously differentiable with respect to (yl,...,yn l)

:w1th derivative along a tragectory of (26) glven by

_ © -1 _ , S
(28) §%=1L1%éxi@rgua4m{=jof+.ﬁy %m&
where k is a sufficiontiy large positive integer.
Explicitly, - »‘1 ::. .
v | x| P,
Yo _ o _ |
where z_(t u) is the solutlon of (26) for which z_(o, u) u = (ul""’un—l)’
’and [ | is the Eucledlan norm, The ex1stence of the integral follows

fromﬁ(ZY). V can be shown to be p031t1ve homogeneous of order 2k,
Suppoée xl(t),...,xn_l(t) are taken to be the first n-1 components of
a trajectory x(t) of (25); let
p(t) = V(xl(t),...,xn_l(t)),
2 2 2
o< =

and
From (25) and (28),
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o : .
2m+2k ) )
e TRy .Z 3%, i1
i=1 i :
There is a constant M > 0 such that the second term on the right is
- dominated by

15y | - g2 T e

-

. hence’ . _
b o< - oZ Gy l e | a-e?yy L

choose § eo that [ in ] <8 implies thaﬁ

M | &, | a- Enz ) 21~ a ‘- (0 < o <1, arbitrary) ;
then if | g | <8 for all ¢,
~ - 2m2k
(29) . () < ¢(0) - a f () ds.
. . o ’

'and ¢ is strictly decreesing. Let lim p(t) = El; Wé wantuto sﬁow that

¥ ;'0. 1f @ +f0, then p. is Boundedvaway ffom zero; beeeﬁse for all t,
,. 0 < T <u®) = Vex ©sne0%, Lo s @,

.where u =‘.ﬁin V(Xi"'f’xn—l) on p = 1;' éubstitue;ng in k29) yields'
a0 w(t'5_< ;p<0) - a(-%-) 1"‘%

S a contradietion, since it implies that ¥ (t) < 0 eventuaily. ‘Since y = 0, .

0 because V is p031t1ve definite; therefore 11m lx l = 0 also (if not,
e ’
then 1im | Enl = 1, violating the assumption that | gn | < § <1 for all t).
too : : S

This conpletes the proof of theorem 3.

The hypotheses of theorem 3 can be weakened to requlre that
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| £ | <-6 for all sufficiently large t.

 Iheorem 4, Let the system (26) be asymptotically stable and x(t)
be a trajectory of (25) for which lim x (t) = O. Then lim x(t) = 0,
treo T e

Proof. Using the notation of theorem 3, there exists a 6 in (0,1)

such that either | € | >68 or

(31) : . l‘L < -q 02m+2k

For any t such that (31) does not hold, | g | > 68 and’

- tR_ - 2k
. 2k 2k s
(32) Y(t) < np” < nrT < n(LgI-I-J) s
where n = max V(xl,...,xn_l) on the sphere p = 1, If either (31) or (32)
holds for all sufficienfly large t, we are finished; if this is not the
case, there exists a sequence T, <‘Tl < Ty < ...'approaching‘infinity such
Lt

that (32) holds for t L » and (31) holds for

23 = Ty

t Then

Taga1 = % Z T4,

. x (t) 2k . '
i ’b(t) < N(Ig X) H sz 2t =z T2j+1. ,

and

' K B
L5 Coons) . .
oee) < ¥lmy) < n( = § H j P Tog41 SF 2 To540

Since X approaches zero, so does {, and therefore p approaches zero,
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.This completes the proof of theorem 4.
Corollary. If the system (26) is asympfotically'stable and A_ is

negative definite, then the origin is asymptotically stable for the :

systen (25).

83 A stronger hypothesis,

The hypothesis of the following conjecturehis Strongef thén that 6f
conjecture 1; it; has the advantage of guaranteeing the existenéé of a
regién where xl,...,xn are ali negative,

Conjecture 2, Let Al’ A2""’An be a set of constahts such thati
Ay > 0 and A12 +'f'+Ah2 <1, and let'ki < 0 whenever IEi! > Ai; Thegr

the system

x, = Ang) X, 3 i=1,00.,n

is asymptotically stable.

We have not been able to obtain sharper results with this stronger

hypothesis.
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