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 his repor t  g ives  t h e  r e s u l t s '  of a  number of  a t tempts  t o  f i n d  under- 
" .  

ly ing  p r i n c i p l e s  un i t ing  t h e  many methods f o r  gen- o r a t i n g  Liapunov funct ions  

f o r  nonl inear  syscems ~ f ~ o r d i n a r y  d i f f e r e n t i a l  equations. Our conclusions 

i n d i c a t e  t h a t  i f  genera l  p r i n c i p l e s  e x i s t  f o r  t h e  generat ion of  Liapunov 

funct ions  they l i e  very  deep, and a r e  not  t o  be found among the  methods 

now i n  ,use. 



Summary - . .  
. . 

The repor t  f a l i s  na tura l ly  i n to  two par t s .  Par t  I gives a  c r i t i q u e  

of t he  methods now i n  use fo r  the  generation of Liapunov functions fo r  

nonlinear systems of ordinary d i f f e r e n t i a l  equations,   he critique is 

i l l u s t r a t e d  by a technique fo r  generating Liapunov functions which we ca l l  

the  "Conservative Spring Concept", This technique, which we emphasize 

is not r e a l l y  a new method, is  capable of solving a  l a rge  number of 

previously published examples. 

Par t  I1 of t h i s  repor t  is  a  description of some p a r t i a l  r e s u l t s  

obtained f o r  the  s t a b i l i t y  analysis  of systems of autonomous ordinary 

d i f f e r e n t i a l  equations whose r i gh t  hand s ides  a r e  homogeneous, polynomial 

forms. 

The repor t  is  concerned exclusively with t he  problem of Liapunov 

- s t a b i l i t y  o r  asymptotic s t a b i l i t y  of an i so l a t ed  s ingular  point ,  usually 

the  or igin .  



I. The purpose of t h i s  research was t o  t r y  t o  uncover any general  p r inc ip les  

t h a t  may e x i s t  f o r  t h e  systematic generation of Liapunov functions. Af ter  

looking f o r  qu i t e  some time a t  t h e  various methods u'sed t o  generate Liapunov 

functions f o r  the  ana lys i s  of t h e  s t a b i l i t y  of systems of autonomous d i f f e r -  

e n t i a l  equations it i s  our opinion t h a t ,  d e s p i t e  t h e  g rea t  bulk of published 

mater ia l ,  l i t t l e  progress has been made. Our e f f o r t s  t o  dea l  wi th  t h e  

problem of t h e  systematic generat ion of Liapunov funct ions  has l e d  us t o  feel  

t h a t  a  s p e c i f i c ,  r a t h e r  than a general ,  approach is most l i k e l y  t o  succeed 

i n  t h e  long run. It is, i n  f a c t ,  the  very genera l i ty ,  o r  seeming genera l i ty ,  

of the  various methods now i n  use f o r  f inding Liapunov functions which i s  

t h e i r  p r i n c i p a l  weakness. The authors of the  various methods claim general- 

i t y ,  but they always end up applying t h e i r  methods t o  b a s i c a l l y  t h e  same 

c lasses  of second, t h i r d ,  and a few four th  order  systems.* The exceptions 

t o  t h i s  r u l e ,  which we know of ,  a r e  high order  systems descr ib ing c e r t a i n  
* 

r i g i d  body motions, and con t ro l  theory problems with high order l i n e a r  p a r t s  , 

. combined wi th  a s i n g l e  nonlinear element. The methods of obtaining Liapunov 

functions i n  these  two a reas  a r e  f o r  t h e  former, t o  consider a  l i n e a r  combina- 

" 

t i o n  of f i r s t  inzegra ls ,  and f o r  t h e  l a t t e r  t o  consider a  quadra t ic  form p lus  

an i n t e g r a l  f o r  t h e  nonlinear element. 

Most of t h e  methods s tudied a re ,  as claimed, very  general i n . p r i n c i p l e ,  

but they a l l  s u f f e r  from the  following de fec t s  i n  p rac t i ce .  

(i) A l a r g e  amount of computation i s  required f o r  high order 

systems. This i s  t h e  l e a s t  se r ious  defect .  

*It should be  understood t h a t  we a r e  here  t a lk ing  of p r a c t i c a l  procedures 

and not of t h e  very s u b s t a n t i a l  body of t h e o r e t i c a l  r e s u l t s .  



( i i )  A t  var ious  s t ages  of t h e  app l i ca t ion  i t  .is necessary t o  

check on the  s ign  de f in i t eness  of one o r  more -functions.' For funct ions  
. . 

other  than quadrat ic  forms t h i s  i s  an unsolved problem present ing . . 

formidable d i f f i c u l t i e s .  

( i i i )  A t  some s t a g e  of every method studied t h e  2 r a c t i t i o n e r  . 

must make an a p t ,  o f t e n  ingenious, choice of one o r  more functions.  

This i s  t h e  chief  d i f f i c u l t y ,  which w e  e labora te  on i n  t h e  next 

paragraph. 

Most methods f o r  t h e  generat ion of Liapunov funct ions  a r e  

motivated by some analogy with concepts which work we l l  f o r  simple and/or 

spec ia l  types of systems, For example, t h e  va r iab le  gradient  methods a r e  

motivated by t h e  use  of quadra t ic  forms which work w e l l  f o r  l i n e a r  systems; 

methods which u t i l i z e  a f i r s t  i n t e g r a l  ( e i t h e r  of t h e  system s tudied o r  a 

modificat ion of t h a t  system) are motivated by a genera l iza t ion of t h e  t o t a l  
' 

energy of t h e  system. I n  each case  the  analogy works f o r  a while, but t 

leads  t o  ever increas ing complexities a s  t h e  problem t o  which it is appl ied  

ge t s  f u r t h e r  removed from t h e  type of system which gave rise t o  t h e  technique. 

W e  i l l u s t r a t e  t h e  above idea  by present ing a."new method" of generat ing 

Liapunov functions which we c a l l  t h e  Conservative Spr ing Concept of Generatinq 

Liapunov Functions because of i t s  i n i t i a l  motivation. The method, developed 

by D r .  R. Drake, appears on the  surface  t o  have g rea t  genera l i ty  s i n c e  by 

i t s  use  a l a r g e  number of i n t e r e s t i n g  examples presented by t h e  authors of a 

v a r i e t y  of methods a r e  worked out ,  usual ly  with f a r  less d i f f i c u l t y  than was 

presented by t h e  o r i g i n a l  method. However, we be l i eve  t h a t  t h i s  is  due 

mainly t o  t h e  f a c t  t h a t  t h e  examples a r e  e i t h e r  of l o w  order o r  conta in  only 

a s i n g l e  simple nonl inear i ty .  Our examples a r e  chosen so  as  t o  i l l u s t r a t e  



t he  evolut ion  of the  method, Each new type of equation i s  f u r t h e r  removed 

from the  o r i g i n a l  idea. As t h e  analogy grows weaker add i t iona l  assumptions 

must be introduced u n t i l  f i n a l l y  t h e r e  a r e  gaps t o  be f i l l e d  i n  by a judi-  

cious choice of funct ions ,  

I n  suminary, we be l i eve  a t  t h i s  point  t h a t  e f f e c t i v e  progress i n  t h e  

problem of genera t ing  Liapunov funct ions  has not  been made mainly because 

t h e  proposed methods a r e  too general .  W e  f e e l . t h a t  one should consider  

each order  of nonlinear  system i n  tu rn  with respect  t o  c l a s s i f y i n g  t h e  

var ious  types  of n o n l i n e a r i t i e s  according t o  how they a f f e c t  t h e  s t a b i l i t y  

of t h e  system. The Conservstive Spring method presented i n  t h i s  repor t  is . 

not r e a l l y  a new method. It se rves  t o  i l l u s t r a t e  t h e  p i t f a l l s  of general- 

i t y  and a l s o  serves  t o  i l l u s t r a t e  the  p o s s i b i l i t i e s  of t h e  above type of 

c l a s s i f i c a t i o n .  



- The conservat ive  Spring Concept of Generating Liapunov Functions 
. . 

1. Motivation. 

The d i f f e r e n t i a l  equation governing t h e  motion of an undamped nonl inear  

sp r ing  i s  

The t o t a l  energy of t h e  system a t  any t i m e  i s  given by the  funct ion  
. .  . 

' 2 .  
X v =  - + G(x) , . . 
2 

where G(x) = J g (6) ds. D i f f e r e n t i a t i n g  V wi th  respect  t o  t ime along 
0 

a t r a j e c t o r y  of (I) y i e l d s  

Hence i f  w e  r equ i re  t h a t  

G(x)> 0 f o r  x $ 0  , . . 
< .  

t h e  funct ion  V becomes a Liapunov func t ion  f o r  (1)' and we may conclude t h a t  

(1) is  s t a b l e .  

2. ~ i e $ a r d  s equation. 

W e  may consider  ~ i e / n a r d ' s  equat ion 

a s  represent ing  t h e  motion of a non-conservative spring.  We at tempt t o  c a s t  



equation (2) i n t o  a form which resembles (1). Let 
. . 

and r e w r i t e  ( 2 )  a s  

By analogy with (1) we choose the  function 

as a candidate f o r  a Liapunov function. Note t h a t  now V no longer  represents  

t h e  t o t a l  energy. D i f f e r e n t i a t i n g  V wi th  respect  t o  t along a t r a j e c t o r y  of 

(2) y i e l d s  

W e  may conclude t h a t  (2) i s  asymptotical ly s t a b l e  i n  a region Q defined by 

t h e  condi t ions  

g(x)  F(x) > 0 for I x 1 < a, x f 0 

Complete d e t a i l s  of the analysis may be  found i n  [ 5 1. 



We now compare, by means of several  examples, the  proposed Liapunov 

function given i n  equation (3) with the  ~ i a ~ u n o v  function obtained by o the r  

. methods." 

Example A. Van-der Po l ' s  equation 

X "2 
k ( x ) . , = '  1 sds = - x 

0 
2 * 

The Liapunov function given by t h i s  analysis  i s  equal t b  112 of t h e  

Liapunov function given by Infante  f2;p 743. 

Example 3. In fan te  (2 ;p 78 3 considers a non-symmetrical o s c i l l a t o r  

with equation . . 

.. 2 
x + ax + bx f X = 0 ; a ,  b constants > 0. 

Here 

1 3  
~ ( x )  = ax, ~ ( x )  = b 2 x2 + - 3 x 

In  accordance with (3)' we take  

* The method with which we a r e  comparing w i l l  be denoted by t h e  name of i t s  

author;.  references a r e  t o  section and page of t h e  rebort  [ 6 1. 

. J . .  

.. . 



This is  t h e  same Liapunov funct ion  as obtained by Infante .  

Example C. I n f a n t e  { z ; ~  813 considers  a  nonlinear  damped pendulum 

with equation 
.. . 
x + ( E C O S X ) ~  + s i n x = O ;  E > O .  

Here 

F(x) = E s i n  x , G(X) = 1 - cos x 

and 

2 v =if; + s in 'x ]  + (1  - cos X) , 

This is  t h e  same Liapuliov func t ion  a s  obtained by Infante .  

Example D. A g loba l ly  s t a b l e  o s c i l l a t o r .  

Here 

and 

Again, our Liapunov funct ion  i s  t h e  same a s  t h a t  given by I n f a n t e  i2 ;p  821. 

Szego (7;p 461 using a method not  r e l a t e d  t o  the energy concept ob ta ins  the 

function 

, .  



Example E. Schul tz  and Gibson (5;p 28) cons ide r  t h e  fo l lowing  example 

by means of t h e  v a r i a b l e  g rad ien t  technique.  

Here 

In  accordance w i t h  (3)  we s e t  

The cond i t i ons  f o r  g loba l  asymptot ic  s t a b i l i t y  a r e  

- x f ( x ) . > O  ; x + o  

The Liapunov f u n c t i o n  ob ta ined  by Schul tz  and Gibson i s  



. , 
. . . . . . 

- .  
. .. - .  . . X . . 

. . W = (X + X12 + 2 5 s [ f ( s ) + i f ~ s ) ] d s + ~ B  f S f ( ~ )  ds 
0 .o . . . . . 

. 
W = -  2 i w X )  + f e ) )  i2 + B x2 f(x)] 

. .  . 
3 .  

. . 
, . . . 

The Liapunov funct ion W 'gives t h e  following condit ions f o r  global  asymptotic 
. . .  

s t a b i l i t y  . .  . . . .  . . 
. c .  . . 

. '  . B > O  * 

2 .  . . 
. = 

f (x) + XftX) . - > 0 
. . 

. . 
f ( x )  > 0 f o r  x f. 0 . . .. . 

3. A more general  second order equation. 

The Equation . . 

is  one s t e p  removed from t h e   idn nard equation; we therefore  aim t o  put it  

i n t o  a form s i m i l a r  t o  (2). 

X 

Let y (x) = exp £[.I .a = exp [F(?$ . 
0 

Multiplying (4) by y gives 
- 

Define 
X X 

A A 

. G (x) = Y(S) d s  , H = h(8) yi~) as *. 
'. 0 ' 0 .  

. . 
* .  

. .. . : . . 
, . . . 

: . " . .  . . 
. . .. . . . . . . . .. . 

. ,  . . . - . . 
. . 

. . . . . . . . . . - .  . ., . . -10- . . 



Since y = x f(x) y(x) w e  may write ( 5 )  i n  t h e  form 

By analogy with (3) we take  a s  a candidate f o r  a Liapunov function 

Di f fe ren t i a t ing  with respect  t o  t 'aiong a t r a j e c t o r y  of (4) y i e l d s  

. . . . 
A t- - ; h(x) (exp [F(X)I - exp [ Z F ( ~ ) ] )  -.h(x) G(x) exp [F(x)] . 

. 
V would have the  same form a s  i n  (3) i f  the f i r s t  term above were zero. 

This can be accomplished by modifying V by use of t h e  function 

- . R(x) = 3 h( s )  exp [2F(s) ]  ds  
0 

A 

i n  p lace  of H(x) . 
Our Liapunov funct ion now becomes 

'L 

(6) v = 1 2 [; exp [ ~ ( x ) ]  + G(xfl + H(X) -, 

A 

The funct ion G(x) is not  r e a l l y  needed ' in  (6); i f  we d e l e t e  it from t h e  

d e f i n i t i o n  of V i n  (6) we get  t h e  a l t e r n a t e  form 



'L 

(7) v =$x2 exp [ ~ F ( x ) J  + H(X) , 

0 
' 2 

. v = - x g(x) exp [2F(x)] . 

Example. Infante  (2;p 83) considered t he  problem of l i qu id  motion i n  

a surge tank, and derived t he  governing d i f f e r e n t i a l  equation 

Using the  a l t e rna t e  form (7) we obta in  the  function 

1 ' 2  v = T x  exp ~ 2 1 2 x 1  B + J' [ s  - B "1 exp 2 $4 ds, 
0 

' 2 
2a2 ; = - B  L2[- 2a2 

a (l+x) B -1 + - B exp [-2 2 6 

f o r  the  analysis  of t he  s t a b i l i t y  of. (8), which is t h e  same a s  the 

Liapunov function given by Infante.  

4. The general second order equation. 

We.turn now t o  the  most general second order equation, 



I n  order t o  get  equation (9) i n t o  a form amenable t o  our. previous ana lys i s  

we assume t h a t  - a 2x ax and - 2 e x i s t  and a r e  continuous. Write,  
a2 ak 

2 * 
X(x,t) = h(x) + g(x) 2 + f (x) f + X(x,P) * 

A 

where X (x,%) = o(2  2 ) a s  2 -> 0. Equation (8) now takes  the  form 

By analogy with the  ana lys i s  of equation (4)  w e  adopt t h e  following form 

a s  a candidate f o r  a iiapunov function,  

where x X 
. 'L 

F(x) = 1 f ( s )  ds ; R(x) = 5 h ( s )  exp [2F(s) ]  ds. 
0 0 

A 

$ = - [ 3 g(x) + f X(x,b) exp [2F(x)] . 1 
The function (9) w i l l  be a Liapunov funct ion f o r  (8) i f  h(x) and 

g ( x )  a r e  p o s i t i v e  i n  some neighborhood of t h e  o r ig in ;  t h e  extent  of the  

region of asymptotic s t a b i l i t y  w i l l  depend on t h e  na tu re  of the  
A 

function X ( x , f ) .  



. . 

Example. Rayleigh1s equation. 

Here h(x) = x, g(x) = p and f(x) = 0; thus 

I n  t h i s  case  V i s  t h e  usual  quadra t ic  form. 

5. Third order  equations. 

In t h i s  sec t ion  we consider t h e  t h i r d  order equation 

. . 

Again, our aim i s  t o  put t h e  new equation i n t o  a form resembling a previously 
0 

t r e a t e d  equation. Define F(x), G(x), and H(x) i n  the  usual  way, and write 

equation (10) a s  

'The f i r s t  two terms of (11) suggest the  funct ion 

This, however takes no account of t h e  t h i r d  term h(x).  'We therefdre ,  seek 



a Liapunov funct ion i n  t h e  form 

where V is  a s  above, and V is  t o  be  determined so a s  t o  simplify the  
1 2 .  . . 4 . 

r e s u l t i n g  expression f o r  V. Since V = V + V i t  is simpler t o  choose 
1 2  

V so a s  t o  siniplify V and fu r the r  r equ i re  t h a t  V be given a s  a de r iva t ive .  2 
. . 2 

Dif fe ren t i a t ing  V wi th  respect  t o  time along a t r a j e c t o r y  of (10) 

y i e l d s  

* b 

The f i r s t  t e r m  above, - g(x) F(x), corresponds t o  previous r e s u l t s  and 

should be re ta ined.  
* a 

In order  t o  choose V2 w e  assume that F(x) has  a continuous f i r s t  

der ivat ive;  w r i t e  

and 

This suggests  t h a t  we take  



. . 
Then .. _ 

We thus, ada2t a s  a candidate f o r  a Liapunov function f o r  equation ( I ) ,  

Example. ~ a r a ~ a s h i n '  s equation, 

For t he  equation 
. . * . 

The above analysis  gives the  Liapunov function 
> .  

The V given here is the  same as t h a t  obtained by Walker 'E2;p 871 using h i s  . 

modification of In fan te ' s  i n t eg ra l  method; it y i e ld s  the  following s e t  of 

su f f i c i en t  condit ions f o r  global  asymptotic s t a b i l i t y  
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* 
X 

&[Lo + a ;]'2 + 5 g(s)  ds + a 
. 

2 h(s )  ds  > x h(x) 

0 0 

Schultz (5;p 39)  and P u r i  {5;p 46)  t r e a t  Barabashin's equa.tion by 

t h e  va r iab le  g r a d i e n t  method. P u r i  obta ins  t h e  funct ion 

. 

which y i e l d s  almost t h e  same condit ions f o r  g lobal  asymptotic s t a b i l i t y  as 

does t h e  funct ion V, 

. .  , 6 .  Some o the r  forms. 

In  t h i s  sec t ion  we present  t h r e e  examples which a r e  not  i n  any of t h e  

- forms spec i f i ed  i n  t h e  previous sec t ions .  These examples a r e  intended t o  

i l l u s t r a t e  t h e  gaps t h a t  develop:. ..'& a method f o r  generat ing Liapunov 

functions i s  extended. 

Example A. Walker {2;p 89) s tudied t h e  equation 

T h i s  equation i s  not  of t h e  form of equation (lo), b u t  bears  some s i m i l a r i t y  

t o  it. 



Write (14) as 

and let 

1 " ' m+l V = - [X + biI2 + (x + cx) 2 C(m + 1) + v 2  9 

where 

Differentiating we get 

This form of V does not suggest an appropriate farm for V2. If, however, ... . e 

we do not replace x by - bx - ( X + C X ) ~  in the evaluation of V we obtain 

the expression 

The order of x is now reduced by extracting an exact differential from 

the first two terms of (15). Thus, 

e 

The choice of V is now clear, 
2 



With t h i s  choice of V w e  g e t  2 

0 .  . 1 m+l 
2 C 

O 2  I '  ( x + c x )  V=-l.[x +!:;I2 + ~2 (bc - 1 )  x +cz- 9 

The ~ i a ~ u n b v  funct ion obtained here  i s  t h e  same a s  t h a t  obtained by 

Walker. 

Ingwerson (7 ;p  39)  and Szego (8;p 52) consider equation (14) f o r  

t h e  case m = 3, and obta in  very s i m i l a r  r e s u l t s .  Ingwerson uses a l i n e a r  

analogy i n  h i s  work while Szego uses a modrfication of ~ u b o v ' s  technique. 

Example B. Ingwerson (7 ;p  4 5 )  considers t h e  t h i r d  order  system 

Let 

With t h i s  no ta t ion  equation (16) becomes 

0 .  

Since t h e  c o e f f i c i e n t  of x i n  t h e  above equation is uni ty ,  it  would be  more 
* 

convenient t o  make the  c o e f f i c i e n t  of x i n  y equal t o  uni ty .  Thus, l e t  



and.our equation now becomes 

We now take V of the form 

Differentiation yields 

We now look for an appropriate derivative in the second term of (17) 

to choose as V2. After some rearrangement of terms we find that 

Choose 

X 



Then 

t " 
" 2 b4c2 . . . 

i s - b b  1 2  x - ( b c  1 2- 1 )  . bjX (I+ x + 3 x)] 
3 .b 3 

The above funct ion gives  the  following s u f f i c i e n t  condit ions f o r  

asymptotic s t a b i l i t y :  

Ingwerson claims global  s t a b i l i t y ,  but  h i s  Liapunov funct ion i s  not  

given i n  t h e  repor t ,  



Example C. Our l a s t  example is  a four th  order equation considered by 

Walker (2;p  961 : 

Even though equation (18) is  of a r e l a t  i v e l y  ' s i m p l e  fo&, containing only 

one nonl inear i ty ,  a good dea l  of ingenuity is required t o  produce a Liapunov 

function. 

The terms i n  (18) may be grouped, and the  equation rewri t ten  a s  

This suggests  t h a t  we l e t  
. . 

and w r i t e  t h e  equation i n  the  form 
. - 

d " 
. 

(19 1 3 -( y + 3y) + 2y + cx = 0 
dt 

Equation (19) suggests  t h a t  w e  t r y  t o  const ruct  a Liapunov funct ion 

i n  the form 



Differentiating,  

We thus take 

which y ie lds  

. 
The above form of V does not lead t o  sa t i s fac tory  s t a b i l i t y  c r i t e r i a ;  . 
therefore we sha l l  redefine V 

2 " 
Equation (20) may be k i t t e n  as  

. 
The l a s t  term of the  new V p  is designed t o  simplify the l a s t  th ree  terms . . 
i n  the expression for  V . With t h i s  def in i t ion  of V 2 w e  get the f i n a l  r e su l t ,  



The Liapunov funct ion  defined i n  (21) y i e l d s  the  follow& s t a b i l i t y  

c r i t e r i a  : 

, V is  p o s i t i v e  definite i f  

c > 0 and cx2 < 1 

* . . 

V is negat ive  d e f i n i t e  i f  

c  > 0 and 2cx2 < 1. 



11. An attempt w a s  made by D r .  J. P. Clay t o  f ind  out  i f  any theory could 

be developed regarding the  underlying s t r u c t u r e  of t h e  c l a s s  of a l l  Liapunov 

functions (yielding asymptotic s t a b i l i t y )  admitted by a given system of 

d i f f e r e n t i a l  equations. Coincident wi th  t h i s ,  t h e  c l a s s  of a l l  systems of 

d i f f e r e n t i a l  equations (of a given type) which admitted a given Liapunov 

function was studied.  

This attempt y ie lded only a few r e s u l t s  of an elementary na tu re ,  and 

was abandoned a s  being premature. The genera l i ty  of t h e  approach was f a r  

too great  t o  y i e l d  concrete r e s u l t s  u n t i l  more i s  known about s p e c i f i c  

c lasses  of  equations and t h e i r  associa ted  Liapunov functions.  

The following i s  a b r i e f  desc r ip t ion  of Dr .  Clay's ideas. 

Let W be a closed neighborhood of the  o r i g i n  i n  n-dimensional 

Euclidean space, and l e t  V(&) be a pos i t ive  d e f i n i t e  mapping of W in to  

the  r e a l s  having continuous f i r s t  p a r t i a l  de r iva t ives .  

W e  def ine  

LV(W) = {i/f: W -r E*; f (0) 0; VV * f  i s  negative d e f i n i t e ]  

Basica l ly  LV(W) represents  the set of a l l  autonomcs systems of 

d i f f e r e n t i a l  equations f o r  which t h e  o r i g i n  i s  an a s y m ~ t o t i c a l l y  s t a b l e  

i s o l a t e d  s ingu la r  point ,  and f o r  which V is  a Liapunov function.  

The .following r e s u l t s  hold: 

(2) f r LV(w) and a > 0 af E LV(N) 



(3) LV (w) C C(W; E*) = the  s e t  of continuous functions 

n on W i n to  E . 

n ( 4 )  LV(w) i s  a convex topological  semi-group of  C(W; E ). 

L e t  f:W + E~ with f (0 )  = 0 and f continuous. 

We define 

L f ( W )  = f V / V : W  + R; V has continuous f i r s t  p a r t i a l  derivatives;  - 
V is  pos i t ive  de f in i t e ;  V6.f i s  negative def in i te ] .  

, . 

Assuming that the system 2 = f(~) has  an asymptotically s t a b l e  

s ingular  point  a t  t h e  or igin ,  then L (W) is t he  s e t  of a l l  Liapunov 
f - . 

functions defined on W fo r  t he  system 2 = f (2 ) .  

The following r e s u l t s  hold: 

(1) For anyV V E L f ( W ) ,  and a > 0 1' 2 - 

(ii) aV1 E Lf(w) - 

(iii) V1 V2 E L f  (W) . - 

( 2 )  If V E Lf (W) , then S (V) n Lf (W) f @. f o r  any E > 0. Here 
E - 

SE (v) = {v* / sup I v ~ )  - V * ( g )  l < E 1 
X 



(3) Lf(W) i s  a convex topological  semi-ring of the  r ing  of continuous 

functions on W i n to  R, 

An attempt was made t o  inves t iga te  t he  s t ruc tu r e  of L - f (W) and L V (W) 

using topology, algebra, and funct ional  analysis  but  no substant ive  r e s u l t s  

. . 
were obtained. 

. The main body of t h i s  pa r t  of t h e  repor t  cons i s t s  of our e f f o r t s  t o  

uncover some s t ruc tu r e  of a more spec i f i c  c l a s s  of d i f f e r e n t i a l  equations. 

Specif ical ly ,  we' wished t o  c l a s s i fy  i n '  a meaningful way those systems of 

autonomwsdifferential  equations which admit of a quadratic form a s  a . 

Liapunov function f o r  t he  determination of the  s t a b i l i t y  o r  i n s t a b i l i t y  of 

the  or igin .  

We considered the  system 

(a) 5 = - f(x); - f (0)  = 0 , 
where f@) i s  an ana ly t ic  function of 5. 

It is w e l l  known t h a t  i f  (a) has t h e  form 

where A i s  a constant nxn matrix and F.is analyt ic  with no terms 

of degree l e s s  than two, then (a) admits of a quadratic form a s  a Liapunov 

function i f  t h e  eigenvalues of A e i t h e r  a l l  have negative r ea l  p a r t s  o r  a t  

l e a s t  one eigenvalue has a pos i t ive  r e a l  par t .  We conjectured t h a t  i f  the  

matrix A has no eigenvalue with a pos i t ive  r e a l  pa r t ,  and a lso  no eigenvalue 

of mu l t i p l i c i t y  g r ea t e r  than one with zero r e a l  pa r t ,  then (b) admits of a 

quadratic Liapunov function. This conjecture turned out t o  be f a l s e  a s  t he  

f o l l o s~ ing  example shows. 



For the  system (c) 

with eigenvalues X I = 0, A 2  = -1. However, fo r '  any quadratic form 

1 2 2 V = - (ax + 2bxy + cy ) 
2 

we get  

. 2 5 4 v = (b-c) y -t- (a-b) xy f bx + cyx 

5 Along the  l i n e  y = 0, V = bx which may take  on both pos i t ive  and negative 

values i n  any neighborhood of t h e  origin.  

On t h e  other hand, one can produce any number.of examples of equations 

which admit of a quadratic Liapunov function (or, i n  f a c t ,  o f  any given 

. Liapunov function) by the following device. 

Let V ( z )  be a given pos i t i ve  d e f i n i t e  function, and l e t  P(Z) be  any 

s ign constant s ca l a r  function. Then i f  i s  such t h a t  G(x ) '  V V k )  = 0 - - 
the equation 



has V(&) A:; L; i l . i ~ p u : ~ o v  fuf icr ion.  The c h a r a c t e r i z a t i o n  given i n  (d) is, of 
I 

course, iloc ir. a uacfu l  form except t o  produce examples. 

The nex t  s e c t i o n  of  t h i s  r e p o r t  desc r ibes  our e f for ts  t o  broaden t h e  

. . 
scope of tile p r u b l e n  i n  order t o  achieve  meaningful results. 



. .Equations with homogeneous r i g h t  hand s ides  
. . . . 

1. Introduction. 

We devoted considerable e f f o r t  t o  systems of t h e  form 

(1) gi = bi(z); i = l y . . . y n y  
, . 

where b b ..., b a r e  homogeneous polynomials a s  a f i r s t  s t e p  toward 
1' 2' n 

f inding condit ions on the  more general  system 
. . 

which imply the  exis tence  of a  homogeneous polynomial Liapunov function.  
. , 

Suppose t h e  r i g h t  s i d e  of (2) is  a n a l y t i c  i n  (x1,-..,x ). Then 
n 

where f  . . (z) i s  a homogeneous polynomial of degree j . 
ZJ 

I f  f .  $0 f o r  some i, then (2) has a l i n e a r  pa r t ;  t h i s  i s  t h e  c l a s s i c a l  
11 

s i t u a t i o n  s tudied by Liapunov. Suppose k > 1 i s . t h e  smal les t  i n t e g e r  f o r  
. . 

which fik$O f o r  some i. I f  k is  even, (2) is unstable.  [ l ;p96] .  Hence we 

assume t h a t  k = 2& + 1, i n  which case (2) can be  w r i t t e n  

where b .  is a homogeneous polynomial of degree 2m + I, and g conta ins  only 
1 i 

highe; degree terms. If V(?i2 is a ~ i a p u n o v  funct ion f o r  (1) (V p o s i t i v e  

d e f i n i t e ,  and ? < 0) i t  i s  a l s o  a Liapunov funct ion f o r  (3) ; hence our 

i n t e r e s t  i n  (1). 

It fol lows immediately from homogeneity [ l ;p97]  t h a t  i f  (1) is 

asymptotical ly s t a b l e ,  i t  is as jmptot ica l ly  s t a b l e  i n  t h e  large;  thus w e  

s h a l i  always 
; _  

r e f e r  merely to 'asymptot ic  s t a b i l i t y .  



A s  a s t a r t i n g  point  f o r  the  invest igat ion of t he  existence of homo- 

geneous Liapunov functions fo r  (1) we considered generalizing the  following 

' theorem of Liapunov [2] : 

Theorem 1. I f  t he  eigenvalues of the matrix A = (aij)i,j = 

have negative r ea l  'parts and if U i s  a negative d e f i n i t e  homogeneous form . . 
of .degree 2k, then there e x i s t s  a pos i t ive  d e f i n i t e  homogeneous fo& Q of 

. . . . degree 2k such t ha t  

n 
(4  1 

This theorem guarantees t he  existence of Liapunov functions (and . 

' asymptotic s t a b i l i t y )  f o r  t he  l i n e a r  system 
, . 

An analogue f o r  t h e  nonlinear system (1) would give conditions on t h e  

functions bl, ..., b such t h a t ,  f o r  a given negative d e f i n i t e  form U of 
n 

degree 2k + 2m, t he r e  i s  a pos i t ive  de f in i t e  homogeneous form Q of degree 

2k t ha t  s a t i s f i e s  

This question, however, i s  not wel l  posed unless we r e s t r i c t  U; i f  V is 

of degree 2m + 2k it has 



coef f i c ien t s ,  while, i f  Q is  of degree 2k it has  only 

coef f i c ien t s .  Hence for m > 0, t h e  dimension of t h e  space of homogeneous 

polynomials which can be wr i t t en  i n  t h e  form of t h e  l e f t  s i d e  of ( 6 )  is  . . 
. . 

lower than t h e  dimension of t h e  space of homogeneous U'S of degree 
. . 

2m + 2k. Thus it i s  necessary t o  add t h e  e x p l i c i t  assumption t h a t  U l ies  

i n  t h e  lower dimensional subspace of homogeneous polynomials which can 

be wr i t t en  i n  the  form (6) f o r  any homogeneous Q of degree 2k. 

2. The eigen-polynomial problem. 

The hypothesis of theorem 1 on the  eigenvalues of A is necessary and 

s u f f i c i e n t  f o r  t h e  o r i g i n  t o  be asymptotical ly s t a b l e  f o r  (5). The 

c l a s s i c a l  na t ion  of eigenvalue can be general ized f o r  (1) by c a l l i n g  a 

homogeneous polynomial h(2) of degree 2m an eigen-polynomial of t h e  s e t  

ibl, ..., b of index 2k i f  t h e r e  e x i s t s  a non- t r iv ia l  homogeneous polynomial n 

P(x)  of degree 2k + 1 such t h a t  - 

We c a l l  P an eigen-form of ibl,.e.,b 1.  (It is  not  necessary f o r  
n 

(bl,. . . ,b 1 and P t o  be odd and h even t o  make good sense a lgebra ica l ly ,  
n 

but w e  restrict our a t t e n t i o n  t o  t h i s  case  because i t  is t h e  only one of 

i n t e r e s t  i n  s t a b i l i t y  theory.) 

This i s  a genera l i za t ion  of t h e  c l a s s i c a l  eigenvalue problem: if 

k = m = 0,  h reduces t o  a constant ,  and 



where b . .  and a a r e  constants. Now (7) reduces t o  
=J j 

n T Thus h is  an eigenvalue of 3 = (bij) and A = (al, ... an) an 
it j=l 

T 
eigenvector of B . 

The relevance of t he  above discussion t o  systems of t h e  form (1) is 

as foliows: 

I f  2 (t) i s  a t r a j ec to ry  of ( I ) ,  r e l a t i on  (7) i n p l i e s  that 

hence 

So t ha t  i f  X i s  negative de f in i t e ,  P(2) approaches,zero along any t r a j ec to ry  

, of (I).. 

A s  f a r  a s  we know there  is  no well developed theory of eigen-polynomials 

and eigen-forms a s  defined here. We have confined our a t t en t ion  t o  t he  case 

k = 0, fo r  which (7) takes the form 



with constants  ol, ..., a . The eigen-form 
n 

s a t i s f i e s  t h e  equation 

Y = X&(t)) Y 

along a t r a j e c t o r y  of (I). 

Suppose now t h a t  the re  are n l i n e a r l y  independent eigen-forms 

(which implies t h a t  the  matr ix  A = (a ) is non-singular) wi th  associa ted  
ij 

eigen-polynomials' A 
1 ' A*, ..., An, then (1) is  equivalent  t o  

This i s  the  analogue of t h e  diagonal form f o r  (5). The quest ion of t h e  

exis tence  of n l i n e a r l y  independent eigen-forms, o r  more appropriately,  the 

determination of a l l  canonical forms f o r  ( I ) ,  req;ires an analogue of t h e  

. Jordan canonical  form f o r  matrices.  We have not attempted t o  develop such 

a t h e h y  because we thought i t  .wise t o  see f i r s t  i f  w e  could sett le t h e  

quest ion of s t a b i l i t y  f o r  t h e  diagonal system. Our e f f o r t s  i n  t h i s  d i rec t ion  

are reported i n  sec t ions  4 through 8. However, we  d id  ob ta in  an a l g e b r a i c  

formulation of the  eigen-polynomial problem f o r  k=O, which we r epor t  here  

f o r  completeness. 



at every (x1.x2) f (0,O) a t  l e a s t  one of hl (x1,x2) 

x ) i s  negative. and A2 (xl, 

Proof: The proof makes use of t h e  bas ic  r e l a t i o n  (15) which holds along 

any t r a j e c to ry  of (14). 

This r e l a t i o n  i s  obtained by applying Euler 's  i d e n t i t y  f o r  homogeneous 

functions : 

t o  the  de r iva t ive  of X - X along a t r a jec to ry .  It is c l e a r  from (15) 
1 2  

that a l i n e  along which A = A 2  is a t r a j e c to ry  of (14). Moreover (15) 1 

shows t ha t  XI - h i s  equal t o  i t s  i n i t i a l  value  times an exponential,  
2 

and hence hl - X does not change s ign along any t ra jec to ry .  2 

We prove f i r s t  t h a t  every t r a j e c to ry  of (14) approaches the o r ig in  

(quasi-asymptotic s t a b i l i t y ) ,  It follows immediately from the representa- 

t i o n  (13) and hypothesis (a) t h a t  any t r a j e c to ry  which s t a r t s  on one of t h e  

coordinate axes must approach t he  o r ig in ,  and i n  f a c t ,  monotonically. .Now 

assume t h a t  ~ ~ ( 0 )  f 0 and x2(0) ': 0. Since h - X does not change s ign 
2 1 

along a t r a j e c to ry  we may assume without l o s s  of genera l i ty  t ha t  

From (13) 



X 

so t ha t  - approaches a l i m i t  2 (possibly i n f i n i f e ,  but  not zero). Define 
X 
1 

. . 

TBen 6 and 5 approach l i m i t s :  
1 2 1 

J. 

. - 
l i m  6 1  

=TI= J. 
t -te, 

- 
l i m  t 2 = c 2 =  JTF . 

t - + -  

- - 
Now, h2 (E1,E2) - hl (El,S2) 0 and i t  follows' from hypothesis (b) t ha t  

- - . . 
Xl (E1,S2)= -0 where o > 0. Thus there  ex i s t s  a T such t h a t  t > T implies. - 

. , 
From (13) 

t 

Ixl(t) I = lxl(T) I exp [I A ,  ( ~ ( s ) )  ds] - 

Prom (17), ix I is decreasing f o r  t T; therefore  i t  has a l i m i t  1 < I  . 
1 

The assumption t ha t  I [SO,  along with t h e  last inequa l i ty  df (18), leads  
1 

t o  a contradiction.  Hence l i m  x ( t )  = 0. Since elf 0 (because L f- O in 
X t * m  

1 
1 (16). and r = - , l i m  r ( t )  = 0, which completes t h e  f i r s t  p a r t  of t h e  
€1 t -20 

proof. 



The above proof shows t h a t  once a t r a j ec to ry  of (14)- en te r s  a .por t ion  

of the  plane i n  which both A and A a r e  negative i t  remains there  and 1 . 2  

r ( t )  ' 0 monotonically. Thus, s t a r t i n g  a t  a point where r ( x  1 (0) , x 2 (0 ) )  = r o 

and say h (x (0),x2(0)) < 0 t he  maximum value r can assume is l e s s  than 
1 1  

2 
X1 

2 ( ~ )  + n where n i s  the  nmber  of smallest  absolute value such t h a t  

. A2 ( ~ ~ ( 0 )  , ri) 2 2 
= 0. Hypothesis (a) now assures us t h a t  xl (0) + q can be 

made as  small as  desired by choosing r o su f f i c i en t l y  small. This completes 

t he  proof of the  theorem. 

5. A conjecture on the  diagonal case f o r  general n. 

W e  sought t o  generalize theorem 2 with t he  following conjecture: 

Conjecture 1. The system 

where Xl,e..,h a r e  r e a l  homogeneous polynomials of degree Zm, is  
n 

asymptotically s t a b l e  i f  and only i f  f o r  any p a r t i t i o n  [il, ..., i k ] ,  

[ik+l,...,i ] of N = [l,. ..,n] i n to  d i s j o i n t  subsets,  ( e i the r  of which may 
n 

be empty) a t  l e a s t  one of t he  polynomials X , , A  is  negative a t  any 
il j-k 

non-zero point  on the  hyperplane x. = x - - ... = X = 0. 
Ik+l i k+2 i n 

We expended considerable e f f o r t  t o  prove t h i s  conjecture, but  without 

.success. A t  t h i s  point  we can only surmise t ha t  e i t h e r ' t h e  hypothesis i s  

too weak, o r  t he  theorem is very deep. The c ruc ia l  defect  i n  our attempts 

to  prove it seems t o  be the l ack  of a general izat ion of t h e  r e l a t i on  (15) 

; which implied t ha t  X - h i s  s ign constant along a t ra jec tory .  1 2  

We have obtained some p a r t i a l  r e s u l t s  which a r e  presented here. . 

In  t h e  follos~.ing discussion we may assume t h a t  no t r a j ec to ry  i n t e r s ec t s  
. . 



a coordinate hyper-plane, f o r  i f  x,(to) = 0 f o r  some to 2 0, then 

xn( t )  e 0 f o r  t > t and (19) reduces t o  a system-of n - 1 equations - 0, 

which s a t i s f y  t h e  hyperfhe;is of t h e  conjecture with n replaced by n - 1. 
Lemma 1. Let the  system (19) s a t i s f y  t h e  hypothesis of conjecture 1, 

and let  x ( t )  be a t r a j e c t o r y  along which one of t h e  A .  dominates t h e  o the rs  - 
1 .  

f o r  s u f f i c i e n t l y  l a r g e  t. Then l i m  x ( t )  = 0. - 
t- 

. " . . 
Proof: Without l o s s  of genera l i ty ,  assume t h a t  

From (13), i f  t > T - 

x,(t) x,(T) - =- ex* [ 1' {hn(2(s)) - h i s  ds ; 
xi( t )  xi(T) T .  3 

X n hence - 
X 

, being non-decreasing f o r  t > T, approaches a l i m i t  R - 
i i 

(possibly i n f i n i t e ,  but not zero).  Let 

2 2 1/2 
r = (xl + ... t. xn ) 

and 

- 
Then l i m  Ei(t) = S i =  

t- 

where R = 1. Suppose Ei f 0 f o r  i i n  t h e  s e t  [ i  .. .,i ] and Si = 0 for n 1 ' k 
2 

i i n  [ik+l,oo.,i 1. The f i r s t  set i s  not  empty.(since 5 + ... + 5, = I), n . 1 .  - 
and by hypothesis coiltains a n  i n t e g e r  j such t h a t  h (F . . . , Cn) 

j .Iy. 
= -0 (0 >O). 



Lim I x .  ( t )  1 e x i s t s  because Ix. ( t )  ( i s  decreasing f o r  t > T and t h e  
3 . J - 1' 

t- 

. assumption t ha t  t h i s  l i m i t  i s  not zero l eads  t o  a contradic t ion v i a  (20). 
' X 

j and 0, i t  follows t h a t  Thus l i r n  x . ( t )  = 0, and s ince  r = - 
t- J j 5 

l i r n  r ( t )  = 0. This completes t h e  proof of t h e  lemma. 
t- 

Corollary 1. I f  A l Y  n s a t i s f y  t he  hypothesis of conjecture 1 

and An - i . i s  pos i t i ve  semi-definite f o r  3. 5 i 2 n-1, then the system (19) 
1 

i s  'asymptotically s tab le .  

Corollary 2.  I f  Al, ..., A s a t i s f y  the  hypothesis of conjecture 1 n 

and i f  ~ ( t )  i s  a t r a j ec to ry  f o r  which E1y.,., Ell approach l i m i t s ,  then 

l i r n  ~ ( t )  = 0, 
t- 

- 
I f  l i r n  6 = 5 e x i s t s  f o r  i = l,...,n, Corollary 2 implies that 

t- 

" Thus the  hypothesis of conjecture 1 and the  assumption t ha t  S1, ...,En 

have l i m i t s  a r e  incompatable, unless t h e  former implies t he  existence of 

. at l e a s t  one point where A ..., A a r e ' a l l  non-positive. This i s  true fo r  1' , n 

n = 2, but we have not been ab le  t o  show it f o r  n > 2. I n  conjecture 2 

(Section 8) we strengthen our hypothesis so as t o  remove t h i s  d i f f i cu l t y .  

However, t h e  stronger hypothesis brought us no c loser  t o  a solution.  

6. An estimate.  

I n  t r y ing  t o  t r a n s l a t e  the  hypothesis of conjecture 1 in to  usable form,  

w e  discovered thk following lemma. 
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conjecture 1, A .  (x) c 0 f o r  a t  l e a s t  one i E S. This is  a contradiction;  
1 - 

A A ' 

the  def in i t ion  of x and t h e  continuity of A imply that: X (5) 2 0 . This 
... i i 

proves lemma 2. 

Lemma 2 a t  f i r s t  seemed t o  be qu i te  promising. Taking S t o  be t he  s e t  

of a l l  i f o r  which hi - > 0 a t  any given point ,  and N-S t h e  non-empty set of 

a l l  i f o r  which A < 0 ,  it can be seen t ha t  (22) gives an upper bound f o r  
i 

the  sum of t h e  squares of those coordinates whose absolute values a r e  in- 

creasing, i n  terms of a s imi la r  sum of terms whose absolute  values a r e  

decreasing. I n  f a c t  (22) can be replaced by 

2 
r2@ i(l+A(S)) r (25) * 

N-S 

Over any period of time during which no A.changes sign,  t h i s  g ives  a  
1 

decreasing upper bound f o r  the  dis tance from the  t r a j ec to ry  to  t h e  or igin .  

We have not been ab le  t o  use t h i s  seemingly favorable s t a t e  of a f f a i r s  

t o  prove t h e  conjecture. 

7. Two theorems. 

In  attempting an induction proof of conjecture 1 w e  were l e d  t o  w r i t e  

(19) i n  t h e  form 

where $ is homogeneous of degree 2m-1. 
i 

Theorem 3. Let the  system 

(26) yi = Ai(yl, 0 0 0 , Y ~ - ~ , O )  yi 5 i = l,...,n-1, 

be asymptotically s tab le .  Then there  i s  a  constant 0 < 6 < 1 such t h a t  i f  



1 ( t )  1 < S along a t r a j ec to ry  of (25) ,  then l i i n  ~ ( t )  = 0 .  
' t- 

?roof. W e  use a device due t o  Zubov.fl].  The asymptotic s t a b i l i t y  of 

, (26) i np l i e s  t ha t  any t r a j ec to ry  ~ ( t )  of (26) s g t i s f i e s  

(27) . ly(t) ] = O(t 
-l/2m 

) as t* , 
(Krasonskii 133).  

. - . . 
Zubov showed t h a t  t h i s  guarantees the  existence of a liapunov function 

. . 
V(ylS.. . ,yn-l), continuously d i f f e r en t i ab l e  with respect t o  (yl,. . . ,yn-l), 

with der iva t ive  a long  a t r a j ec to ry  of (26) given by 

where k is  a su f f i c i en t l y  l a r g e  pos i t ive  integer.  
. . 

Expl ic i t ly ,  

where ( t ,  u)  i s  t h e  so lu t ion  of (26) f o r  which y (0, 2) = 2 = ( q , - . , u  1, n-1 

and I I i s  t h e  Eucledian norm. The existence of the  i n t eg ra l  follows 

from '(27). V can b e  shown t o  be pos i t ive  homogen&ous of orde; 2k. 

Suppose x l ( t ) ,  . . . >x (t) are taken t o  be the f i r s t  n-1 components of n-1 

a t ra jec tory  ~ ( t )  of (25); l e t  

and. 

" .  
From (25) aid (28), 



. There i s  a constant  M > 0 such t h a t  t h e  second term on the  r i g h t  i s  

dominated by 

2 - (mi-k) 2@-21i M I  5 .  I - <* 1. n .  9 
' . . .  . . 

hence .- 

. .  
choose 6 so t h a t  1 5, 1 - < 6 implies t h a t  

2 M I  En 1 -  ) 1 . 1 - a  . (0 c a c 1, a r b i t r a r y )  ; 

. t h e n i f  I Sn 1 2 6  f O r a l l t >  

- 
and J, i s  s t r i c t l y  decreasing. i e t  l i m  $ ( t )  = C ; ye want t o  show t h a t  

t- . . 

9 = 0. If J, 0, then p is  bounded avay fidm zero,  because f o r  a l l  t ,  

- .2k 
0 r l  $(t)  = V(xl(t), * >xn-l(t)) 2 " 

where p = rnin V(xl,  ..., x ) on p = 1. Subs t i tu t ing  i n  (29) y i e l d s  n-1 

a contradic t ion,  s i n c e  it implies t h a t  $ ( t )  < 0 eventually.  Since v'= 0, 

p = 0 because V i s  p o s i t i v e  d e f i n i t e ;  the re fo re  l T m  ixn 1 = 0 a l s o  ( i f  no t ,  
t-to? 

then 1L 1 ~~l = 1, v i o l a t i n g  t h e  assumption t h a t  1 5 ( < 6 -4. f o r  a l l  t) . 
n - 

t- 

This coxipletes the  proof of theorem 3. 

The hypotheses of theorem 3 can be weakened t o  requ i re  t h a t  



. . * .  

1 5, 1 - < - 6  f o r  a l l  s u f f i c i e n t l y  l a r g e  t. 
. . . . 

. . . . . . . . . . 

.Theorem 4.  Let  the  system (26) be asymptotical ly s t a b l e  and ~ ( t )  

be a t r a j e c t o r y  of (25) f o r  which l i m  x ( t )  = 0. Then l i m  x( t )  = 0. 
t- 

n 
t- 

Proof. Using t h e  no ta t ion  of theorem 3, the re  exists a 6 i n  (0 , l )  

such t h a t  e i t h e r  1 5 1 > 6 o r  
n . . 

For any t such t h a t  (31) does no t  hold, 1 5 1 > 6 and 
n 

where Q = max V (xl, . . . ,x ) on t h e  sphere p = 1. If e i t h e r  (31) o r  (32) n-1 

holds f o r  a l l  s u f f i c i e n t l y  l a r g e  t ,  w e  a r e  f in ished;  i f  t h i s  is not the  

case, t h e r e  e x i s t s  a  sequence T < T < T < ...' approaching infinity such 
0 1 2  

t h a t  (32) -holds f o r  r < t < r 
2 j  - - 2j4-1 ' and (31) holds f o r  

P c Then 2j+1 - 2 '2j-i-2 . 

and 

< t < T  $ f t )  5 $ ( T ~ ~ + ~  1211 ( I  2 )  6 ; Tijil - - 2112 . 

Since x approaches zero, so  does $, and the re fo re  p approaches zero, 
n 



This  completes t h e  proof of theorem 4,  

Corol la ry .  I f  the system (26) is asymptot ica l ly  s t a b l e  and An i s  

nega t ive  d e f i n i t e ,  t h e n  t h e  o r i g i n  is  asympto t i ca l ly  s t a b l e  f o r  t h e  ' 

8. A s t r o n g e r  hypothes is .  

The hypothes is  of t h e  fo l lowing  con jec tu re  i s  s t r o n g e r  than  t h a t  of 

con jec tu re  1; it" has the advantage of guarantee ing  t h e  ex i s t ence  o f  a 

reg ion  where h I ,..., h n are a l l  nega t ive .  

Conjecture 2.  Let  A1, AZ, ..., A n be a s e t  of  c o n s t a n t s  such t h a t  

2 A. > 0 and A1 +,..+An 
2 

< 1, and l e t  h  c 0 whenever lcil > Ai. Then' 
1 - . i 

t h e  system 

is asymptotically stable. 

We have no t  been a b l e  t o  o b t a i n  sha rpe r  r e s u l t s  w i t h  t h i s  s t r o n g e r  

hypothesis .  
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