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Abstract

Let A = {A0, A1, . . . , Ak−1} ⊂ C
d1×d2 , ζ = e−2πi/k, F` =

∑k−1

m=0
ζ`mAm,

0 ≤ ` ≤ k − 1, and FA =
⊕k−1

`=0
F`. All operations in indices are mod-

ulo k. It is well known that if d1 = d2 = 1 then [As−r]
k−1

r,s=0
= ΦFAΦ∗,

where Φ = 1√
k
[ζ`m]k−1

`,m=0
. However, to our knowledge it has not been

emphasized that FA plays a fundamental role in connection with all the
matrices [As−αr]

k−1

r,s=0
, 0 ≤ α ≤ k − 1, with d1, d2 arbitrary. We begin

by adapting a theorem of Ablow and Brenner with d1 = d2 = 1 to the
case where d1 and d2 are arbitrary. We show that A = [As−αr]

k−1

r,s=0
if

and only if A = UαFAP ∗ where Uα and P are related to Φ, P is uni-
tary, and Uα is invertible (in fact, unitary) if and only if gcd(α, k) = 1,
in which case we say that A is a proper circulant. We prove the follow-
ing for proper circulants A = [As−αr]

k−1

r,s=0
: (i) A† = [Br−αs]

k−1

r,s=0
with

Bm = 1

k

∑k−1

`=0
ζ`mF

†
` , 0 ≤ m ≤ k − 1. (ii) Solving Az = w reduces to

solving F`u` = vα`, 0 ≤ ` ≤ k − 1, where v0, v1, . . . , vk−1 depend only
on w. (iii) A singular value decomposition of A can be obtained from
singular value decompositions of F0, F1, . . . , Fk−1. (iv) The least squares
problem for A reduces to independent least squares problems for F0, F1,
. . . , Fk−1. (v) If d1 = d2 = d, the eigenvalues of [As−r]

k−1

r,s=0
are the eigen-

values of F0, F1, . . . , Fk−1, and the corresponding eigenvectors of A are
easily obtainable from those of F0, F1, . . . , Fk−1. (vi) If d1 = d2 = d and
α > 1 then the eigenvalue problem for [As−αr]

k−1

r,s=0
reduces to eigenvalue

problems for d × d matrices related to F0, F1, . . . , Fk−1 in a manner
depending upon α.
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1 Introduction

Throughout this paper k ≥ 2, d1, d2 ≥ 1 are integers, α ∈ {0, 1, . . . , k − 1}, and

C
k:d1×d2 =

{
C = [Crs]

k−1
r,s=0

∣
∣Crs ∈ C

d1×d2 , 0 ≤ r, s ≤ k − 1
}
.

All arithmetic operations in indices are modulo k.
We call A = [As−αr]

k−1
r,s=0 ∈ Ck:d1×d2 an α-circulant. We say that A is a

proper α-circulant, or simply a proper circulant, if gcd(α, k) = 1. We will say
that A is a standard α-circulant if d1 = d2 = 1 and denote it byA = [as−ar]

k−1
r,s=0.

Of course, there is already a vast literature on standard α-circulants. Matrices
of the form

A = [Ars]
k−1
r,s=0 where Ars =

{

As−r , 0 ≤ r ≤ s ≤ k − 1,

kAs−r, 0 ≤ s < r ≤ k − 1,

are also called k-circulants; see e.g., [4]. We will not consider them.
We call [Br−αs]

k−1
r,s=0 an α-cocirculant, again proper if gcd(α, k) = 1. This

eliminates awkward terminology such as “ the conjugate transpose of the Moore-
Penrose inverse of an α-circulant matrix is an α-circulant.” The Moore-Penrose
inverse of an α-circulant is an α-cocirculant (Theorem 4).

Remark 1 Obviously, B is an α-cocirculant if and only if B
∗

is an α-circulant.
Therefore any result concerning α-circulants can be applied to B∗ to obtain a
result concerning B.

Remark 2 A proper α-circulant A = [As−αr]
k−1
r,s=0 is also a β-cocirculant where

αβ ≡ 1 (mod k), since

As−αr = Aαβs−αr = A−α(r−βs) = Br−βs

with Bm = A−αm, 0 ≤ m ≤ k − 1. Similarly, a proper β-cocirculant B =
[Br−βs]

k−1
r,s=0 is also an α-circulant, since

Br−βs = Bαβr−βs = B−β(s−αr) = Cs−αr

with Cm = B−βm , 0 ≤ m ≤ k − 1.

Henceforth ζ = e−2πi/k,

E = [δ`,m−1]
k−1
`,m=0, and Φ =

1√
k

[ζ`m]k−1
`,m=0 =

[
φ0 φ1 · · · φk−1

]
(1)

(the Fourier matrix), with

φm =
1√
k










1
ζm

ζ2m

...

ζ(k−1)m










, 0 ≤ m ≤ k − 1. (2)
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It is straightforward to verify that if indices are reduced modulo k then

Ep
(

[g`m]k−1
`,m=0

)

E−q = [g`+p,m+q ]
k−1
`,m=0. (3)

Setting p = 1 and q = 0 and invoking (1) yields

EΦ =
1√
k

[ζ(`+1)m)]k−1
`,m=0 = ΦD with D = diag(1, ζ, ζ2, . . . , ζk−1). (4)

Therefore E = ΦDΦ∗.
The discrete Fourier transform (DFT) of {A0, A1, . . . , Ak−1} ⊂ C

d1×d2 is
{F0, F1, . . . , Fk−1} where

F` =

k−1∑

m=0

ζ`mAm ∈ C
d1×d2 , 0 ≤ ` ≤ k − 1. (5)

Since Φ−1 = Φ∗,

Am =
1

k

k−1∑

`=0

ζ−`mF`, 0 ≤ m ≤ k − 1. (6)

We denote

FA =

k−1⊕

`=0

F` ∈ C
k:d1×d2 . (7)

For standard circulants (5)–(7) reduce to

f` =

k−1∑

m=0

amζ
`m, am =

1

k

k−1∑

`=0

f`ζ
−`m, and FA = diag(f0, f1, . . . , fk−1).

It is well known (see, e.g., [7]) that a standard 1-circulant A = [as−r]
k−1
r,s=0 ∈

Ck×k can be written as

A = ΦFAΦ∗ =

k−1∑

`=0

f`φ`φ
∗
` .

However, to our knowledge it has not been emphasized that FA plays a fun-
damental role in connection with all the standard circulants [as−αr]

k−1
r,s=0. (See

Remark 3.)
In Section 2 we reformulate a result of Ablow and Brenner [1, Theorem 2.1]

for standard α-circulants to characterize α-circulants in Ck:d1×d2 . We give a
different characterization in Section 3: A = [As−αr]

k−1
r,s=0 if and only if A =

UαFAP ∗, where Uα and P are related to the Fourier matrix, P is unitary, and
Uα is invertible (in fact, unitary) if and only if gcd(α, k) = 1.
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Since FA is independent of α, some computational results concerning FA
apply simultaneously to all the proper α-circulants [As−αr]

k−1
r,s=0. For example,

in Section 4 we show that

A† = [Br−αs]
k−1
r,s=0 where Bm =

1

k

k−1∑

`=0

ζ`mF †
` , 0 ≤m ≤ k − 1.

We also prove the following for proper α-circulants: (i) Solving Az = w reduces
to solving F`u` = vα`, 0 ≤ ` ≤ k − 1, where v0, v1, . . . , vk−1 depend only
on w. (ii) A singular value decomposition of A can be obtained from singular
value decompositions of F0, F1, . . . , Fk−1. (iii) The least squares problem for
A reduces to independent least squares problems for F0, F1, . . . , Fk−1. (iv) If
d1 = d2 = d, the eigenvalues of [As−r]

k−1
r,s=0 are the eigenvalues of F0, F1, . . . ,

Fk−1, and the corresponding eigenvectors of A are easily obtainable from those
of F0, F1, . . . , Fk−1. (v) If d1 = d2 = d and α > 1, the eigenvalue problem for
[As−αr]

k−1
r,s=0 reduces to eigenvalue problems for d×d matrices related to F0, F1,

. . . , Fk−1 in a manner depending upon α.
Block circulant 1-matrices [As−r]

k−1
r,s=0 have applications in preconditioning

of block Toeplitz matrices; see, e.g. [8, 9].

2 The Ablow–Brenner theorem revisited

Recall that E and Φ are defined in (1) and (2). Let

R = E ⊗ Id1 , Pm = φm ⊗ Id1 , 0 ≤ m ≤ k − 1, (8)

S = E ⊗ Id2 , Qm = φm ⊗ Id2 , 0 ≤ m ≤ k − 1, (9)

P =
[
P0 P1 · · ·Pk−1

]
, Q =

[
Q0 Q1 · · ·Qk−1

]
, (10)

and
Uα =

[
P0 Pα P2α · · · P(k−1)α

]
. (11)

Since

P ∗
` Pm = δ`mId1 and Q∗

`Qm = δ`mId2 , 0 ≤ `,m ≤ k − 1,

P and Q are unitary, while Uα is unitary if gcd(α, k) = 1; however, if gcd(α, k) =
q > 1 and p = k/q then

Uα = [P0 Pα · · · P(p−1)α · · ·P0 Pα · · · P(p−1)α
︸ ︷︷ ︸

q

]

(i.e., the first p block columns are repeated q times) is not invertible. From (4)
and (8)–(11),

RP` = ζ`P` and SQ` = ζ`Q`, 0 ≤ ` ≤ k − 1. (12)

Ablow and Brenner [1, Theorem 2.1] showed that A ∈ Ck×k is a standard
α-circulant if and only if EAE−α = A. We need the following adaptation of
this result.
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Theorem 1 If A = [Grs]
k−1
r,s=0 with Grs ∈ C

d1×d2 , then RAS−α = A if and

only if A is an α-circulant; more precisely, if and only if

Grs = As−αr, 0 ≤ r, s ≤ k − 1, (13)

with

As = G0s, 0 ≤ s ≤ k − 1. (14)

Proof. From (3), (8), and (9), RAS−α = [Gr+1,s+α]k−1
r,s=0. Therefore we must

show that (13) is equivalent to

Gr+1,s+α = Grs, 0 ≤ r, s ≤ k − 1. (15)

If (13) holds, then

Gr+1,s+α = A(s+α)−(r+1)α = As−αr = Grs, 0 ≤ r, s ≤ k − 1.

For the converse we must show that (14) and (15) imply (13). We prove this by
finite induction on r. From (14),

Grs = As−αr, 0 ≤ s ≤ k − 1, (16)

if r = 0. Suppose (16) is true for some r ∈ {0, . . . , k− 2}. Replacing s by s− α
in (15) and (16) yields

Gr+1,s = Gr,s−α, 0 ≤ r, s ≤ k − 1,

and
Gr,s−α = As−α(r+1), 0 ≤ s ≤ k − 1.

Therefore
Gr+1,s = As−α(r+1), 0 ≤ s ≤ k − 1,

which completes the induction.
Theorem 1 with A = B∗ yields the following corollary.

Corollary 1 If B ∈ Ck:d2×d1 then B is an α-cocirculant if and only if SαBR−1 = B.

The following corollary extends [10, Corollary 1].

Corollary 2 (i) If A = [As−αr]
k−1
r,s=0 ∈ Ck:d1×d2 and B = [Br−αs]

k−1
r,s=0 ∈

Ck:d2×d1 , then AB = [Cs−r]
k−1
r,s=0 ∈ Ck:d1×d1 with Cm =

∑k−1
`=0 A`B`−αm, 0 ≤

m ≤ k − 1.
(ii) If gcd(α, k) = 1 and αβ ≡ 1 (mod k), then BA = [Ds−r]

k−1
r,s=0 ∈ C

k:d2×d2

with

Dm =

k−1∑

`=0

B`Am+`, 0 ≤ m ≤ k − 1. (17)
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Proof. (i) From Theorem 1 and Corollary 1, A = RAS−α and B = SαBR−1.
Therefore AB = RABR−1, so Theorem 1 with R = S implies that AB is
a 1-circulant. The stated formula for C0, C1, . . . , Ck−1 can be obtained by
computing first block row entries of AB.

(ii) Also, BA = SαBAS−α. Applying this β times yields BA = SBAS−1 ,
so Theorem 1 with R = S implies that BA is a 1-circulant. Computing the first
block row entries of BA yields Dm =

∑k−1
`=0 B−α`Am−α` and replacing ` by −β`

yields (17).

Theorem 2 If

A = [As−α1r]
k−1
r,s=0 ∈ C

k:d1×d2 (18)

and

B = [Bs−α2r]
k−1
r,s=0 ∈ C

k:d2⊗d3 , (19)

then

AB = [Cs−α1α2r ]
k−1
r,s=0 ∈ C

k:d1⊗d3 , (20)

with

Cm =

k−1∑

`=0

A`Bm−α2`, 0 ≤ m ≤ k − 1. (21)

Proof. Let R = E ⊗ Id1 , S = E ⊗ Id2 , and T = E ⊗ Id3 . From (18), (19), and
Theorem 1,

(a) A = RAS−α1 and (b) B = SBT−α2 .

Applying (b) α1 times yieldsB = Sα1BT−α1α2 . From this and (a), RABT−α1α2 =
AB. Now Theorem 1 implies (20), with (21) obtained by computing the entries
in the first block row of AB.

Theorem 2 generalizes [1, Theorem 3.1]; namely, the product of a standard
α-circulant and a standard β-circulant is an αβ-circulant. However, [1] does not
include (21).

3 A DFT characterization of α-circulants

Theorem 3 A matrix A ∈ Ck:d1×d2 is an α-circulant A = [As−αr]
k−1
r,s=0 if and

only if it can be written as

A =

k−1∑

`=0

Pα`F`Q
∗
` = UαFAQ∗, (22)

where {F0, F1, . . . , Fk−1} and {A0, A1, . . . , Ak−1} are related as in (5) and (6)
and P, Q, and Uα are as in (8)–(11).
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Proof. Eqns. (7)–(11) imply the second equality in (22). Therefore we need
only justify the first. Suppose A = [As−αr]

k−1
r,s=0 and define F0, F1, . . . , Fk−1 by

(5). From (6),

As−αr =
1

k

k−1∑

`=0

ζ−`(s−αr)F`, 0 ≤ r, s ≤ k − 1,

so (8)–(11) imply that

A =
1

k

k−1∑

`=0








1 ⊗ Id1
ζα` ⊗ Id1

...

ζ(k−1)α` ⊗ Id1







F`








1 ⊗ Id2
ζ` ⊗ Id2

...

ζ(k−1)` ⊗ Id2








H

=

k−1∑

`=0

Pα`F`Q
∗
` .

For the converse, if (22) holds then (12) implies that

RAS−α =

k−1∑

`=0

(RPα`)F`(S
αQ`)

∗ =

k−1∑

`=0

(ζα`Pα`)F`(ζ
−α`Q∗

`) = A.

Therefore A is an α-circulant, by Theorem 1; hence, A = [As−αr]
k−1
r,s=0 with A0,

A1, . . . , Ak−1 as in (6).

Remark 3 Theorem 3 implies that A ∈ Ck×k is a standard α-circulant [as−αr]
k−1
r,s=0

if and only if

A = ΦαFAΦ∗ =

k−1∑

`=0

f`φα`φ
∗
` ,

where Φ is as in (1), Φα =
[
φ0 φα · · · φ(k−1)α

]
, and

f` =

k−1∑

m=0

amζ
`m, 0 ≤ ` ≤ k − 1.

Corollary 3 A matrix B ∈ Ck:d2×d1 is an α-cocirculant if and only if it can be

written as B =
∑k−1

`=0 Q`G`P
∗
α`, where

G` =
k−1∑

m=0

ζ−`mBm, 0 ≤ ` ≤ k−1, and Bm =
1

k

k−1∑

`=0

ζ`mG`, 0 ≤ m ≤ k−1.

Proof. Apply Theorem 3 to B∗.
It is well known that standard 1-circulants commute. The following corollary

extends this.

Corollary 4 Suppose d1 = d2, gcd(α, k) = 1, and αβ ≡ 1 (mod k). Let A =
[As−αr]

k−1
r,s=0, B = [Bs−βr]

k−1
r,s=0,

F` =

k−1∑

m=0

ζ`mAm and G` =

k−1∑

m=0

ζ`mBm.

Then AB = BA if and only if Fβ`G` = Gα`F`, 0 ≤ ` ≤ k − 1.
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Proof. Since gcd(α, k) = gcd(β, k) = 1, we may change summation indices
`→ α` and `→ β`. Therefore, from Theorem 3 with Q = P ,

A =
k−1∑

`=0

Pα`F`P
∗
` =

k−1∑

`=0

P`Fβ`P
∗
β`, B =

k−1∑

`=0

Pβ`G`P
∗
` =

k−1∑

`=0

P`Gα`P
∗
α`,

AB =

k−1∑

`=0

P`Fβ`G`P
∗
` , and BA =

k−1∑

`=0

P`Gα`F`P
∗
` ,

which implies the conclusion.

4 Moore-Penrose inversion and singular value

decomposition

Recall that the Moore-Penrose inverse X† of a matrix X is the unique matrix
Y that satisfies the Penrose conditions

(XY )∗ = XY, (Y X)∗ = Y X, XY X = X, and Y XY = Y.

Theorem 4 The Moore–Penrose inverse of an α-circulant is an α-cocirculant.

Proof. From Theorem 1, if A is an α-circulant then A = RAS−α. Let B =
SαA†R−1. We will show that A and B satisfy the Penrose conditions:

AB = (RAS−α)(SαA†R−1) = RAA†R∗ = R(AA†)∗R∗ = (AB)∗,

BA = (SαA†R−1)(RAS−α) = SαA†A(Sα)∗ = Sα(A†A)∗(Sα)∗ = (BA)∗,

ABA = (RAA†R−1)(RAS−α) = R(AA†A)S−α = RAS−α = A,

and

BAB = (SαA†AS−α)(SαA†R−1) = Sα(A†AA†)R−1 = SαA†R−1 = B.

Therefore B = A† or, equivalently, SαA†R−1 = A†. Now Corollary 1 implies
that A† is an α-cocirculant.

We can be more explicit if gcd(α, k) = 1.

Theorem 5 The Moore–Penrose inverse of a proper α-circulant A = [As−αr]
k−1
r,s=0

is the α-cocirculant B = [Br−αs]
k−1
r,s=0, where

Bm =
1

k

k−1∑

`=0

ζ`mF †
` , 0 ≤ m ≤ k − 1, (23)

with

F` =
k−1∑

m=0

ζ`mAm, 0 ≤ ` ≤ k − 1.
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Proof. From Theorem 3, A = UαFAQ∗ where Q and Uα are unitary, the latter
since gcd(α, k) = 1. We will first show that A and B = QF†

AU
∗
α satisfy the

Penrose conditions:

AB = (UαFAQ∗)(QF†
AU

∗
α) = UαFAF†

AU
∗
α = Uα(FAF†

A)∗U∗
α = (AB)∗,

BA = (QF†
AU

∗
α)(UαFAQ∗) = QF†

AFAQ∗ = Q(F†
AFA)∗Q∗ = (BA)∗,

ABA = (UαFAF†
AU

∗
α)(UαFAQ∗) = Uα(FAF†

AFA)Q∗ = UαFAQ∗ = A,

and

BAB = (QF†
AFAQ∗)(QF†

AU
∗
α) = Q(F†

AFAF
†
A)U∗

α = QF†
AU

∗
α = B.

Therefore

A† = B =

k−1∑

`=0

Q`F
†
` P

∗
α` =

k−1∑

`=0

(φ` ⊗ Id2 )F
†
` (φα` ⊗ Id1 )

∗

=
1

k

[
k−1∑

`=0

ζ`(r−αs)F †
`

]k−1

r,s=0

= [Br−αs]
k−1
r,s=0,

from (8)–(11) and (23).

Remark 4 Theorem 5 can also be proved by using (6) and (23) to express the
entries of AB, BA, ABA, and BAB explicitly in terms of F0, F1, . . . , Fk−1 and
F †

0 , F †
1 , . . . , F †

k−1, noting that

k−1∑

`=0

ζ`(r−s) =

k−1∑

`=0

ζα`(r−s) = δrs, 0 ≤ r, s ≤ k − 1,

the latter because gcd(α, k) = 1. However, this is tedious.

Remark 5 Theorem 5 extends a result of Davis [6]: If A = [as−r]
k−1
r,s=0 ∈ Ck×k

then A† = Φ diag(a†0, a
†
1, . . . , a

†
k−1)Φ

∗, where Φ is the Fourier matrix (1), 0† = 0,

and a† = 1/a if a 6= 0.

Theorem 6 Suppose gcd(α, k) = 1 and

A = [As−αr]
k−1
r,s=0 =

k−1∑

`=0

Pα`F`Q
∗
` = UαFAQ∗.

Let F` = Ω`Σ`Ψ
∗
` be a singular value decomposition of F`, 0 ≤ ` ≤ k − 1, and

define

Mα =
[
P0Ω0 PαΩ1 · · · P(k−1)αΩk−1

]

and

N =
[
Q0Ψ0 Q1Ψ1 · · · Qk−1Ψk−1

]
.
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Then

A = Mα

(
k−1⊕

`=0

Σ`

)

N∗

is a singular value decomposition of A, except that the singular values are not

necessarily ordered.

5 The least squares problem

Suppose G ∈ Cd1×d2 and consider the least squares problem for G: If v ∈ Cd1 ,
find u ∈ Cd2 such that

‖Gu− v‖ = min
ξ∈Cd2

‖Gξ − v‖, (24)

where ‖ · ‖ is the 2-norm. This problem has a unique solution if and only
if rank(G) = d2, in which case u = (G∗G)−1G∗v. In any case, the optimal
solution of (24) is the unique u0 ∈ Cd2 of minimum norm that satisfies (24);
thus, u0 = G†v. The general solution of (24) is u = u0 + q where Gq = 0, and

‖Gu− v‖ = ‖(GG† − I)v‖

for all such u.
Now consider the following least squares problem: if A = [As−αr]

k−1
r,s=0 ∈

Ck:d1×d2 with gcd(α, k) = 1 and w ∈ Ckd1 , find z ∈ Ckd2 such that

‖Az − w‖ = min
ξ∈Ckd2

‖Aξ − w‖.

We write

z =

k−1∑

`=0

Q`u` and w =

k−1∑

`=0

P`v` =

k−1∑

`=0

Pα`vα`, (25)

since substituting α` for ` is legitimate because gcd(α, k) = 1. Since A =
∑k−1

`=0 Pα`F`Q
∗
` and Q∗

`Qm = δ`mIkd2 ,

Az − w =

k−1∑

`=0

Pα`(F`u` − vα`).

Since P ∗
α`Pαm = δ`mId1 (because gcd(α, k) = 1), it follows that

‖Az −w‖2 =

k−1∑

`=0

‖F`u` − vα`‖2. (26)

This implies the following theorem.
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Theorem 7 Suppose A is a proper α-circulant and let z and w be as in (25).
Then

‖Az − w‖ = min
ξ∈Ckd2

‖Aξ −w‖ (27)

if and only if

‖F`u` − vα`‖ = min
ψ`∈Cd2

‖F`ψ` − vα`‖, 0 ≤ ` ≤ k − 1.

Therefore (27) has a unique solution, given by

z =
k−1∑

`=0

Q`(F
∗
` F`)

−1F ∗
` vα`,

if and only rank(F`) = d2, 0 ≤ ` ≤ k − 1. In any case, the optimal solution of

(27) is

z0 =
k−1∑

`=0

Q`F
†
` vα`.

The general solution of (27) is z = z0 +
∑k−1

`=0 Q`u`, where F`u` = 0, 0 ≤ ` ≤
k − 1, and

‖Az −w‖2 =

k−1∑

`=0

‖(F`F †
` − Id1 )vα`‖2

for all such z.

6 The case where d1 = d2

Throughout this section d1 = d2 = d and A = [As−αr]
k−1
r,s=0 is a proper circulant.

Then (26) implies the following theorem, which reduces the problem of solving
the kd× kd system Az = w to solving k independent d× d systems.

Theorem 8 If A is a proper α-circulant, z =
∑k−1
`=0 P`u`, and w =

∑k−1
`=0 P`v`,

then Az = w if and only if

F`u` = vα`, 0 ≤ ` ≤ k − 1.

This and Theorem 5 imply the following theorem.

Theorem 9 A proper α-circulant

A = [As−αr]
k−1
r,s=0 =

k−1∑

`=0

Pα`F`P
∗
` (28)

is invertible if and only F0, F1, . . . , Fk−1 are all invertible. In this case

A−1 = [Br−αs]
k−1
r,s=0 with Bm =

1

k

k−1∑

`=0

ζ`mF−1
` , 0 ≤ m ≤ k − 1,

and the solution of Az = w is z =
∑k−1

`=0 P`F
−1
` vα`.

11



Remark 6 Theorem 9 and Remark 2 extend [5, Theorem 1]: the inverse of a
standard nonsingular α-circulant is a β-circulant, where αβ ≡ 1 (mod k).

Theorem 10 Suppose A is a proper α-circulant as in (28) and αβ ≡ 1 (mod k).

(i) A is Hermitian if and only if Pβ`F
∗
β` = Pα`F`, 0 ≤ ` ≤ k − 1.

(ii) A is normal if and only if Fβ`F
∗
β` = F ∗

` F`, 0 ≤ ` ≤ k − 1.

(iii) A is EP (i.e., A†A = AA†) if and only if Fβ`F
†
β` = F †

` F`, 0 ≤ ` ≤ k−1.

Proof.
From (28) and Theorem 5,

A =

k−1∑

`=0

Pα`F`P
∗
` , A∗ =

k−1∑

`=0

P`F
∗
` P

∗
α`, and A† =

k−1∑

`=0

P`F
†
` P

∗
α`. (29)

(i) Since αβ ≡ 1 (mod k), replacing ` by β` in the second sum in (29) yields

A∗ =
∑k−1

`=0 Pβ`F
∗
β`P

∗
` , and comparing this with the first sum in (29) yields (i).

(ii) From (29),

AA∗ =

k−1∑

`=0

Pα`F`F
∗
` P

∗
α` =

k−1∑

`=0

P`Fβ`F
∗
β`P

∗
` and A∗A =

k−1∑

`=0

P`F
∗
` F`P

∗
` ,

which implies (ii).
(iii) From (29),

AA† =

k−1∑

`=0

Pα`F`F
†
` P

∗
α` =

k−1∑

`=0

P`Fβ`F
†
β`P

∗
` and A†A =

k−1∑

`=0

P`F
†
` F`P

∗
` .

which implies (iii).

Remark 7 If A is a square matrix and there is a matrixB such that ABA = A,
BAB = B, and AB = BA, then B is unique and is called the group inverse
of A, which is usually denoted by A#. Davis [6] noted that if A ∈ C

k×k is a
standard 1-circulant then A† = A#. Theorem 10(iii) extends this: If A ∈ Ck:d×d

is a proper α-circulant and αβ ≡ 1 (mod k), then A† = A# if and only if

F †
` F` = Fβ`F

†
β`, 0 ≤ ` ≤ k − 1.

7 The eigenvalue problem with α = 1

In this section we assume that α = 1 and d1 = d2 = d. The following theorem
and its proof are motivated by [2, Theorem 2].

Theorem 11 Let

SR =

k−1⋃

`=0

{
z
∣
∣Rz = ζ`z

}
.

12



If λ is an eigenvalue of A, let EA(λ) be the λ-eigenspace of A; i.e,

EA(λ) =
{
z
∣
∣Az = λz

}
.

(i) If λ is an eigenvalue of A = [As−r]
k−1
r,s=0 then EA(λ) has a basis in SR.

(ii) If A ∈ Ck:d×d and has kd linearly independent eigenvectors in SR, then

A is a 1-circulant.

Proof. (i) From Theorem 8, z =
∑k−1
`=0 P`u` ∈ EA(λ) if and only if F`u` =

λu`, 0 ≤ ` ≤ k − 1. Therefore λ is an eigenvalue of A if and only if it
is an eigenvalue of F` for some ` ∈ {0, 1, . . . , k − 1}. Let Tλ be the subset of
{0, 1, . . . , k−1} for which this is true. Then EA(λ) consists of linear combinations
of the vectors of the form P`u` with ` ∈ Tλ and (λ, u`) an eigenpair of F`. Since
RP` = ζ`P` (recall (12)), this completes the proof of (i).

(ii) From Theorem 1, we must show that RA = AR. If Az = λz and Rz =
ζsz then RAz = λRz = λζsz and ARz = ζsAz = ζsλz. Hence ARz = RAz for
all z in a basis for Ck:d×d, so AR = RA.

Theorem 12 Let R and P be as in (8) and (10).Then the 1-circulant A =
[As−r]

k−1
r,s=0 is diagonalizable if and only if F0, F1, . . . , Fk−1 are all diagonalizable.

In this case, if

F` = T`D`T
∗
` , 0 ≤ ` ≤ k − 1,

are spectral decompositions of F0, F1, . . . , Fk−1 and

Ψ =
[
P0T0 P1T1 · · · Pk−1Tk−1

]
,

then

A = Ψ

(
k−1⊕

`=0

D`

)

Ψ∗

is a spectral decomposition of A.

8 The eigenvalue problem with α > 1

In this section we assume that d1 = d2 = d, α ∈ {2, 3, . . .k−1} and, gcd(α, k) =

1. From Theorem 8, Az = λz if and only if z =
∑k−1

s=0 Psus, where

Fsus = λuαs, 0 ≤ s ≤ k − 1. (30)

Therefore Az = 0 if and only if z =
∑k−1

s=0 Psus where Fsus = 0, 0 ≤ s ≤ k − 1,
so the makeup of the null space of A is transparent. Hence, we assume that
λ 6= 0. Then we must consider the orbits of the permutation on {0, . . . , k − 1}
defined by s → αs (mod k). We consider an example before presenting the
general discussion.

13



Let k = 10 and α = 3. The permutation of {0, 1, . . . , 9} defined by s → 3s
(mod 10) is given by

(
0 1 2 3 4 5 6 7 8 9
0 3 6 9 2 5 8 1 4 7

)

.

The orbits of this permutation are

O0 = {0}, O1 = {1, 3, 9, 7}, O2 = {2, 6, 8, 4}, and O3 = {5}.

Therefore (30) divides into four independent systems:

(i) F0u0 = λu0; (ii) F1u1 = λu3, F3u3 = λu9, F9u9 = λu7, F7u7 = λu1,

(iii) F5u5 = λu5; (iv) F2u2 = λu6, F6u6 = λu8, F8u8 = λu4, F4u4 = λu2.

From (i), if (λ, u0) is an eigenpair of F0 then (λ, P0u0) is an eigenpair of A.
Similarly, from(iii), if (λ, u5) is an eigenpair of F5 then (λ, P5u5) is an eigenpair
of A. The analysis of (ii) and (iv) is more complicated, but identical. We will
consider (ii), which is equivalent to

u3 =
1

λ
F1u1, u9 =

1

λ
F3u3, u7 =

1

λ
F9u9, u1 =

1

λ
F7u7, (31)

since λ 6= 0. Hence,

u3 =
1

λ
G3u1 u9 =

1

λ2
G9u1, u7 =

1

λ3
G7u1, and u1 =

1

λ4
G1u1, (32)

where

G3 = F1, G9 = F3F1, G7 = F9F3F1, and G1 = F7F9F3F1. (33)

In particular, the last equalities in (32) and (33) are equivalent to G1u1 = λ4u1.
Therefore, if (γ, u1) is an eigenpair of G1 and γ 6= 0, then λ = γ1/4 is an
eigenvalue of A with the associated eigenvector

z = (P1 + γ−1/4P3G3 + γ−2/4P9G9 + γ−3/4P7G7)u1

=

(

P1 +

3∑

m=1

γ−m/4P3mG3m

)

u1. (34)

(Recall that subscripts are taken modulo 10.) However, γ1/4e2πir/4, 0 ≤ r ≤ 3,
are all fourth roots of γ and therefore eigenvalues of A. Replacing γ1/4 with
γ1/4e2πir/4 in (34) shows that

zr =

(

P1 +

3∑

m=1

γ−m/4e−2πirm/4P3mG3m

)

u1, 0 ≤ r ≤ 3, (35)

are the respective associated eigenvectors of A.
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Now suppose the permutation s → αs (mod k) of {0, 1, . . . , k − 1} has p
orbits O0, O1, . . . , Op−1, and let

0 = s0 < s1 < s2 < · · · < sp−1 with s` ∈ O`, 0 ≤ ` ≤ p− 1.

Suppose O` has r` distinct members; thus,

O` = {s`, αs`, . . . , αr`−1s`} where αr` ≡ 1 (mod k), (36)

and
⋃p−1
`=0 O` = {0, 1, . . . , k − 1}. If r` = 1 and (λ, us`

) is an eigenpair of Fs`
,

then (λ, Ps`
us`

) is an eigenpair of A. Now consider an orbit O` with r` > 1,
such as O2 and O4 in the example. The system associated with O` is

Fαrs`
uαrs`

= λuαr+1s`
, 0 ≤ r ≤ r` − 1, where αr` = 1,

which is analogous to (ii), where s` = 1, α = 3 and k = 10. Since λ 6= 0, this is
equivalent to

uαr+1s`
=

1

λ
Fαrs`

uαrs`
, 0 ≤ r` − 1,

which is analogous to (31). Therefore

uαr+1s`
=

1

λr+1
Gαr+1s`

us`
, 0 ≤ r ≤ r` − 1, (37)

where
Gαr+1s`

= Fαrs`
· · ·Fs`

, 0 ≤ r ≤ r` − 1,

which is analogous to (32) and (33). In particular, setting r = r`−1 and noting
that αr`s` = s` yields

us`
=

1

λr`
Gs`

us`
where Gs`

= Fαr`−1s`
· · ·Fs`

.

Therefore, if (γ`, us`
) is an eigenvalue of Gs`

, then γ
1/r`

` is an eigenvalue of A
with associated eigenvector

z` =

(

Ps`
+

r`−1
∑

m=1

γ
−m/r`

` Pαms`
Gαms`

)

us`
, (38)

which is analogous to (34). However, since γ1/r`e2πir/r` are all r`-th roots of γ,
they are all eigenvalues of A. Replacing γ1/r` with γ1/r`e2πir/4 in (38) yields
associated eigenvectors

zr` =

(

Ps`
+

r`−1
∑

m=1

γ
−m/r`

` e−2πirm/r`Pαms`
Gαms`

)

us`
, 0 ≤ r ≤ r` − 1, (39)

which is analogous to (35).
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Remark 8 Now we apply the preceding argument to a standard α-circulant
A = [as−αr]

k−1
r,s=0 with gcd(α, k) = 1. From Remark 3,

A =

k−1∑

s=0

fsφαsφ
∗
s with fs =

k−1∑

r=0

arζ
rs, 0 ≤ r ≤ k − 1,

and φ0, φ1, . . . , φk−1 as in (1). Then z =
∑k−1

s=0 usφs is λ-eigenvector of A if
and only if fsus = λuαs, 0 ≤ s ≤ k − 1. Let O` be as in (36) and assume that
fαrs`

6= 0, 0 ≤ r ≤ r` − 1. Let

gαr+1s`
=

r∏

q=0

fαqs`
, 0 ≤ r ≤ r` − 1,

and
γ` = gαr`s`

= fαr`−1s`
· · ·fs`

.

From (37),

uαr+1s`
=

1

λr+1
gαr+1s`

us`
, 0 ≤ r ≤ r` − 2, and uαr`s`

= us`
= λ−r`γ`us`

.

Therefore γr`

` e
2πir/r` , 0 ≤ r ≤ r` − 1, are eigenvalues of A. From (39),

zr` =

(

φs`
+

r`−1∑

m=1

γ
−m/r`

` e−2πirm/r`gαms`
φαms`

)

, 0 ≤ r ≤ r` − 1,

are associated eigenvectors.
For example, let α = k − 1, so A = [as+r]

k−1
r,s=0. If k = 2p then v0 = f0,

v` =
√

f`fk−`, 1 ≤ ` ≤ p− 1, and vp = fp. Hence, (f0, φ0), (fp, φp),

(
√

f`fk−`, φ` +
1

√

f`fk−`
φ(k−1)`

)

, and

(

−
√

f`fk−`, φ` −
1

√

f`fk−`
φ(k−1)`

)

1 ≤ ` ≤ p− 1, are eigenpairs of A. If k = 2p+ 1 then v0 = f0 and v` = f`fk−`,
1 ≤ ` ≤ q. Hence (f0 , φ0),

(
√

f`fk−`, φ` +
1

√

f`fk−`
φ(k−1)`

)

, and

(

−
√

f`fk−`, φ` −
1

√

f`fk−`
φ(k−1)`

)

1 ≤ ` ≤ p, are eigenpairs of A.
The eigenvalues of A were given in [5] without the associated eigenvectors.
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