Properties of unilevel block circulants

William F. Trench*

Trinity University, San Antonio, Texas 78212-7200, USA
Mailing address: 659 Hopkinton Road, Hopkinton, NH 03229 USA

Abstract

Let $\mathcal{A}=\left\{A_{0}, A_{1}, \ldots, A_{k-1}\right\} \subset \mathbb{C}^{d_{1} \times d_{2}}, \zeta=e^{-2 \pi i / k}, F_{\ell}=\sum_{m=0}^{k-1} \zeta^{\ell m} A_{m}$, $0 \leq \ell \leq k-1$, and $\mathcal{F}_{A}=\bigoplus_{\ell=0}^{k-1} F_{\ell}$. All operations in indices are modulo k. It is well known that if $d_{1}=d_{2}=1$ then $\left[A_{s-r}\right]_{r, s=0}^{k-1}=\Phi \mathcal{F}_{A} \Phi^{*}$, where $\Phi=\frac{1}{\sqrt{k}}\left[\zeta^{\ell m}\right]_{\ell, m=0}^{k-1}$. However, to our knowledge it has not been emphasized that \mathcal{F}_{A} plays a fundamental role in connection with all the matrices $\left[A_{s-\alpha r}\right]_{r, s=0}^{k-1}, 0 \leq \alpha \leq k-1$, with d_{1}, d_{2} arbitrary. We begin by adapting a theorem of Ablow and Brenner with $d_{1}=d_{2}=1$ to the case where d_{1} and d_{2} are arbitrary. We show that $A=\left[A_{s-\alpha r}\right]_{r, s=0}^{k-1}$ if and only if $A=U_{\alpha} \mathcal{F}_{A} P^{*}$ where U_{α} and P are related to Φ, P is unitary, and U_{α} is invertible (in fact, unitary) if and only if $\operatorname{gcd}(\alpha, k)=1$, in which case we say that A is a proper circulant. We prove the following for proper circulants $A=\left[A_{s-\alpha r}\right]_{r, s=0}^{k-1}$: (i) $A^{\dagger}=\left[B_{r-\alpha s}\right]_{r, s=0}^{k-1}$ with $B_{m}=\frac{1}{k} \sum_{\ell=0}^{k-1} \zeta^{\ell m} F_{\ell}^{\dagger}, 0 \leq m \leq k-1$. (ii) Solving $A z=w$ reduces to solving $F_{\ell} u_{\ell}=v_{\alpha \ell}, 0 \leq \ell \leq k-1$, where $v_{0}, v_{1}, \ldots, v_{k-1}$ depend only on w. (iii) A singular value decomposition of A can be obtained from singular value decompositions of $F_{0}, F_{1}, \ldots, F_{k-1}$. (iv) The least squares problem for A reduces to independent least squares problems for F_{0}, F_{1}, \ldots, F_{k-1}. (v) If $d_{1}=d_{2}=d$, the eigenvalues of $\left[A_{s-r}\right]_{r, s=0}^{k-1}$ are the eigenvalues of $F_{0}, F_{1}, \ldots, F_{k-1}$, and the corresponding eigenvectors of A are easily obtainable from those of $F_{0}, F_{1}, \ldots, F_{k-1}$. (vi) If $d_{1}=d_{2}=d$ and $\alpha>1$ then the eigenvalue problem for $\left[A_{s-\alpha r}\right]_{r, s=0}^{k-1}$ reduces to eigenvalue problems for $d \times d$ matrices related to $F_{0}, F_{1}, \ldots, F_{k-1}$ in a manner depending upon α.

MSC: 15A09; 15A15; 15A18; 15A99
Keywords: Circulant; Block circulant; Cocirculant; Least squares; Discrete Fourier transform; Moore-Penrose Inverse; Eigenvalue problem; Singular value decomposition

[^0]
1 Introduction

Throughout this paper $k \geq 2, d_{1}, d_{2} \geq 1$ are integers, $\alpha \in\{0,1, \ldots, k-1\}$, and

$$
\mathbb{C}^{k: d_{1} \times d_{2}}=\left\{C=\left[C_{r s}\right]_{r, s=0}^{k-1} \mid C_{r s} \in \mathbb{C}^{d_{1} \times d_{2}}, 0 \leq r, s \leq k-1\right\} .
$$

All arithmetic operations in indices are modulo k.
We call $A=\left[A_{s-\alpha r}\right]_{r, s=0}^{k-1} \in \mathbb{C}^{k: d_{1} \times d_{2}}$ an α-circulant. We say that A is a proper α-circulant, or simply a proper circulant, if $\operatorname{gcd}(\alpha, k)=1$. We will say that A is a standard α-circulant if $d_{1}=d_{2}=1$ and denote it by $A=\left[a_{s-a r}\right]_{r, s=0}^{k-1}$. Of course, there is already a vast literature on standard α-circulants. Matrices of the form

$$
A=\left[A_{r s}\right]_{r, s=0}^{k-1} \quad \text { where } \quad A_{r s}= \begin{cases}A_{s-r}, & 0 \leq r \leq s \leq k-1 \\ k A_{s-r}, & 0 \leq s<r \leq k-1\end{cases}
$$

are also called k-circulants; see e.g., [4]. We will not consider them.
We call $\left[B_{r-\alpha s}\right]_{r, s=0}^{k-1}$ an α-cocirculant, again proper if $\operatorname{gcd}(\alpha, k)=1$. This eliminates awkward terminology such as " the conjugate transpose of the MoorePenrose inverse of an α-circulant matrix is an α-circulant." The Moore-Penrose inverse of an α-circulant is an α-cocirculant (Theorem 4).

Remark 1 Obviously, B is an α-cocirculant if and only if B^{*} is an α-circulant. Therefore any result concerning α-circulants can be applied to B^{*} to obtain a result concerning B.

Remark 2 A proper α-circulant $A=\left[A_{s-\alpha r}\right]_{r, s=0}^{k-1}$ is also a β-cocirculant where $\alpha \beta \equiv 1(\bmod k)$, since

$$
A_{s-\alpha r}=A_{\alpha \beta s-\alpha r}=A_{-\alpha(r-\beta s)}=B_{r-\beta s}
$$

with $B_{m}=A_{-\alpha m}, 0 \leq m \leq k-1$. Similarly, a proper β-cocirculant $B=$ $\left[B_{r-\beta s}\right]_{r, s=0}^{k-1}$ is also an α-circulant, since

$$
B_{r-\beta s}=B_{\alpha \beta r-\beta s}=B_{-\beta(s-\alpha r)}=C_{s-\alpha r}
$$

with $C_{m}=B_{-\beta m}, 0 \leq m \leq k-1$.
Henceforth $\zeta=e^{-2 \pi i / k}$,

$$
E=\left[\delta_{\ell, m-1}\right]_{\ell, m=0}^{k-1}, \quad \text { and } \quad \Phi=\frac{1}{\sqrt{k}}\left[\zeta^{\ell m}\right]_{\ell, m=0}^{k-1}=\left[\begin{array}{llll}
\phi_{0} & \phi_{1} & \cdots & \phi_{k-1} \tag{1}
\end{array}\right]
$$

(the Fourier matrix), with

$$
\phi_{m}=\frac{1}{\sqrt{k}}\left[\begin{array}{c}
1 \tag{2}\\
\zeta^{m} \\
\zeta^{2 m} \\
\vdots \\
\zeta^{(k-1) m}
\end{array}\right], \quad 0 \leq m \leq k-1
$$

It is straightforward to verify that if indices are reduced modulo k then

$$
\begin{equation*}
E^{p}\left(\left[g_{\ell m}\right]_{\ell, m=0}^{k-1}\right) E^{-q}=\left[g_{\ell+p, m+q}\right]_{\ell, m=0}^{k-1} \tag{3}
\end{equation*}
$$

Setting $p=1$ and $q=0$ and invoking (1) yields

$$
\begin{equation*}
E \Phi=\frac{1}{\sqrt{k}}\left[\zeta^{(\ell+1) m)}\right]_{\ell, m=0}^{k-1}=\Phi D \quad \text { with } \quad D=\operatorname{diag}\left(1, \zeta, \zeta^{2}, \ldots, \zeta^{k-1}\right) \tag{4}
\end{equation*}
$$

Therefore $E=\Phi D \Phi^{*}$.
The discrete Fourier transform (DFT) of $\left\{A_{0}, A_{1}, \ldots, A_{k-1}\right\} \subset \mathbb{C}^{d_{1} \times d_{2}}$ is $\left\{F_{0}, F_{1}, \ldots, F_{k-1}\right\}$ where

$$
\begin{equation*}
F_{\ell}=\sum_{m=0}^{k-1} \zeta^{\ell m} A_{m} \in \mathbb{C}^{d_{1} \times d_{2}}, \quad 0 \leq \ell \leq k-1 \tag{5}
\end{equation*}
$$

Since $\Phi^{-1}=\Phi^{*}$,

$$
\begin{equation*}
A_{m}=\frac{1}{k} \sum_{\ell=0}^{k-1} \zeta^{-\ell m} F_{\ell}, \quad 0 \leq m \leq k-1 \tag{6}
\end{equation*}
$$

We denote

$$
\begin{equation*}
\mathcal{F}_{A}=\bigoplus_{\ell=0}^{k-1} F_{\ell} \in \mathbb{C}^{k: d_{1} \times d_{2}} \tag{7}
\end{equation*}
$$

For standard circulants (5)-(7) reduce to

$$
f_{\ell}=\sum_{m=0}^{k-1} a_{m} \zeta^{\ell m}, \quad a_{m}=\frac{1}{k} \sum_{\ell=0}^{k-1} f_{\ell} \zeta^{-\ell m}, \quad \text { and } \quad \mathcal{F}_{A}=\operatorname{diag}\left(f_{0}, f_{1}, \ldots, f_{k-1}\right)
$$

It is well known (see, e.g., [7]) that a standard 1-circulant $A=\left[a_{s-r}\right]_{r, s=0}^{k-1} \in$ $\mathbb{C}^{k \times k}$ can be written as

$$
A=\Phi \mathcal{F}_{A} \Phi^{*}=\sum_{\ell=0}^{k-1} f_{\ell} \phi_{\ell} \phi_{\ell}^{*}
$$

However, to our knowledge it has not been emphasized that \mathcal{F}_{A} plays a fundamental role in connection with all the standard circulants $\left[a_{s-\alpha r}\right]_{r, s=0}^{k-1}$. (See Remark 3.)

In Section 2 we reformulate a result of Ablow and Brenner [1, Theorem 2.1] for standard α-circulants to characterize α-circulants in $\mathbb{C}^{k: d_{1} \times d_{2}}$. We give a different characterization in Section 3: $A=\left[A_{s-\alpha r}\right]_{r, s=0}^{k-1}$ if and only if $A=$ $U_{\alpha} \mathcal{F}_{A} P^{*}$, where U_{α} and P are related to the Fourier matrix, P is unitary, and U_{α} is invertible (in fact, unitary) if and only if $\operatorname{gcd}(\alpha, k)=1$.

Since \mathcal{F}_{A} is independent of α, some computational results concerning \mathcal{F}_{A} apply simultaneously to all the proper α-circulants $\left[A_{s-\alpha r}\right]_{r, s=0}^{k-1}$. For example, in Section 4 we show that

$$
A^{\dagger}=\left[B_{r-\alpha s}\right]_{r, s=0}^{k-1} \quad \text { where } \quad B_{m}=\frac{1}{k} \sum_{\ell=0}^{k-1} \zeta^{\ell m} F_{\ell}^{\dagger}, \quad 0 \leq m \leq k-1
$$

We also prove the following for proper α-circulants: (i) Solving $A z=w$ reduces to solving $F_{\ell} u_{\ell}=v_{\alpha \ell}, 0 \leq \ell \leq k-1$, where $v_{0}, v_{1}, \ldots, v_{k-1}$ depend only on w. (ii) A singular value decomposition of A can be obtained from singular value decompositions of $F_{0}, F_{1}, \ldots, F_{k-1}$. (iii) The least squares problem for A reduces to independent least squares problems for $F_{0}, F_{1}, \ldots, F_{k-1}$. (iv) If $d_{1}=d_{2}=d$, the eigenvalues of $\left[A_{s-r}\right]_{r, s=0}^{k-1}$ are the eigenvalues of F_{0}, F_{1}, \ldots, F_{k-1}, and the corresponding eigenvectors of A are easily obtainable from those of $F_{0}, F_{1}, \ldots, F_{k-1}$. (v) If $d_{1}=d_{2}=d$ and $\alpha>1$, the eigenvalue problem for $\left[A_{s-\alpha r}\right]_{r, s=0}^{k-1}$ reduces to eigenvalue problems for $d \times d$ matrices related to F_{0}, F_{1}, \ldots, F_{k-1} in a manner depending upon α.

Block circulant 1-matrices $\left[A_{s-r}\right]_{r, s=0}^{k-1}$ have applications in preconditioning of block Toeplitz matrices; see, e.g. [8, 9].

2 The Ablow-Brenner theorem revisited

Recall that E and Φ are defined in (1) and (2). Let

$$
\begin{align*}
& R=E \otimes I_{d_{1}}, \quad P_{m}=\phi_{m} \otimes I_{d_{1}}, \quad 0 \leq m \leq k-1, \tag{8}\\
& S=E \otimes I_{d_{2}}, \quad Q_{m}=\phi_{m} \otimes I_{d_{2}}, \quad 0 \leq m \leq k-1, \tag{9}\\
P= & {\left[\begin{array}{llll}
P_{0} & P_{1} & \cdots & P_{k-1}
\end{array}\right], \quad Q=\left[\begin{array}{llll}
Q_{0} & Q_{1} & \cdots Q_{k-1}
\end{array}\right], } \tag{10}
\end{align*}
$$

and

$$
U_{\alpha}=\left[\begin{array}{lllll}
P_{0} & P_{\alpha} & P_{2 \alpha} & \cdots & P_{(k-1) \alpha} \tag{11}
\end{array}\right] .
$$

Since

$$
P_{\ell}^{*} P_{m}=\delta_{\ell m} I_{d_{1}} \quad \text { and } \quad Q_{\ell}^{*} Q_{m}=\delta_{\ell m} I_{d_{2}}, \quad 0 \leq \ell, m \leq k-1,
$$

P and Q are unitary, while U_{α} is unitary if $\operatorname{gcd}(\alpha, k)=1$; however, if $\operatorname{gcd}(\alpha, k)=$ $q>1$ and $p=k / q$ then

$$
U_{\alpha}=[\underbrace{P_{0} P_{\alpha} \cdots P_{(p-1) \alpha} \cdots P_{0} P_{\alpha} \cdots P_{(p-1) \alpha}}_{q}]
$$

(i.e., the first p block columns are repeated q times) is not invertible. From (4) and (8)-(11),

$$
\begin{equation*}
R P_{\ell}=\zeta^{\ell} P_{\ell} \quad \text { and } \quad S Q_{\ell}=\zeta^{\ell} Q_{\ell}, \quad 0 \leq \ell \leq k-1 \tag{12}
\end{equation*}
$$

Ablow and Brenner [1, Theorem 2.1] showed that $A \in \mathbb{C}^{k \times k}$ is a standard α-circulant if and only if $E A E^{-\alpha}=A$. We need the following adaptation of this result.

Theorem 1 If $A=\left[G_{r s}\right]_{r, s=0}^{k-1}$ with $G_{r s} \in \mathbb{C}^{d_{1} \times d_{2}}$, then $R A S^{-\alpha}=A$ if and only if A is an α-circulant; more precisely, if and only if

$$
\begin{equation*}
G_{r s}=A_{s-\alpha r}, \quad 0 \leq r, s \leq k-1, \tag{13}
\end{equation*}
$$

with

$$
\begin{equation*}
A_{s}=G_{0 s}, \quad 0 \leq s \leq k-1 \tag{14}
\end{equation*}
$$

Proof. From (3), (8), and (9), $R A S^{-\alpha}=\left[G_{r+1, s+\alpha}\right]_{r, s=0}^{k-1}$. Therefore we must show that (13) is equivalent to

$$
\begin{equation*}
G_{r+1, s+\alpha}=G_{r s}, \quad 0 \leq r, s \leq k-1 \tag{15}
\end{equation*}
$$

If (13) holds, then

$$
G_{r+1, s+\alpha}=A_{(s+\alpha)-(r+1) \alpha}=A_{s-\alpha r}=G_{r s}, \quad 0 \leq r, s \leq k-1
$$

For the converse we must show that (14) and (15) imply (13). We prove this by finite induction on r. From (14),

$$
\begin{equation*}
G_{r s}=A_{s-\alpha r}, \quad 0 \leq s \leq k-1 \tag{16}
\end{equation*}
$$

if $r=0$. Suppose (16) is true for some $r \in\{0, \ldots, k-2\}$. Replacing s by $s-\alpha$ in (15) and (16) yields

$$
G_{r+1, s}=G_{r, s-\alpha}, \quad 0 \leq r, s \leq k-1
$$

and

$$
G_{r, s-\alpha}=A_{s-\alpha(r+1)}, \quad 0 \leq s \leq k-1 .
$$

Therefore

$$
G_{r+1, s}=A_{s-\alpha(r+1)}, \quad 0 \leq s \leq k-1,
$$

which completes the induction.
Theorem 1 with $A=B^{*}$ yields the following corollary.
Corollary 1 If $B \in \mathbb{C}^{k: d_{2} \times d_{1}}$ then B is an α-cocirculant if and only if $S^{\alpha} B R^{-1}=B$.
The following corollary extends [10, Corollary 1].
Corollary 2 (i) If $A=\left[A_{s-\alpha r}\right]_{r, s=0}^{k-1} \in \mathbb{C}^{k: d_{1} \times d_{2}}$ and $B=\left[B_{r-\alpha s}\right]_{r, s=0}^{k-1} \in$ $\mathbb{C}^{k: d_{2} \times d_{1}}$, then $A B=\left[C_{s-r}\right]_{r, s=0}^{k-1} \in \mathbb{C}^{k: d_{1} \times d_{1}}$ with $C_{m}=\sum_{\ell=0}^{k-1} A_{\ell} B_{\ell-\alpha m}, 0 \leq$ $m \leq k-1$.
(ii) If $\operatorname{gcd}(\alpha, k)=1$ and $\alpha \beta \equiv 1(\bmod k)$, then $B A=\left[D_{s-r}\right]_{r, s=0}^{k-1} \in \mathbb{C}^{k: d_{2} \times d_{2}}$ with

$$
\begin{equation*}
D_{m}=\sum_{\ell=0}^{k-1} B_{\ell} A_{m+\ell}, \quad 0 \leq m \leq k-1 \tag{17}
\end{equation*}
$$

Proof. (i) From Theorem 1 and Corollary 1, $A=R A S^{-\alpha}$ and $B=S^{\alpha} B R^{-1}$. Therefore $A B=R A B R^{-1}$, so Theorem 1 with $R=S$ implies that $A B$ is a 1-circulant. The stated formula for $C_{0}, C_{1}, \ldots, C_{k-1}$ can be obtained by computing first block row entries of $A B$.
(ii) Also, $B A=S^{\alpha} B A S^{-\alpha}$. Applying this β times yields $B A=S B A S^{-1}$, so Theorem 1 with $R=S$ implies that $B A$ is a 1-circulant. Computing the first block row entries of $B A$ yields $D_{m}=\sum_{\ell=0}^{k-1} B_{-\alpha \ell} A_{m-\alpha \ell}$ and replacing ℓ by $-\beta \ell$ yields (17).

Theorem 2 If

$$
\begin{equation*}
A=\left[A_{s-\alpha_{1} r}\right]_{r, s=0}^{k-1} \in \mathbb{C}^{k: d_{1} \times d_{2}} \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
B=\left[B_{s-\alpha_{2} r}\right]_{r, s=0}^{k-1} \in \mathbb{C}^{k: d_{2} \otimes d_{3}} \tag{19}
\end{equation*}
$$

then

$$
\begin{equation*}
A B=\left[C_{s-\alpha_{1} \alpha_{2} r}\right]_{r, s=0}^{k-1} \in \mathbb{C}^{k: d_{1} \otimes d_{3}} \tag{20}
\end{equation*}
$$

with

$$
\begin{equation*}
C_{m}=\sum_{\ell=0}^{k-1} A_{\ell} B_{m-\alpha_{2} \ell}, \quad 0 \leq m \leq k-1 \tag{21}
\end{equation*}
$$

Proof. Let $R=E \otimes I_{d_{1}}, S=E \otimes I_{d_{2}}$, and $T=E \otimes I_{d_{3}}$. From (18), (19), and Theorem 1,

$$
\text { (a) } A=R A S^{-\alpha_{1}} \quad \text { and } \quad \text { (b) } \quad B=S B T^{-\alpha_{2}} \text {. }
$$

Applying (b) α_{1} times yields $B=S^{\alpha_{1}} B T^{-\alpha_{1} \alpha_{2}}$. From this and (a), $R A B T^{-\alpha_{1} \alpha_{2}}=$ $A B$. Now Theorem 1 implies (20), with (21) obtained by computing the entries in the first block row of $A B$. \quad

Theorem 2 generalizes [1, Theorem 3.1]; namely, the product of a standard α-circulant and a standard β-circulant is an $\alpha \beta$-circulant. However, [1] does not include (21).

3 A DFT characterization of α-circulants

Theorem 3 A matrix $A \in \mathbb{C}^{k: d_{1} \times d_{2}}$ is an α-circulant $A=\left[A_{s-\alpha r}\right]_{r, s=0}^{k-1}$ if and only if it can be written as

$$
\begin{equation*}
A=\sum_{\ell=0}^{k-1} P_{\alpha \ell} F_{\ell} Q_{\ell}^{*}=U_{\alpha} \mathcal{F}_{A} Q^{*} \tag{22}
\end{equation*}
$$

where $\left\{F_{0}, F_{1}, \ldots, F_{k-1}\right\}$ and $\left\{A_{0}, A_{1}, \ldots, A_{k-1}\right\}$ are related as in (5) and (6) and P, Q, and U_{α} are as in (8)-(11).

Proof. Eqns. (7)-(11) imply the second equality in (22). Therefore we need only justify the first. Suppose $A=\left[A_{s-\alpha r}\right]_{r, s=0}^{k-1}$ and define $F_{0}, F_{1}, \ldots, F_{k-1}$ by (5). From (6),

$$
A_{s-\alpha r}=\frac{1}{k} \sum_{\ell=0}^{k-1} \zeta^{-\ell(s-\alpha r)} F_{\ell}, \quad 0 \leq r, s \leq k-1
$$

so (8)-(11) imply that

$$
A=\frac{1}{k} \sum_{\ell=0}^{k-1}\left[\begin{array}{c}
1 \otimes I_{d_{1}} \\
\zeta^{\alpha \ell} \otimes I_{d_{1}} \\
\vdots \\
\zeta^{(k-1) \alpha \ell} \otimes I_{d_{1}}
\end{array}\right] F_{\ell}\left[\begin{array}{c}
1 \otimes I_{d_{2}} \\
\zeta^{\ell} \otimes I_{d_{2}} \\
\vdots \\
\zeta^{(k-1) \ell} \otimes I_{d_{2}}
\end{array}\right]^{H}=\sum_{\ell=0}^{k-1} P_{\alpha \ell} F_{\ell} Q_{\ell}^{*}
$$

For the converse, if (22) holds then (12) implies that

$$
R A S^{-\alpha}=\sum_{\ell=0}^{k-1}\left(R P_{\alpha \ell}\right) F_{\ell}\left(S^{\alpha} Q_{\ell}\right)^{*}=\sum_{\ell=0}^{k-1}\left(\zeta^{\alpha \ell} P_{\alpha \ell}\right) F_{\ell}\left(\zeta^{-\alpha \ell} Q_{\ell}^{*}\right)=A
$$

Therefore A is an α-circulant, by Theorem 1 ; hence, $A=\left[A_{s-\alpha r}\right]_{r, s=0}^{k-1}$ with A_{0}, A_{1}, \ldots, A_{k-1} as in (6). \quad.
Remark 3 Theorem 3 implies that $A \in \mathbb{C}^{k \times k}$ is a standard α-circulant $\left[a_{s-\alpha r}\right]_{r, s=0}^{k-1}$ if and only if

$$
A=\Phi_{\alpha} \mathcal{F}_{A} \Phi^{*}=\sum_{\ell=0}^{k-1} f_{\ell} \phi_{\alpha \ell} \phi_{\ell}^{*}
$$

where Φ is as in (1), $\Phi_{\alpha}=\left[\begin{array}{llll}\phi_{0} & \phi_{\alpha} & \cdots & \phi_{(k-1) \alpha}\end{array}\right]$, and

$$
f_{\ell}=\sum_{m=0}^{k-1} a_{m} \zeta^{\ell m}, \quad 0 \leq \ell \leq k-1
$$

Corollary 3 matrix $B \in \mathbb{C}^{k: d_{2} \times d_{1}}$ is an α-cocirculant if and only if it can be written as $B=\sum_{\ell=0}^{k-1} Q_{\ell} G_{\ell} P_{\alpha \ell}^{*}$, where
$G_{\ell}=\sum_{m=0}^{k-1} \zeta^{-\ell m} B_{m}, \quad 0 \leq \ell \leq k-1, \quad$ and $\quad B_{m}=\frac{1}{k} \sum_{\ell=0}^{k-1} \zeta^{\ell m} G_{\ell}, \quad 0 \leq m \leq k-1$.
Proof. Apply Theorem 3 to B^{*}. $\quad \square$
It is well known that standard 1-circulants commute. The following corollary extends this.

Corollary 4 Suppose $d_{1}=d_{2}, \operatorname{gcd}(\alpha, k)=1$, and $\alpha \beta \equiv 1(\bmod k)$. Let $A=$ $\left[A_{s-\alpha r}\right]_{r, s=0}^{k-1}, B=\left[B_{s-\beta r}\right]_{r, s=0}^{k-1}$,

$$
F_{\ell}=\sum_{m=0}^{k-1} \zeta^{\ell m} A_{m} \quad \text { and } \quad G_{\ell}=\sum_{m=0}^{k-1} \zeta^{\ell m} B_{m}
$$

Then $A B=B A$ if and only if $F_{\beta \ell} G_{\ell}=G_{\alpha \ell} F_{\ell}, 0 \leq \ell \leq k-1$.

Proof. Since $\operatorname{gcd}(\alpha, k)=\operatorname{gcd}(\beta, k)=1$, we may change summation indices $\ell \rightarrow \alpha \ell$ and $\ell \rightarrow \beta \ell$. Therefore, from Theorem 3 with $Q=P$,

$$
\begin{gathered}
A=\sum_{\ell=0}^{k-1} P_{\alpha \ell} F_{\ell} P_{\ell}^{*}=\sum_{\ell=0}^{k-1} P_{\ell} F_{\beta \ell} P_{\beta \ell}^{*}, \quad B=\sum_{\ell=0}^{k-1} P_{\beta \ell} G_{\ell} P_{\ell}^{*}=\sum_{\ell=0}^{k-1} P_{\ell} G_{\alpha \ell} P_{\alpha \ell}^{*}, \\
A B=\sum_{\ell=0}^{k-1} P_{\ell} F_{\beta \ell} G_{\ell} P_{\ell}^{*}, \quad \text { and } \quad B A=\sum_{\ell=0}^{k-1} P_{\ell} G_{\alpha \ell} F_{\ell} P_{\ell}^{*},
\end{gathered}
$$

which implies the conclusion.

4 Moore-Penrose inversion and singular value decomposition

Recall that the Moore-Penrose inverse X^{\dagger} of a matrix X is the unique matrix Y that satisfies the Penrose conditions

$$
(X Y)^{*}=X Y, \quad(Y X)^{*}=Y X, \quad X Y X=X, \quad \text { and } Y X Y=Y
$$

Theorem 4 The Moore-Penrose inverse of an α-circulant is an α-cocirculant.
Proof. From Theorem 1, if A is an α-circulant then $A=R A S^{-\alpha}$. Let $B=$ $S^{\alpha} A^{\dagger} R^{-1}$. We will show that A and B satisfy the Penrose conditions:

$$
\begin{gathered}
A B=\left(R A S^{-\alpha}\right)\left(S^{\alpha} A^{\dagger} R^{-1}\right)=R A A^{\dagger} R^{*}=R\left(A A^{\dagger}\right)^{*} R^{*}=(A B)^{*}, \\
B A=\left(S^{\alpha} A^{\dagger} R^{-1}\right)\left(R A S^{-\alpha}\right)=S^{\alpha} A^{\dagger} A\left(S^{\alpha}\right)^{*}=S^{\alpha}\left(A^{\dagger} A\right)^{*}\left(S^{\alpha}\right)^{*}=(B A)^{*}, \\
A B A=\left(R A A^{\dagger} R^{-1}\right)\left(R A S^{-\alpha}\right)=R\left(A A^{\dagger} A\right) S^{-\alpha}=R A S^{-\alpha}=A,
\end{gathered}
$$

and

$$
B A B=\left(S^{\alpha} A^{\dagger} A S^{-\alpha}\right)\left(S^{\alpha} A^{\dagger} R^{-1}\right)=S^{\alpha}\left(A^{\dagger} A A^{\dagger}\right) R^{-1}=S^{\alpha} A^{\dagger} R^{-1}=B
$$

Therefore $B=A^{\dagger}$ or, equivalently, $S^{\alpha} A^{\dagger} R^{-1}=A^{\dagger}$. Now Corollary 1 implies that A^{\dagger} is an α-cocirculant. $\quad \square$

We can be more explicit if $\operatorname{gcd}(\alpha, k)=1$.
Theorem 5 The Moore-Penrose inverse of a proper α-circulant $A=\left[A_{s-\alpha r}\right]_{r, s=0}^{k-1}$ is the α-cocirculant $B=\left[B_{r-\alpha s}\right]_{r, s=0}^{k-1}$, where

$$
\begin{equation*}
B_{m}=\frac{1}{k} \sum_{\ell=0}^{k-1} \zeta^{\ell m} F_{\ell}^{\dagger}, \quad 0 \leq m \leq k-1 \tag{23}
\end{equation*}
$$

with

$$
F_{\ell}=\sum_{m=0}^{k-1} \zeta^{\ell m} A_{m}, \quad 0 \leq \ell \leq k-1
$$

Proof. From Theorem $3, A=U_{\alpha} \mathcal{F}_{A} Q^{*}$ where Q and U_{α} are unitary, the latter since $\operatorname{gcd}(\alpha, k)=1$. We will first show that A and $B=Q \mathcal{F}_{A}^{\dagger} U_{\alpha}^{*}$ satisfy the Penrose conditions:

$$
\begin{gathered}
A B=\left(U_{\alpha} \mathcal{F}_{A} Q^{*}\right)\left(Q \mathcal{F}_{A}^{\dagger} U_{\alpha}^{*}\right)=U_{\alpha} \mathcal{F}_{A} \mathcal{F}_{A}^{\dagger} U_{\alpha}^{*}=U_{\alpha}\left(\mathcal{F}_{A} \mathcal{F}_{A}^{\dagger}\right)^{*} U_{\alpha}^{*}=(A B)^{*} \\
B A=\left(Q \mathcal{F}_{A}^{\dagger} U_{\alpha}^{*}\right)\left(U_{\alpha} \mathcal{F}_{A} Q^{*}\right)=Q \mathcal{F}_{A}^{\dagger} \mathcal{F}_{A} Q^{*}=Q\left(\mathcal{F}_{A}^{\dagger} \mathcal{F}_{A}\right)^{*} Q^{*}=(B A)^{*} \\
A B A=\left(U_{\alpha} \mathcal{F}_{A} \mathcal{F}_{A}^{\dagger} U_{\alpha}^{*}\right)\left(U_{\alpha} \mathcal{F}_{A} Q^{*}\right)=U_{\alpha}\left(\mathcal{F}_{A} \mathcal{F}_{A}^{\dagger} \mathcal{F}_{A}\right) Q^{*}=U_{\alpha} \mathcal{F}_{A} Q^{*}=A
\end{gathered}
$$

and

$$
B A B=\left(Q \mathcal{F}_{A}^{\dagger} \mathcal{F}_{A} Q^{*}\right)\left(Q \mathcal{F}_{A}^{\dagger} U_{\alpha}^{*}\right)=Q\left(\mathcal{F}_{A}^{\dagger} \mathcal{F}_{A} \mathcal{F}_{A}^{\dagger}\right) U_{\alpha}^{*}=Q \mathcal{F}_{A}^{\dagger} U_{\alpha}^{*}=B
$$

Therefore

$$
\begin{aligned}
A^{\dagger} & =B=\sum_{\ell=0}^{k-1} Q_{\ell} F_{\ell}^{\dagger} P_{\alpha \ell}^{*}=\sum_{\ell=0}^{k-1}\left(\phi_{\ell} \otimes I_{d_{2}}\right) F_{\ell}^{\dagger}\left(\phi_{\alpha \ell} \otimes I_{d_{1}}\right)^{*} \\
& =\frac{1}{k}\left[\sum_{\ell=0}^{k-1} \zeta^{\ell(r-\alpha s)} F_{\ell}^{\dagger}\right]_{r, s=0}^{k-1}=\left[B_{r-\alpha s}\right]_{r, s=0}^{k-1},
\end{aligned}
$$

from (8)-(11) and (23).
Remark 4 Theorem 5 can also be proved by using (6) and (23) to express the entries of $A B, B A, A B A$, and $B A B$ explicitly in terms of $F_{0}, F_{1}, \ldots, F_{k-1}$ and $F_{0}^{\dagger}, F_{1}^{\dagger}, \ldots, F_{k-1}^{\dagger}$, noting that

$$
\sum_{\ell=0}^{k-1} \zeta^{\ell(r-s)}=\sum_{\ell=0}^{k-1} \zeta^{\alpha \ell(r-s)}=\delta_{r s}, \quad 0 \leq r, s \leq k-1
$$

the latter because $\operatorname{gcd}(\alpha, k)=1$. However, this is tedious.
Remark 5 Theorem 5 extends a result of Davis [6]: If $A=\left[a_{s-r}\right]_{r, s=0}^{k-1} \in \mathbb{C}^{k \times k}$ then $A^{\dagger}=\Phi \operatorname{diag}\left(a_{0}^{\dagger}, a_{1}^{\dagger}, \ldots, a_{k-1}^{\dagger}\right) \Phi^{*}$, where Φ is the Fourier matrix $(1), 0^{\dagger}=0$, and $a^{\dagger}=1 / a$ if $a \neq 0$.

Theorem 6 Suppose $\operatorname{gcd}(\alpha, k)=1$ and

$$
A=\left[A_{s-\alpha r}\right]_{r, s=0}^{k-1}=\sum_{\ell=0}^{k-1} P_{\alpha \ell} F_{\ell} Q_{\ell}^{*}=U_{\alpha} \mathcal{F}_{A} Q^{*}
$$

Let $F_{\ell}=\Omega_{\ell} \Sigma_{\ell} \Psi_{\ell}^{*}$ be a singular value decomposition of $F_{\ell}, 0 \leq \ell \leq k-1$, and define

$$
M_{\alpha}=\left[\begin{array}{llll}
P_{0} \Omega_{0} & P_{\alpha} \Omega_{1} & \cdots & P_{(k-1) \alpha} \Omega_{k-1}
\end{array}\right]
$$

and

$$
N=\left[\begin{array}{llll}
Q_{0} \Psi_{0} & Q_{1} \Psi_{1} & \cdots & Q_{k-1} \Psi_{k-1}
\end{array}\right]
$$

Then

$$
A=M_{\alpha}\left(\bigoplus_{\ell=0}^{k-1} \Sigma_{\ell}\right) N^{*}
$$

is a singular value decomposition of A, except that the singular values are not necessarily ordered.

5 The least squares problem

Suppose $G \in \mathbb{C}^{d_{1} \times d_{2}}$ and consider the least squares problem for G : If $v \in \mathbb{C}^{d_{1}}$, find $u \in \mathbb{C}^{d_{2}}$ such that

$$
\begin{equation*}
\|G u-v\|=\min _{\xi \in \mathbb{C}^{d_{2}}}\|G \xi-v\| \tag{24}
\end{equation*}
$$

where $\|\cdot\|$ is the 2 -norm. This problem has a unique solution if and only if $\operatorname{rank}(G)=d_{2}$, in which case $u=\left(G^{*} G\right)^{-1} G^{*} v$. In any case, the optimal solution of (24) is the unique $u_{0} \in \mathbb{C}^{d_{2}}$ of minimum norm that satisfies (24); thus, $u_{0}=G^{\dagger} v$. The general solution of (24) is $u=u_{0}+q$ where $G q=0$, and

$$
\|G u-v\|=\left\|\left(G G^{\dagger}-I\right) v\right\|
$$

for all such u.
Now consider the following least squares problem: if $A=\left[A_{s-\alpha r}\right]_{r, s=0}^{k-1} \in$ $\mathbb{C}^{k: d_{1} \times d_{2}}$ with $\operatorname{gcd}(\alpha, k)=1$ and $w \in \mathbb{C}^{k d_{1}}$, find $z \in \mathbb{C}^{k d_{2}}$ such that

$$
\|A z-w\|=\min _{\xi \in \mathbb{C}^{k d_{2}}}\|A \xi-w\|
$$

We write

$$
\begin{equation*}
z=\sum_{\ell=0}^{k-1} Q_{\ell} u_{\ell} \quad \text { and } \quad w=\sum_{\ell=0}^{k-1} P_{\ell} v_{\ell}=\sum_{\ell=0}^{k-1} P_{\alpha \ell} v_{\alpha \ell} \tag{25}
\end{equation*}
$$

since substituting $\alpha \ell$ for ℓ is legitimate because $\operatorname{gcd}(\alpha, k)=1$. Since $A=$ $\sum_{\ell=0}^{k-1} P_{\alpha \ell} F_{\ell} Q_{\ell}^{*}$ and $Q_{\ell}^{*} Q_{m}=\delta_{\ell m} I_{k d_{2}}$,

$$
A z-w=\sum_{\ell=0}^{k-1} P_{\alpha \ell}\left(F_{\ell} u_{\ell}-v_{\alpha \ell}\right)
$$

Since $P_{\alpha \ell}^{*} P_{\alpha m}=\delta_{\ell m} I_{d_{1}}$ (because $\operatorname{gcd}(\alpha, k)=1$), it follows that

$$
\begin{equation*}
\|A z-w\|^{2}=\sum_{\ell=0}^{k-1}\left\|F_{\ell} u_{\ell}-v_{\alpha \ell}\right\|^{2} \tag{26}
\end{equation*}
$$

This implies the following theorem.

Theorem 7 Suppose A is a proper α-circulant and let z and w be as in (25). Then

$$
\begin{equation*}
\|A z-w\|=\min _{\xi \in \mathbb{C}^{k d_{2}}}\|A \xi-w\| \tag{27}
\end{equation*}
$$

if and only if

$$
\left\|F_{\ell} u_{\ell}-v_{\alpha \ell}\right\|=\min _{\psi_{\ell} \in C^{d_{2}}}\left\|F_{\ell} \psi_{\ell}-v_{\alpha \ell}\right\|, \quad 0 \leq \ell \leq k-1
$$

Therefore (27) has a unique solution, given by

$$
z=\sum_{\ell=0}^{k-1} Q_{\ell}\left(F_{\ell}^{*} F_{\ell}\right)^{-1} F_{\ell}^{*} v_{\alpha \ell}
$$

if and only $\operatorname{rank}\left(F_{\ell}\right)=d_{2}, 0 \leq \ell \leq k-1$. In any case, the optimal solution of (27) is

$$
z_{0}=\sum_{\ell=0}^{k-1} Q_{\ell} F_{\ell}^{\dagger} v_{\alpha \ell}
$$

The general solution of (27) is $z=z_{0}+\sum_{\ell=0}^{k-1} Q_{\ell} u_{\ell}$, where $F_{\ell} u_{\ell}=0,0 \leq \ell \leq$ $k-1$, and

$$
\|A z-w\|^{2}=\sum_{\ell=0}^{k-1}\left\|\left(F_{\ell} F_{\ell}^{\dagger}-I_{d_{1}}\right) v_{\alpha \ell}\right\|^{2}
$$

for all such z.

6 The case where $d_{1}=d_{2}$

Throughout this section $d_{1}=d_{2}=d$ and $A=\left[A_{s-\alpha r}\right]_{r, s=0}^{k-1}$ is a proper circulant. Then (26) implies the following theorem, which reduces the problem of solving the $k d \times k d$ system $A z=w$ to solving k independent $d \times d$ systems.
Theorem 8 If A is a proper α-circulant, $z=\sum_{\ell=0}^{k-1} P_{\ell} u_{\ell}$, and $w=\sum_{\ell=0}^{k-1} P_{\ell} v_{\ell}$, then $A z=w$ if and only if

$$
F_{\ell} u_{\ell}=v_{\alpha \ell}, \quad 0 \leq \ell \leq k-1
$$

This and Theorem 5 imply the following theorem.
Theorem 9 A proper α-circulant

$$
\begin{equation*}
A=\left[A_{s-\alpha r}\right]_{r, s=0}^{k-1}=\sum_{\ell=0}^{k-1} P_{\alpha \ell} F_{\ell} P_{\ell}^{*} \tag{28}
\end{equation*}
$$

is invertible if and only $F_{0}, F_{1}, \ldots, F_{k-1}$ are all invertible. In this case

$$
A^{-1}=\left[B_{r-\alpha s}\right]_{r, s=0}^{k-1} \quad \text { with } \quad B_{m}=\frac{1}{k} \sum_{\ell=0}^{k-1} \zeta^{\ell m} F_{\ell}^{-1}, \quad 0 \leq m \leq k-1
$$

and the solution of $A z=w$ is $z=\sum_{\ell=0}^{k-1} P_{\ell} F_{\ell}^{-1} v_{\alpha \ell}$.

Remark 6 Theorem 9 and Remark 2 extend [5, Theorem 1]: the inverse of a standard nonsingular α-circulant is a β-circulant, where $\alpha \beta \equiv 1(\bmod k)$.
Theorem 10 Suppose A is a proper α-circulant as in (28) and $\alpha \beta \equiv 1(\bmod k)$.
(i) A is Hermitian if and only if $P_{\beta \ell} F_{\beta \ell}^{*}=P_{\alpha \ell} F_{\ell}, 0 \leq \ell \leq k-1$.
(ii) A is normal if and only if $F_{\beta \ell} F_{\beta \ell}^{*}=F_{\ell}^{*} F_{\ell}, 0 \leq \ell \leq k-1$.
(iii) A is $E P$ (i.e., $A^{\dagger} A=A A^{\dagger}$) if and only if $F_{\beta \ell} F_{\beta \ell}^{\dagger}=F_{\ell}^{\dagger} F_{\ell}, 0 \leq \ell \leq k-1$.

Proof.
From (28) and Theorem 5,

$$
\begin{equation*}
A=\sum_{\ell=0}^{k-1} P_{\alpha \ell} F_{\ell} P_{\ell}^{*}, \quad A^{*}=\sum_{\ell=0}^{k-1} P_{\ell} F_{\ell}^{*} P_{\alpha \ell}^{*}, \quad \text { and } \quad A^{\dagger}=\sum_{\ell=0}^{k-1} P_{\ell} F_{\ell}^{\dagger} P_{\alpha \ell}^{*} . \tag{29}
\end{equation*}
$$

(i) Since $\alpha \beta \equiv 1(\bmod k)$, replacing ℓ by $\beta \ell$ in the second sum in (29) yields $A^{*}=\sum_{\ell=0}^{k-1} P_{\beta \ell} F_{\beta \ell}^{*} P_{\ell}^{*}$, and comparing this with the first sum in (29) yields (i).
(ii) From (29),

$$
A A^{*}=\sum_{\ell=0}^{k-1} P_{\alpha \ell} F_{\ell} F_{\ell}^{*} P_{\alpha \ell}^{*}=\sum_{\ell=0}^{k-1} P_{\ell} F_{\beta \ell} F_{\beta \ell}^{*} P_{\ell}^{*} \quad \text { and } \quad A^{*} A=\sum_{\ell=0}^{k-1} P_{\ell} F_{\ell}^{*} F_{\ell} P_{\ell}^{*}
$$

which implies (ii).
(iii) From (29),

$$
A A^{\dagger}=\sum_{\ell=0}^{k-1} P_{\alpha \ell} F_{\ell} F_{\ell}^{\dagger} P_{\alpha \ell}^{*}=\sum_{\ell=0}^{k-1} P_{\ell} F_{\beta \ell} F_{\beta \ell}^{\dagger} P_{\ell}^{*} \quad \text { and } \quad A^{\dagger} A=\sum_{\ell=0}^{k-1} P_{\ell} F_{\ell}^{\dagger} F_{\ell} P_{\ell}^{*}
$$

which implies (iii).
Remark 7 If A is a square matrix and there is a matrix B such that $A B A=A$, $B A B=B$, and $A B=B A$, then B is unique and is called the group inverse of A, which is usually denoted by $A^{\#}$. Davis [6] noted that if $A \in \mathbb{C}^{k \times k}$ is a standard 1-circulant then $A^{\dagger}=A^{\#}$. Theorem 10 (iii) extends this: If $A \in \mathbb{C}^{k: d \times d}$ is a proper α-circulant and $\alpha \beta \equiv 1(\bmod k)$, then $A^{\dagger}=A^{\#}$ if and only if $F_{\ell}^{\dagger} F_{\ell}=F_{\beta \ell} F_{\beta \ell}^{\dagger}, 0 \leq \ell \leq k-1$.

7 The eigenvalue problem with $\alpha=1$

In this section we assume that $\alpha=1$ and $d_{1}=d_{2}=d$. The following theorem and its proof are motivated by [2, Theorem 2].

Theorem 11 Let

$$
\mathcal{S}_{R}=\bigcup_{\ell=0}^{k-1}\left\{z \mid R z=\zeta^{\ell} z\right\} .
$$

If λ is an eigenvalue of A, let $\mathcal{E}_{A}(\lambda)$ be the λ-eigenspace of A; i.e,

$$
\mathcal{E}_{A}(\lambda)=\{z \mid A z=\lambda z\} .
$$

(i) If λ is an eigenvalue of $A=\left[A_{s-r}\right]_{r, s=0}^{k-1}$ then $\mathcal{E}_{A}(\lambda)$ has a basis in \mathcal{S}_{R}.
(ii) If $A \in \mathbb{C}^{k: d \times d}$ and has $k d$ linearly independent eigenvectors in \mathcal{S}_{R}, then A is a 1-circulant.

Proof. (i) From Theorem $8, z=\sum_{\ell=0}^{k-1} P_{\ell} u_{\ell} \in \mathcal{E}_{A}(\lambda)$ if and only if $F_{\ell} u_{\ell}=$ $\lambda u_{\ell}, \quad 0 \leq \ell \leq k-1$. Therefore λ is an eigenvalue of A if and only if it is an eigenvalue of F_{ℓ} for some $\ell \in\{0,1, \ldots, k-1\}$. Let \mathcal{T}_{λ} be the subset of $\{0,1, \ldots, k-1\}$ for which this is true. Then $\mathcal{E}_{A}(\lambda)$ consists of linear combinations of the vectors of the form $P_{\ell} u_{\ell}$ with $\ell \in \mathcal{T}_{\lambda}$ and $\left(\lambda, u_{\ell}\right)$ an eigenpair of F_{ℓ}. Since $R P_{\ell}=\zeta^{\ell} P_{\ell}($ recall (12)), this completes the proof of (i).
(ii) From Theorem 1, we must show that $R A=A R$. If $A z=\lambda z$ and $R z=$ $\zeta^{s} z$ then $R A z=\lambda R z=\lambda \zeta^{s} z$ and $A R z=\zeta^{s} A z=\zeta^{s} \lambda z$. Hence $A R z=R A z$ for all z in a basis for $\mathbb{C}^{k: d \times d}$, so $A R=R A$.

Theorem 12 Let R and P be as in (8) and (10). Then the 1-circulant $A=$ $\left[A_{s-r}\right]_{r, s=0}^{k-1}$ is diagonalizable if and only if $F_{0}, F_{1}, \ldots, F_{k-1}$ are all diagonalizable. In this case, if

$$
F_{\ell}=T_{\ell} D_{\ell} T_{\ell}^{*}, \quad 0 \leq \ell \leq k-1
$$

are spectral decompositions of $F_{0}, F_{1}, \ldots, F_{k-1}$ and

$$
\Psi=\left[\begin{array}{llll}
P_{0} T_{0} & P_{1} T_{1} & \cdots & P_{k-1} T_{k-1}
\end{array}\right],
$$

then

$$
A=\Psi\left(\bigoplus_{\ell=0}^{k-1} D_{\ell}\right) \Psi^{*}
$$

is a spectral decomposition of A.

8 The eigenvalue problem with $\alpha>1$

In this section we assume that $d_{1}=d_{2}=d, \alpha \in\{2,3, \ldots k-1\}$ and, $\operatorname{gcd}(\alpha, k)=$ 1. From Theorem $8, A z=\lambda z$ if and only if $z=\sum_{s=0}^{k-1} P_{s} u_{s}$, where

$$
\begin{equation*}
F_{s} u_{s}=\lambda u_{\alpha s}, \quad 0 \leq s \leq k-1 \tag{30}
\end{equation*}
$$

Therefore $A z=0$ if and only if $z=\sum_{s=0}^{k-1} P_{s} u_{s}$ where $F_{s} u_{s}=0,0 \leq s \leq k-1$, so the makeup of the null space of A is transparent. Hence, we assume that $\lambda \neq 0$. Then we must consider the orbits of the permutation on $\{0, \ldots, k-1\}$ defined by $s \rightarrow \alpha s(\bmod k)$. We consider an example before presenting the general discussion.

Let $k=10$ and $\alpha=3$. The permutation of $\{0,1, \ldots, 9\}$ defined by $s \rightarrow 3 s$ $(\bmod 10)$ is given by

$$
\left(\begin{array}{llllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
0 & 3 & 6 & 9 & 2 & 5 & 8 & 1 & 4 & 7
\end{array}\right)
$$

The orbits of this permutation are

$$
\mathcal{O}_{0}=\{0\}, \quad \mathcal{O}_{1}=\{1,3,9,7\}, \quad \mathcal{O}_{2}=\{2,6,8,4\}, \quad \text { and } \quad \mathcal{O}_{3}=\{5\}
$$

Therefore (30) divides into four independent systems:

$$
\text { (i) } \quad F_{0} u_{0}=\lambda u_{0} ; \quad \text { (ii) } \quad F_{1} u_{1}=\lambda u_{3}, \quad F_{3} u_{3}=\lambda u_{9}, \quad F_{9} u_{9}=\lambda u_{7}, \quad F_{7} u_{7}=\lambda u_{1}
$$

(iii) $\quad F_{5} u_{5}=\lambda u_{5} ; \quad$ (iv) $\quad F_{2} u_{2}=\lambda u_{6}, \quad F_{6} u_{6}=\lambda u_{8}, \quad F_{8} u_{8}=\lambda u_{4}, \quad F_{4} u_{4}=\lambda u_{2}$.

From (i), if $\left(\lambda, u_{0}\right)$ is an eigenpair of F_{0} then $\left(\lambda, P_{0} u_{0}\right)$ is an eigenpair of A. Similarly, from(iii), if $\left(\lambda, u_{5}\right)$ is an eigenpair of F_{5} then $\left(\lambda, P_{5} u_{5}\right)$ is an eigenpair of A. The analysis of (ii) and (iv) is more complicated, but identical. We will consider (ii), which is equivalent to

$$
\begin{equation*}
u_{3}=\frac{1}{\lambda} F_{1} u_{1}, \quad u_{9}=\frac{1}{\lambda} F_{3} u_{3}, \quad u_{7}=\frac{1}{\lambda} F_{9} u_{9}, \quad u_{1}=\frac{1}{\lambda} F_{7} u_{7} \tag{31}
\end{equation*}
$$

since $\lambda \neq 0$. Hence,

$$
\begin{equation*}
u_{3}=\frac{1}{\lambda} G_{3} u_{1} \quad u_{9}=\frac{1}{\lambda^{2}} G_{9} u_{1}, \quad u_{7}=\frac{1}{\lambda^{3}} G_{7} u_{1}, \quad \text { and } \quad u_{1}=\frac{1}{\lambda^{4}} G_{1} u_{1} \tag{32}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{3}=F_{1}, \quad G_{9}=F_{3} F_{1}, \quad G_{7}=F_{9} F_{3} F_{1}, \quad \text { and } \quad G_{1}=F_{7} F_{9} F_{3} F_{1} \tag{33}
\end{equation*}
$$

In particular, the last equalities in (32) and (33) are equivalent to $G_{1} u_{1}=\lambda^{4} u_{1}$. Therefore, if $\left(\gamma, u_{1}\right)$ is an eigenpair of G_{1} and $\gamma \neq 0$, then $\lambda=\gamma^{1 / 4}$ is an eigenvalue of A with the associated eigenvector

$$
\begin{align*}
z & =\left(P_{1}+\gamma^{-1 / 4} P_{3} G_{3}+\gamma^{-2 / 4} P_{9} G_{9}+\gamma^{-3 / 4} P_{7} G_{7}\right) u_{1} \\
& =\left(P_{1}+\sum_{m=1}^{3} \gamma^{-m / 4} P_{3^{m}} G_{3^{m}}\right) u_{1} \tag{34}
\end{align*}
$$

(Recall that subscripts are taken modulo 10.) However, $\gamma^{1 / 4} e^{2 \pi i r / 4}, 0 \leq r \leq 3$, are all fourth roots of γ and therefore eigenvalues of A. Replacing $\gamma^{1 / 4}$ with $\gamma^{1 / 4} e^{2 \pi i r / 4}$ in (34) shows that

$$
\begin{equation*}
z_{r}=\left(P_{1}+\sum_{m=1}^{3} \gamma^{-m / 4} e^{-2 \pi i r m / 4} P_{3^{m}} G_{3^{m}}\right) u_{1}, \quad 0 \leq r \leq 3 \tag{35}
\end{equation*}
$$

are the respective associated eigenvectors of A.

Now suppose the permutation $s \rightarrow \alpha s(\bmod k)$ of $\{0,1, \ldots, k-1\}$ has p orbits $\mathcal{O}_{0}, \mathcal{O}_{1}, \ldots, \mathcal{O}_{p-1}$, and let

$$
0=s_{0}<s_{1}<s_{2}<\cdots<s_{p-1} \quad \text { with } \quad s_{\ell} \in \mathcal{O}_{\ell}, \quad 0 \leq \ell \leq p-1
$$

Suppose \mathcal{O}_{ℓ} has r_{ℓ} distinct members; thus,

$$
\begin{equation*}
\mathcal{O}_{\ell}=\left\{s_{\ell}, \alpha s_{\ell}, \ldots, \alpha^{r_{\ell}-1} s_{\ell}\right\} \quad \text { where } \quad \alpha^{r_{\ell}} \equiv 1 \quad(\bmod k), \tag{36}
\end{equation*}
$$

and $\bigcup_{\ell=0}^{p-1} \mathcal{O}_{\ell}=\{0,1, \ldots, k-1\}$. If $r_{\ell}=1$ and $\left(\lambda, u_{s_{\ell}}\right)$ is an eigenpair of $F_{s_{\ell}}$, then $\left(\lambda, P_{s_{\ell}} u_{s_{\ell}}\right)$ is an eigenpair of A. Now consider an orbit \mathcal{O}_{ℓ} with $r_{\ell}>1$, such as \mathcal{O}_{2} and \mathcal{O}_{4} in the example. The system associated with \mathcal{O}_{ℓ} is

$$
F_{\alpha^{r} s_{\ell}} u_{\alpha^{r} s_{\ell}}=\lambda u_{\alpha^{r+1} s_{\ell}}, \quad 0 \leq r \leq r_{\ell}-1, \quad \text { where } \quad \alpha^{r_{\ell}}=1
$$

which is analogous to (ii), where $s_{\ell}=1, \alpha=3$ and $k=10$. Since $\lambda \neq 0$, this is equivalent to

$$
u_{\alpha^{r+1} s_{\ell}}=\frac{1}{\lambda} F_{\alpha^{r} s_{\ell}} u_{\alpha^{r} s_{\ell}}, \quad 0 \leq r_{\ell}-1,
$$

which is analogous to (31). Therefore

$$
\begin{equation*}
u_{\alpha^{r+1} s_{\ell}}=\frac{1}{\lambda^{r+1}} G_{\alpha^{r+1} s_{\ell}} u_{s_{\ell}}, \quad 0 \leq r \leq r_{\ell}-1 \tag{37}
\end{equation*}
$$

where

$$
G_{\alpha^{r+1} s_{\ell}}=F_{\alpha^{r} s_{\ell}} \cdots F_{s_{\ell}}, \quad 0 \leq r \leq r_{\ell}-1
$$

which is analogous to (32) and (33). In particular, setting $r=r_{\ell}-1$ and noting that $\alpha^{r_{\ell}} s_{\ell}=s_{\ell}$ yields

$$
u_{s_{\ell}}=\frac{1}{\lambda^{r}} G_{s_{\ell}} u_{s_{\ell}} \quad \text { where } \quad G_{s_{\ell}}=F_{\alpha^{r} \ell-1}^{s_{\ell}} \cdots F_{s_{\ell}}
$$

Therefore, if $\left(\gamma_{\ell}, u_{s_{\ell}}\right)$ is an eigenvalue of $G_{s_{\ell}}$, then $\gamma_{\ell}^{1 / r_{\ell}}$ is an eigenvalue of A with associated eigenvector

$$
\begin{equation*}
z_{\ell}=\left(P_{s_{\ell}}+\sum_{m=1}^{r_{\ell}-1} \gamma_{\ell}^{-m / r_{\ell}} P_{\alpha^{m} s_{\ell}} G_{\alpha^{m} s_{\ell}}\right) u_{s_{\ell}} \tag{38}
\end{equation*}
$$

which is analogous to (34). However, since $\gamma^{1 / r_{\ell}} e^{2 \pi i r / r_{\ell}}$ are all r_{ℓ}-th roots of γ, they are all eigenvalues of A. Replacing $\gamma^{1 / r_{\ell}}$ with $\gamma^{1 / r_{\ell}} e^{2 \pi i r / 4}$ in (38) yields associated eigenvectors

$$
\begin{equation*}
z_{r \ell}=\left(P_{s_{\ell}}+\sum_{m=1}^{r_{\ell}-1} \gamma_{\ell}^{-m / r_{\ell}} e^{-2 \pi i r m / r_{\ell}} P_{\alpha^{m} s_{\ell}} G_{\alpha^{m} s_{\ell}}\right) u_{s_{\ell}}, \quad 0 \leq r \leq r_{\ell}-1 \tag{39}
\end{equation*}
$$

which is analogous to (35).

Remark 8 Now we apply the preceding argument to a standard α-circulant $A=\left[a_{s-\alpha r}\right]_{r, s=0}^{k-1}$ with $\operatorname{gcd}(\alpha, k)=1$. From Remark 3,

$$
A=\sum_{s=0}^{k-1} f_{s} \phi_{\alpha s} \phi_{s}^{*} \quad \text { with } \quad f_{s}=\sum_{r=0}^{k-1} a_{r} \zeta^{r s}, \quad 0 \leq r \leq k-1
$$

and $\phi_{0}, \phi_{1}, \ldots, \phi_{k-1}$ as in (1). Then $z=\sum_{s=0}^{k-1} u_{s} \phi_{s}$ is λ-eigenvector of A if and only if $f_{s} u_{s}=\lambda u_{\alpha s}, 0 \leq s \leq k-1$. Let \mathcal{O}_{ℓ} be as in (36) and assume that $f_{\alpha^{r} s_{\ell}} \neq 0,0 \leq r \leq r_{\ell}-1$. Let

$$
g_{\alpha^{r+1} s_{\ell}}=\prod_{q=0}^{r} f_{\alpha^{q} s_{\ell}}, \quad 0 \leq r \leq r_{\ell}-1,
$$

and

$$
\gamma_{\ell}=g_{\alpha^{r} \ell_{\ell}}=f_{\alpha^{r} \ell^{-1} s_{\ell}} \cdots f_{s_{\ell}} .
$$

From (37),

$$
u_{\alpha^{r+1} s_{\ell}}=\frac{1}{\lambda^{r+1}} g_{\alpha^{r+1} s_{\ell}} u_{s_{\ell}}, \quad 0 \leq r \leq r_{\ell}-2, \quad \text { and } \quad u_{\alpha^{r} \ell s_{\ell}}=u_{s_{\ell}}=\lambda^{-r_{\ell}} \gamma_{\ell} u_{s_{\ell}}
$$

Therefore $\gamma_{\ell}^{r_{\ell}} e^{2 \pi i r / r_{\ell}}, 0 \leq r \leq r_{\ell}-1$, are eigenvalues of A. From (39),

$$
z_{r \ell}=\left(\phi_{s_{\ell}}+\sum_{m=1}^{r_{\ell}-1} \gamma_{\ell}^{-m / r_{\ell}} e^{-2 \pi i r m / r_{\ell}} g_{\alpha^{m} s_{\ell}} \phi_{\alpha^{m} s_{\ell}}\right), \quad 0 \leq r \leq r_{\ell}-1
$$

are associated eigenvectors.
For example, let $\alpha=k-1$, so $A=\left[a_{s+r}\right]_{r, s=0}^{k-1}$. If $k=2 p$ then $v_{0}=f_{0}$, $v_{\ell}=\sqrt{f_{\ell} f_{k-\ell}}, 1 \leq \ell \leq p-1$, and $v_{p}=f_{p}$. Hence, $\left(f_{0}, \phi_{0}\right),\left(f_{p}, \phi_{p}\right)$,
$\left(\sqrt{f_{\ell} f_{k-\ell}}, \phi_{\ell}+\frac{1}{\sqrt{f_{\ell} f_{k-\ell}}} \phi_{(k-1) \ell}\right), \quad$ and $\quad\left(-\sqrt{f_{\ell} f_{k-\ell}}, \phi_{\ell}-\frac{1}{\sqrt{f_{\ell} f_{k-\ell}}} \phi_{(k-1) \ell}\right)$
$1 \leq \ell \leq p-1$, are eigenpairs of A. If $k=2 p+1$ then $v_{0}=f_{0}$ and $v_{\ell}=f_{\ell} f_{k-\ell}$, $1 \leq \ell \leq q$. Hence $\left(f_{0}, \phi_{0}\right)$,

$$
\left(\sqrt{f_{\ell} f_{k-\ell}}, \phi_{\ell}+\frac{1}{\sqrt{f_{\ell} f_{k-\ell}}} \phi_{(k-1) \ell}\right), \quad \text { and } \quad\left(-\sqrt{f_{\ell} f_{k-\ell}}, \phi_{\ell}-\frac{1}{\sqrt{f_{\ell} f_{k-\ell}}} \phi_{(k-1) \ell}\right)
$$

$1 \leq \ell \leq p$, are eigenpairs of A.
The eigenvalues of A were given in [5] without the associated eigenvectors.

9 Acknowledgement

I thank the referee for suggestions that clarified and improved this paper and for correcting numerous typographical errors.

References

[1] C. M. Ablow, J. L. Brenner, Roots and canonical forms for circulant matrices, Trans. Amer. Math. Soc. 107 (1963) 360-376.
[2] A. L. Andrew, Eigenvectors of certain matrices, Linear Algebra Appl. 7 (1973) 151-162.
[3] A. Ben-Israel and T.N.E. Greville, Generalized Inverses: Theory and Applications, John Wiley and Sons, New York, 1974.
[4] E. C. Boman, The Moore-Penrose pseudoinverse of an arbitrary, square, k-circulant matrix. Lin. Multilin. Alg. 50 (2002) 175-179.
[5] S. Charmonman, R. S. Julius, Explicit inverses and condition numbers of certain circulants, Math. Comput. 102 (1968) 428-430.
[6] P. J. Davis, Cyclic transformations of polygons and the generalized inverse, Canad. J. Math. 29 (1977) 756-770.
[7] R. M. Gray, Toeplitz and circulant matrices, Foundations and Trends in Communications and Information Theory 2 (2006) 155-239.
[8] S. Serra Capizzano, A Korovkin-type theory for finite Toeplitz operators via matrix algebras, Numerische Mathematik 82 (1999) 117-142.
[9] S. Serra Capizzano, A Korovkin based approximation of multilevel Toeplitz matrices (with rectangular unstructured blocks) via multilevel trigonometric matrix spaces, SIAM Journal on Numerical Analysis 36 (1999) 18311857.
[10] W. T. Stallings, T. L. Boullion, The pseudoinverse of an r-circulant matrix, Proc. Amer. Math. Soc. 34 (1972) 385-388.

[^0]: *e-mail:wtrench@trinity.edu

