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Abstract

Let A = {Ao, A1,..., Ap_1} C CUX2 ¢ = e 2m/k py = S0 ctma,,
0</t<k-—1,and Fa = IZ;OI F,. All operations in indices are mod-
ulo k. It is well known that if di = do = 1 then [A,,]F 1) = ®F®",
where ® = Lk[gfm]lg’;;o. However, to our knowledge it has not been
emphasized tﬁ;t Fa plays a fundamental role in connection with all the
matrices [Asfm]kf1 0 < a < k-1, with di, d2 arbitrary. We begin

r,s=0"
by adapting a theorem of Ablow and Brenner with di = d2 = 1 to the
case where di and dy are arbitrary. We show that A = [Asfar]f;io if

and only if A = UyFaP* where U, and P are related to ®, P is uni-
tary, and U, is invertible (in fact, unitary) if and only if ged (o, k) = 1,
in which case we say that A is a proper circulant. We prove the follow-
ing for proper circulants A = [As—ar I:;ioz (i) AT = [Brfas]]:;io with
B, = %le:ol fmpl, 0 <m < k—1. (i) Solving Az = w reduces to
solving Fyur = var, 0 < £ < k — 1, where vo, v1, ..., vk—1 depend only
on w. (ili) A singular value decomposition of A can be obtained from
singular value decompositions of Fy, Fi, ..., Fr—1. (iv) The least squares
problem for A reduces to independent least squares problems for Fy, F1,
vy Fo—1. (v) If di = d2 = d, the eigenvalues of [As— I:,;io are the eigen-
values of Fy, Fi, ..., Fr_1, and the corresponding eigenvectors of A are
easily obtainable from those of Fo, Fi, ..., Fx—1. (vi) If di =d2 = d and
«a > 1 then the eigenvalue problem for [Asfar]f;io reduces to eigenvalue
problems for d x d matrices related to Fp, Fi, ..., Fr—1 in a manner
depending upon .
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1 Introduction
Throughout this paper k > 2, di,ds > 1 are integers, a € {0,1,...,k — 1}, and
Chaixd = [0 = [Cp]i Ly | Crs €CTH X2 0 <1, s <k —1}.

All arithmetic operations in indices are modulo k.

We call A = [AS,M]];;iO € Ckdxdz an q-circulant. We say that A is a
proper a-circulant, or simply a proper circulant, if ged(o, k) = 1. We will say
that A is a standard a-circulant if d; = d2 = 1 and denote it by A = [as—ar] f;io.
Of course, there is already a vast literature on standard a-circulants. Matrices

of the form

Aspy, 0<r<s<k-1,
kAg_r, 0<s<r<k—1,

A=[AF L MmeAm_{
are also called k-circulants; see e.g., [4]. We will not consider them.

We call [Br,as]f;io an a-cocirculant, again proper if ged(a, k) = 1. This
eliminates awkward terminology such as “ the conjugate transpose of the Moore-
Penrose inverse of an a-circulant matrix is an a-circulant.” The Moore-Penrose

inverse of an a-circulant is an a-cocirculant (Theorem 4).

Remark 1 Obviously, B is an a-cocirculant if and only if B” is an a-circulant.
Therefore any result concerning a-circulants can be applied to B* to obtain a
result concerning B.

Remark 2 A proper a-circulant A = [As_ ] f;io is also a -cocirculant where
af =1 (mod k), since

Asfar = Aaﬁsfar = Afa(rfﬁs) = Brfﬁs

with B,, = A_am, 0 < m < k — 1. Similarly, a proper (-cocirculant B =
[Brfﬁs]f;io is also an a-circulant, since

Brfﬁs = Baﬁrfﬁs = Bfﬁ(sfar) = Csfar
with C, = B_gm, 0 <m <k —1.

Henceforth ¢ = e=27/*,

E=[6tm1ljmeg: and ®=—[C""j L o=[d0 ¢1 - dr_1] (1)

Sl-

(the Fourier matrix), with

1
1 S

om =T CQ"” , 0<m<k-1. 2)
C(k;l)m



It is straightforward to verify that if indices are reduced modulo k then

£ (lgenlinio) B = leenmsalinio ®)

Setting p = 1 and ¢ = 0 and invoking (1) yields
1
Ed = ﬁ[d“l)m)]g;}:o =®D with D =diag(1,¢,¢%,...,¢¢ Y. ()

Therefore £ = ®Dd*.
The discrete Fourier transform (DFT) of {Ag, Ay,..., Ag_1} C CHx% js
{Fo, Fl, caey kal} where

k—1
= (MA, eCh* R 0<i<k-L (5)
m=0
Since ®~! = ®*,
1 k—1
Am =7 C'EF, 0<m<k-1. (6)
£=0
We denote
k—1
Fa=EPF eckhx®, (7)
£=0

For standard circulants (5)—(7) reduce to

k—1 k—

ff: Zamcfm, am = %fociema and fA:dia’g(anfla"'afkfl)'

m=0 £=0

It is well known (see, e.g., [7]) that a standard l-circulant A = [as— T]fslo €

Ck*k can be written as
k—1
A=OFa®" = fidud;.
£=0

However, to our knowledge it has not been emphasized that F4 plays a fun-
damental role in connection with all the standard circulants [as_ M]fg o- (See
Remark 3.)

In Section 2 we reformulate a result of Ablow and Brenner [1, Theorem 2.1]
for standard a-circulants to characterize a-circulants 1n Chidixdz — We give a
different characterization in Section 3: A = [A,_ ar] N 0 if and only if A =
U, FAP*, where U, and P are related to the Fourier matnx P is unitary, and
U, is invertible (in fact, unitary) if and only if ged(a, k) = 1.



Since F4 is independent of «, some computational results concerning F4
apply simultaneously to all the proper a-circulants [As_ ] f;io. For example,
in Section 4 we show that

k—1
1
k—1 Im T
Al = [BT,QS]KS:O where B, = Z EEOC F/, 0<m<k-1.

We also prove the following for proper a-circulants: (i) Solving Az = w reduces
to solving Fpuy = v, 0 < £ < k — 1, where vy, v1, ..., vp—1 depend only
on w. (ii) A singular value decomposition of A can be obtained from singular
value decompositions of Fy, Fy, ..., Fp—1. (iii) The least squares problem for
A reduces to independent least squares problems for Fy, Fiy, ..., Fp—1. (iv) If
d1 = dy = d, the eigenvalues of [AS,T]];;iO are the eigenvalues of Fy, Fi, ...,
Fj,_1, and the corresponding eigenvectors of A are easily obtainable from those
of Fo, F1, ..., Fr—1. (v) If dy = dy = d and « > 1, the eigenvalue problem for
[As,ar]f;io reduces to eigenvalue problems for d x d matrices related to Fy, Fi,
..., Fr—1 in a manner depending upon «.

Block circulant 1-matrices [As— f;io have applications in preconditioning
of block Toeplitz matrices; see, e.g. [8, 9].

2 The Ablow—Brenner theorem revisited

Recall that F and ® are defined in (1) and (2). Let

R=E®Ily, Pn=0¢n®ly, 0<m<k-1, (8)
S=E®I1ls, Qn=¢m®Ilsy,, 0<m<k-—1, (9)
P=[P P --P1], Q=[Q0 Q1 - Qir1], (10)

and
Us=[Py Po Poo - Pr1yal- (11)

Since

Pg*Pm = 5EmId1 and QZQm = 5EmId2; 0< é; m<k— 15

P and @ are unitary, while U, is unitary if ged(a, k) = 1; however, if ged(o, k) =
g > 1 and p = k/q then

Us =[PoPa -+ Pp1)a - PoPa -+ Pyp_1)al

q
(i.e., the first p block columns are repeated ¢ times) is not invertible. From (4)
and (8)—(11),
RP,=¢'P; and SQy=C'Qp, 0<0<k-—1. (12)
Ablow and Brenner [1, Theorem 2.1] showed that A € C¥*¥ is a standard

a-circulant if and only if FAE™ = A. We need the following adaptation of
this result.



Theorem 1 If A = [G,,)F;Y, with G,, € Ch*% then RAS™ = A if and

7r,5=0
only if A is an a-circulant; more precisely, if and only if

Grs :Asfah OST;SS k_la (13)

with
As=Gos, 0<s<k-1. (14)

PRrOOF. From (3), (8), and (9), RAS™* = [GHLHQ]];;iO. Therefore we must
show that (13) is equivalent to

GrJrl,era - Grs; 0 S r,s S k—1. (15)
If (13) holds, then
Grilsta = A(s+a)7(r+l)a =Asar=Grs, 0<7r,s<k-1

For the converse we must show that (14) and (15) imply (13). We prove this by
finite induction on r. From (14),

Grs = Asfara 0 <s< k— 15 (16)

if = 0. Suppose (16) is true for some r € {0, ...,k — 2}. Replacing s by s — «
in (15) and (16) yields

GrJrl,s = Gr,sfa; 0 < r,s < k— 1;

and
Gr,sfa = Asfa(rJrl)a 0<s<k—-1

Therefore
GrJrl,s == Asfa(r+1); 0 S S S k— 1;

which completes the induction. 0O
Theorem 1 with A = B* yields the following corollary.

Corollary 1 If B € C*%Xd1 then B is an a-cocirculant if and only if S BR™! = B.
The following corollary extends [10, Corollary 1].

Corollary 2 (i) If A = [As,ar]f;io € Chkdixdr gnd B = [Br,as]f;io €
Chdzxd | then AB = [Cs_,|F Ly € CHUXN with Cpy = Y370 A¢Be—am, 0 <
m<k-—1.
(i) If ged(e, k) = 1 and a8 = 1 (mod k), then BA = [D,_,]F 1, € Ckidzxd>
with 7
k—1
Dm=> BiAmi, 0<m<k-—1 (17)
£=0



PROOF. (i) From Theorem 1 and Corollary 1, A = RAS™® and B = S*BR™!.
Therefore AB = RABR™', so Theorem 1 with R = S implies that AB is
a l-circulant. The stated formula for Cy, Ci, ..., Cir—1 can be obtained by
computing first block row entries of AB.

(ii) Also, BA = S*BAS~®. Applying this 3 times yields BA = SBAS™!,
so Theorem 1 with R = S implies that BA is a 1-circulant. Computing the first
block row entries of BA yields D,, = ?;01 B_ o¢Am—ae and replacing ¢ by — 3¢
yields (17). O

Theorem 2 If

A= [Ag_a, i L, € Chidixde (18)
and
B = [Byay iyl € CH8%, (19)
then
AB = [Csfmazr]];;io € (Ck:d1®d3, (20)
with
k—1
Cn =Y ABm_ay, 0<m<k-—1 (21)
=0

PROOF. Let R=E® 14, S=E®I4,,and T = E® Iz,. From (18), (19), and
Theorem 1,
(a) A=RAS™* and (b) B=SBT™ .
Applying (b) a; times yields B = S* BT~ *1*2, From this and (a), RABT ~*1%2 =
AB. Now Theorem 1 implies (20), with (21) obtained by computing the entries
in the first block row of AB. O
Theorem 2 generalizes [1, Theorem 3.1]; namely, the product of a standard

a-circulant and a standard S-circulant is an a/5-circulant. However, [1] does not
include (21).

3 A DFT characterization of a-circulants

Theorem 3 A matriz A € C*4*% 45 an a-circulant A = [As,ar]f;io if and
only if it can be written as

k—1
A="PuFQ; =UsFaQ", (22)
£=0

where {Fy, Fi, ..., Fy_1} and {Ao, A, ..., Ax_1} are related as in (5) and (6)
and P, Q, and Uy, are as in (8)—(11).



PROOF. Eqns. (7)—(11) imply the second equality in (22). Therefore we need
only justify the first. Suppose A = [As,ar]f;io and define Fy, Fy, ..., Fr_1 by
(5). From (6),

k—1
1
Agrar =7 SR, 0<rs<h-1,

=0
so (8)—(11) imply that
1® Iy, 1o, 17
al £ k—1
1 (' ® Iq, ¢® 14, "
> ER A NN S W
=0 . . (=
C(kfl)af ® Idl C(kfl)f ® Id2 0
For the converse, if (22) holds then (12) implies that
k—1 k—1
RAS™ = (RPar)Fi(S“Qe)" = (™ Par) F(¢™Q;) =
=0 =0

Therefore A is an a-circulant, by Theorem 1; hence, A = [As_ 4 f;io with A,
Al,...,Ak,1 as in (6) a

k—1

Remark 3 Theorem 3 implies that A € C¥** is a standard a-circulant [QS*QT]T,SZO

if and only if
k—1
A=DoFa® = frdard;,

=0
where @ is as in (1), ®, = [ b0 o 0 Ph—1)a ], and
k—1
fo=3 amc™™, 0<i<k-1.
m=0

Corollary 3 A matrm B € CFd2xd1 js an a-cocirculant if and only if it can be
written as B = Ze L QG P >, where
k—1 k—1
Ge=> ("Bpn, 0<€<k-1, and By, =
m=0 =0
PrOOF. Apply Theorem 3 to B*. [

It is well known that standard 1-circulants commute. The following corollary
extends this.

Corollary 4 Suppose di = do, ged(a, k) = 1, and a8 =1 (mod k). Let A =
[145700“]]67l B = [Bsfﬁr]kil

r,s=0" r,s=0"
k—1 k—1
Fr=> ("™Apn and Gy=> ("B
m=0 m=0

Then AB = BA if and only if FgiGy = GouFy, 0 <0<k —1.



PROOF. Since ged(a, k) = ged(B, k) = 1, we may change summation indices
{ — ol and ¢ — (¢. Therefore, from Theorem 3 with @ = P,

k—1 k—1 k—1 k—1
A= "PuFiP; =) PiFgPy, B=Y PuGiP; =Y PiGaiPyy,
£=0 £=0 £=0 £=0
k—1 k—1
AB =) PiFgGeP;, and BA=Y P,GaiF\P},
£=0 £=0

which implies the conclusion. 0O

4 Moore-Penrose inversion and singular value
decomposition

Recall that the Moore-Penrose inverse X of a matrix X is the unique matrix
Y that satisfies the Penrose conditions

(XY)y =XY, (YX) =YX, XYX=X, and YXY =Y.
Theorem 4 The Moore—Penrose inverse of an a-circulant is an a-cocirculant.

PRrROOF. From Theorem 1, if A is an a-circulant then A = RAS™“. Let B =
S*ATR~!. We will show that A and B satisfy the Penrose conditions:

AB = (RAS™)(S“ATR™1) = RAATR* = R(AA")*R* = (AB)*,
BA = (S*ATR™Y)(RAS™®) = §2 AT A(S%)* = 52 (AT A)*(S%)* = (BA)*,
ABA = (RAATR™")(RAS™®) = R(AATA)S™* = RAS™* = A4,
and
BAB = (S*ATAS™)(S*ATR™) = S*(ATAA)R™! = S“ATR™! = B.

Therefore B = A' or, equivalently, SATR~! = Af. Now Corollary 1 implies
that A" is an a-cocirculant. 0
We can be more explicit if ged(a, k) = 1.

Theorem 5 The Moore—Penrose inverse of a proper a-circulant A = [As,ar]f;io
18 the a-cocirculant B = [Br,as]f;io, where
=
Bm:EZ&mFg, 0<m<k-—1, (23)
£=0

with
k—1
Fr=> ¢"mAp, 0<0<k-1
m=0



PRrROOF. From Theorem 3, A = U, F4Q* where ) and U, are unitary, the latter
since ged(ar, k) = 1. We will first show that A and B = Q}'LU; satisfy the
Penrose conditions:

AB = (UsFaQ*)(QF\U?) = Us FAF\U? = Un(FAF\)*UZ = (AB)*,
= (QF\UN(UaFaQ*) = QF L FaQ* = Q(F\Fa)*Q* = (BA),
ABA = (UaFAF U UaFaAQ") = Un(FAF\FA)Q* = U FaQ* = A
and

BAB = (QF\FaQ")(QF\UL) = QF\FAF)UL = QF Uz =

Therefore
k—1
Al = B= ZQEF*P;E:Zwe@m%ae@ml)*
£=0 £=0
= k—1
- k [Z CE(T?QS)FT = [Brfasw,gio’
£=0 7r,5=0

from (8)—(11) and (23). O

Remark 4 Theorem 5 can also be proved by using (6) and (23) to express the
entries of AB, BA, ABA, and BAB explicitly in terms of Fy, Fy, ..., Fx_1 and
Fl, F}, ..., Fl_,, noting that

k—1 k—1
Z clr=s) — Z ctlr=s) =5, 0<r,s<k-—1,
=0 =0

the latter because ged(a, k) = 1. However, this is tedious.

Remark 5 Theorem 5 extends a result of Davis [6]: If A = [as_ T]rs o € Ckxk
then AT = <I)d1ag(a0, al, ceey a;fcfl)fb*, where ® is the Fourier matrix (1), 0T = 0,
and a' = 1/a if a # 0.

Theorem 6 Suppose ged(a, k) =1 and

A= [As ar r,8= 0 ZPOLEFEQE Ua]:AQ*'
£=0
Let Fy = Q3,7 be a singular value decomposition of Fy, 0 <€ <k —1, and
define
My =[ P Pofti - Pup—par-1 |

and

= [ QYo Yy - Qr—1Vk_1 ] .



Then
k—1
A= M, (EB 2g> N*
=0

is a singular value decomposition of A, except that the singular values are not
necessarily ordered.

5 The least squares problem

Suppose G € C%*% and consider the least squares problem for G: If v € C%,
find v € C% such that

[Gu—v| = min [|GE - o], (24)
£eCd2
where || - || is the 2-norm. This problem has a unique solution if and only

if rank(G) = da, in which case v = (G*G)"'G*v. In any case, the optimal
solution of (24) is the unique ug € C% of minimum norm that satisfies (24);
thus, ug = GTv. The general solution of (24) is u = ug + ¢ where Gq = 0, and

|Gu —vll = [(GGT = )|

for all such u.
Now consider the following least squares problem: if A = [Asfm]f;io €
Ck:dixd2 with ged(a, k) = 1 and w € Ck¥1 | find 2 € C*?2 such that

14z —w| = min A€~ wl.
fG(de?
We write
k—1 k—1 k—1
z = Z Qg’u,g and w = Z Pg’Ug = Z Pagvag, (25)
£=0 £=0 £=0

since substituting af for ¢ is legitimate because ged(a, k) = 1. Since A =
Ie:ol PooFeQy and Q7 Qum = dem Ikd,

k—1
Az — w = Z Pag(Fg’U,g - ’Uag).

=0
Since P}, Pom = dem 14, (because ged(a, k) = 1), it follows that

k—1
1Az = w|* =Y [ Feue = vac|*. (26)
£=0

This implies the following theorem.

10



Theorem 7 Suppose A is a proper a-circulant and let z and w be as in (25).
Then

Az — w]| = min, [AE — w]| (27)
if and only if

|Foue — vael| = min |[|Fetpe — vaell, 0<€<k—1.
ppEC2

Therefore (27) has a unique solution, given by

k—1
2= Qu(F;F) " F} var,
£=0

if and only rank(Fy) = do, 0 < £ < k — 1. In any case, the optimal solution of
(27) is

k-1
20 = Z QuF[vas.
=0

The general solution of (27) is z = z9 + 25;01 Qouy, where Fyup =0, 0 < £ <
k—1, and
k—1

1Az = w]* = > I(FeFf — Lo, )vaell?
£=0
for all such z.

6 The case where d; = d»

Throughout this section d; = do = d and A = [As_ 4 f;io is a proper circulant.
Then (26) implies the following theorem, which reduces the problem of solving
the kd x kd system Az = w to solving k independent d X d systems.

Theorem 8 If A is a proper a-circulant, z = 25;01 Pyug, and w = 25;01 Py,
then Az = w if and only if

Fg’u,g:vag, Ogégk—l
This and Theorem 5 imply the following theorem.

Theorem 9 A proper a-circulant

k—1
A= [Asfar]f;io = Z PaEFEPg* (28)
£=0
is invertible if and only Fy, Fi, ..., Fx_1 are all invertible. In this case

—1

5

A= [B,_os)"7t, with B, =

7r,5=0

1
- ¢mESY, 0<m <k -1,
4

Il
=)

and the solution of Az = w is z = 25;01 PgF[lvag.

11



Remark 6 Theorem 9 and Remark 2 extend [5, Theorem 1]: the inverse of a
standard nonsingular a-circulant is a (-circulant, where 8 =1 (mod k).

Theorem 10 Suppose A is a proper a-circulant as in (28) and o =1 (mod k).
(i) A is Hermitian if and only if PMFEE = PoFp, 0 << k-—1.
(ii) A is normal if and only ifFﬁgFge =FF,0</(<k-1
(iii) A is EP (i.e., ATA = AAY) if and only if Fp F}l, = FJFy, 0< ¢ <k—1.

PRroOF.
From (28) and Theorem 5,

k—1 k—1 k—1
A=>"PuF.P;, A*=> PF;Py, and A=) PFIP;,. (29)
£=0 £=0 £=0

(i) Since a8 =1 (mod k), replacing ¢ by 8¢ in the second sum in (29) yields
A* = ?;01 PgeFj,Pf, and comparing this with the first sum in (29) yields (i).
(i) From (29),

k—1 k—1 k—1
AA* = P FF;P}, = PiFyFj;P; and A"A=Y PUF/FP,
=0 =0 =0

which implies (ii).
(iii) From (29),

k—1 k—1 k—1
AAY =" Py FFJ Py, =Y PFa PPy and ATA=Y" PF/FP;.
=0 =0 =0

which implies (iii). O

Remark 7 If A is a square matrix and there is a matrix B such that ABA = A,
BAB = B, and AB = BA, then B is unique and is called the group inverse
of A, which is usually denoted by A#. Davis [6] noted that if A € C*** is a
standard 1-circulant then AT = A%#. Theorem 10(iii) extends this: If A € Ck:dxd
is a proper a-circulant and a3 = 1 (mod k), then AT = A# if and only if
F{Fy=FyFJ,, 0<(<k—1

7 The eigenvalue problem with a =1

In this section we assume that a = 1 and dy = dy = d. The following theorem
and its proof are motivated by [2, Theorem 2].

Theorem 11 Let -
Sr = U {z’Rz:Cez}.
=0

12



If X\ is an eigenvalue of A, let E4(N) be the A-eigenspace of Aj; i.e,
Ea(N) = {z| Az =Xz} .

(i) If X is an eigenvalue of A = [AS,T]];;iO then £4(\) has a basis in Sg.

(i) If A € Ck4*? and has kd linearly independent eigenvectors in Sg, then
A is a 1-circulant.

PROOF. (i) From Theorem 8, z = Zlg;ol Poug € E4(N) if and only if Fpupy =
Aug, 0 < ¢ < k — 1. Therefore X is an eigenvalue of A if and only if it
is an eigenvalue of Fy for some ¢ € {0,1,...,k — 1}. Let 7, be the subset of
{0,1, ..., k—1} for which this is true. Then £4(\) consists of linear combinations
of the vectors of the form Pyu, with ¢ € T and (A, u¢) an eigenpair of Fy. Since
RP; = (*Py (recall (12)), this completes the proof of (i).

(ii) From Theorem 1, we must show that RA = AR. If Az = Az and Rz =
(°z then RAz = ARz = A(*z and ARz = (*Az = (*Az. Hence ARz = RAz for
all z in a basis for C*¥*? so AR = RA. 0O

Theorem 12 Let R and P be as in (8) and (10).Then the 1-circulant A =
[AS,T]];;iO is diagonalizable if and only if Fy, FY, ..., Fx—1 are all diagonalizable.
In this case, if

F,=T,D,T;, 0<{<k-1,

are spectral decompositions of Fy, Fy, ..., Fr—1 and
U = [ PTy PTy - ProaTpa ] ,
then
k—1
A=V (EB Dg) T
£=0
is a spectral decomposition of A.

8 The eigenvalue problem with o > 1

In this section we assume that dy = ds =d, a € {2,3,...k—1} and, ged(a, k) =
1. From Theorem 8, Az = Az if and only if z = le;(} P,us, where

Fous = AMugs, 0<s<k-—1. (30)

Therefore Az = 0 if and only if z = le;& Psug where Fou, =0,0<s<k—1,
so the makeup of the null space of A is transparent. Hence, we assume that
A # 0. Then we must consider the orbits of the permutation on {0,...,k — 1}
defined by s — as (mod k). We consider an example before presenting the
general discussion.

13



Let k = 10 and « = 3. The permutation of {0,1,...,9} defined by s — 3s
(mod 10) is given by
0 2 3 45 6 7 89

0 6 9 2 5 8 1 4 7 )

The orbits of this permutation are

W =

0o ={0}, 0,=4{1,3,9,7}, 0O2={2,6,8,4}, and O3 = {5}.
Therefore (30) divides into four independent systems:
(i) Fouo = Auo; (i) Frur = Aug, Fiug = Aug, Foug =z, Frur=uy,

(111) F5U5 = )\’LL5; (IV) F2u2 = )\’LLG, F6u6 = )\Ug, Fg’ng = )\’LL4, F4U4 = )\UQ.

From (i), if (A, up) is an eigenpair of Fy then (A, Poug) is an eigenpair of A.
Similarly, from(iii), if (A, us) is an eigenpair of F5 then (A, Psus) is an eigenpair
of A. The analysis of (ii) and (iv) is more complicated, but identical. We will
consider (ii), which is equivalent to

1 1 1 1
uz = XFl'UJla Uug = XFsus, uy = XF9U9, up = XF7U7, (31)

since A # 0. Hence,

1 1 1 !
Uz = XGg’U,l ug = EGQUJI; ur = FGTUJM and u; = FGlul’ (32)

where
GgZFl, G9:F3F1, G7:F9F3F1, and Gl :F7F9F3F1. (33)

In particular, the last equalities in (32) and (33) are equivalent to Giu; = Au;.

Therefore, if (y,u;) is an eigenpair of G; and v # 0, then A\ = 44 is an
eigenvalue of A with the associated eigenvector
2 = (Pi+y VPG + 7 PGy + 4 PrGrw
3
- (Pl + Z ”Ym/4P3mG3m> u. (34)
m=1

(Recall that subscripts are taken modulo 10.) However, y'/4e2™"/4 (0 < r < 3,
are all fourth roots of v and therefore eigenvalues of A. Replacing ~'/* with
y/4e2mir/4 in (34) shows that

3
Zr = (Pl + ym/‘le?mm/‘lpgmcgm) up, 0<r<3, (35)
m=1

are the respective associated eigenvectors of A.
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Now suppose the permutation s — «as (mod k) of {0,1,...,k — 1} has p
orbits Og, O1, ..., Op_1, and let

O0=s50 <581 <8< --<sp—1 with s,€0p, 0<l<p—-1.

Suppose Oy has r, distinct members; thus,

Te

Op = {sg,as0,...,a" 'ss} where o™ =1 (mod k), (36)
and J)—; O = {0,1,...,k —1}. If r, = 1 and (), u,) is an eigenpair of Fy,,
then (A, Ps,us,) is an eigenpair of A. Now consider an orbit O, with r, > 1,
such as Oy and O, in the example. The system associated with Oy is

Fors,ars, = Mugrtrg,, 0<r<r,—1, where o™ =1,

which is analogous to (ii), where sy = 1, @« = 3 and k = 10. Since A # 0, this is

equivalent to
1

Ugrtrg, = ~Fors,Uars,, 0<1rp—1,

A
which is analogous to (31). Therefore

1

WGQNASZUSZ, 0 S T S Ty — 1, (37)

’UJOLTJAS,Z =
where
Gar+15£:Farsl~~~Fsl, 0<r<ry,—1,

which is analogous to (32) and (33). In particular, setting r = r, — 1 and noting
that a™sy = sy yields
1

us, = ——Gs,us, where Gy, = Fyrp-1g,---F,.

ATe
Therefore, if (¢, us,) is an eigenvalue of G,,, then ”y;/ "
with associated eigenvector

is an eigenvalue of A

re—1
zp = (Psz + Z VZm/Tf PaMszGa’"Sz> Usgs (38)
m=1

which is analogous to (34). However, since /"e2™"/¢ are all 74-th roots of =,
they are all eigenvalues of A. Replacing v*/"¢ with y'/7¢e?77/4 in (38) yields
associated eigenvectors

re—1
2rp = (pS’Z + Z ,Y;m/neﬂmrm/w PamngaMSz> us,, 0<r<r,—1, (39)
m=1

which is analogous to (35).
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Remark 8 Now we apply the preceding argument to a standard a-circulant
A= [as,m]f;io with ged(a, k) = 1. From Remark 3,

k-1 k—1
A= febast: with fo=> a,(™, 0<r<k-1,
s=0 r=0

and ¢g, ¢1, ..., dg—1 as in (1). Then z = ZI;;(} us¢s is A-eigenvector of A if

and only if fous = Mias, 0 < s < k—1. Let Oy be as in (36) and assume that
farse #0,0<r <rp—1. Let

ks
gar+ISg:HfthS[; OSTSTE_ly

q=0
and
Ve = Games, = farf*lsg o 'fSZ'
From (37),
S <r<rg—2, and =y, = A"
Ugr+lg, = s Jartig, s,y 0<r<ry,—2, and wugrs, = us, = Yels, -

Therefore 7,*e2™/™ (0 < r <7, — 1, are eigenvalues of A. From (39),

re—1
Zrp = <¢S£ + Z 7m/w 2mrm/rtzgam5£¢am5£> ., 0<r<r,—1,

are associated eigenvectors.
For example, let & = k — 1, so A = [as, ] 7L,. If k = 2p then vy = fo,

7r,5=0

ve=+/fofe—e, 1 <L <p—1,and v, = f,. Hence, (fo,b0), (fo, Pp),

(\/fefk 0 o+ mfb(kl)e), and ( V fefe—e, &0 — m¢(kl)£>

1 <0< p-—1, are eigenpairs of A. If k= 2p+1 then vo = fo and vy = fofr—e,
1 < 14 < q. Hence (an(bO)a

(\/fefk ¢, G+ and ( v fefr—e, ¢¢ —

*f 7 ¢(k1)e> ; #ff e‘b(kl)f)

1 < ¢ < p, are eigenpairs of A.
The eigenvalues of A were given in [5] without the associated eigenvectors.
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