Properties of multilevel block $\underline{\alpha}$ -circulants

William F. Trench*

Trinity University, San Antonio, Texas 78212-7200, USA Mailing address: 659 Hopkinton Road, Hopkinton, NH 03229 USA

Abstract

In a previous paper we characterized unilevel block α -circulants $A = [A_{s-\alpha r}]_{r,s=0}^{n-1}$, $A_m \in \mathbb{C}^{d_1 \times d_2}$, $0 \le m \le n-1$, in terms of the discrete Fourier transform $\mathcal{F}_A = \{F_0, F_1, \ldots, F_{n-1}\}$ of $A = \{A_0, A_1, \ldots, A_{n-1}\}$, defined by $F_\ell = \frac{1}{n} \sum_{m=0}^{n-1} e^{-2\pi i \ell m/n} A_m$. We showed that most theoretical and computational problems concerning A can be conveniently studied in terms of corresponding problems concerning the Fourier coefficients $F_0, F_1, \ldots, F_{n-1}$ individually. In this paper we show that analogous results hold for (k+1)-level matrices, where the first k levels have block circulant structure and the entries at the (k+1)-st level are unstructured rectangular matrices.

MSC: 15A09; 15A15; 15A18; 15A99

Keywords: Circulant; Block circulant; Multilevel; Discrete Fourier transform; Moore–Penrose Inverse; Eigenvalue problem;

1 Introduction

We consider (k+1)-level block matrices where the first k levels are circulant with orders $n_1, n_2, \ldots, n_k \geq 2$ and the entries in the (k+1)-st level are arbitrary $d_1 \times d_2$ matrices with $d_1, d_2 \geq 1$. The systematic study of multilevel matrices was initiated by Voevodin and Tyrtyshnikov in the Russian publication [11], and in the English mathematical literature by Tyrtyshnikov [9, 10].

If $p \ge 2$ is an integer, let $\mathbb{Z}_p = \{0, 1, ..., p-1\}$. Suppose $n_1, n_2, ..., n_k$ are integers ≥ 2 and let

$$\mathcal{M}_{\underline{n}} = \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_k}.$$

We denote members of $\mathcal{M}_{\underline{n}}$ by $\underline{r}=(r_1,r_2,\ldots,r_k)$, $\underline{s}=(s_1,s_2,\ldots,s_k)$, etc.; in particular, $\underline{0}=(0,0,\ldots,0)$ and $\underline{1}=(1,1,\ldots,1)$.

^{*}e-mail:wtrench@trinity.edu

Let

$$c(\underline{r}) = \prod_{j=1}^{k} r_j, \quad \mu_j = \prod_{i=1}^{j-1} n_i, \text{ and } \nu_j = \prod_{i=j+1}^{k} n_i, \ 1 \le j \le k, \text{ with } \mu_1 = \nu_k = 1.$$
(1)

Following Tyrtyshnikov, we call members of $\mathcal{M}_{\underline{n}}$ multiindices. Henceforth it is be understood that multiindices are ordered lexicographically; i.e., $\underline{r} = \underline{s}$ if $r_j = s_j$, $1 \le j \le k$; $\underline{r} < \underline{s}$ (which we also write as $\underline{s} > \underline{r}$) if $r_1 < s_1$ or $r_j = s_j$, $1 \le j \le i < k$ and $r_{i+1} < s_{i+1}$; and $\underline{r} \le \underline{s}$ if $\underline{r} = \underline{s}$ or $\underline{r} < \underline{s}$. If the members of $\mathcal{M}_{\underline{n}}$ are listed in lexicographic order then the position of \underline{r} in the list is

$$\gamma(\underline{r}) = \sum_{j=1}^{k} r_j \prod_{i=j+1}^{k} n_i, \quad \underline{0} \leq \underline{r} \leq \underline{n} - \underline{1}.$$

If $(e_{0m}, e_{1m}, \dots, e_{m-1,m})$ is the natural basis for \mathbb{C}^m and

$$e_r = e_{r_1 n_1} \otimes e_{r_2 n_2} \otimes \cdots \otimes e_{r_k n_k}, \quad \underline{0} \leq \underline{r} \leq \underline{n} - \underline{1},$$

then $\mathcal{B}=(e_{\underline{0}},\ldots,e_{\underline{r}},\ldots,e_{\underline{n-1}})$ is a multilevel basis for $\mathbb{C}^{c(\underline{n})}$. For later reference we note that

(a)
$$(e_{\underline{r}} \otimes e_s^T) e_{\underline{\ell}} = \delta_{\underline{\ell}\underline{s}} e_{\underline{r}}$$
 and (b) $(e_{\underline{r}} \otimes e_{\ell}^T) (e_{\underline{m}} \otimes e_s^T) = \delta_{\underline{\ell}\underline{m}} e_{\underline{r}} \otimes e_s^T$. (2)

If d_1 and d_2 are positive integers then arbitrary vectors $x \in \mathbb{C}^{d_2c(\underline{n})}$ and $y \in \mathbb{C}^{d_1c(\underline{n})}$ can be written uniquely as

$$x = \sum_{\underline{s} = \underline{0}}^{\underline{n} - \underline{1}} (e_{\underline{s}} \otimes x_{\underline{s}}) = \begin{bmatrix} x_{\underline{0}} \\ \vdots \\ x_{\underline{r}} \\ \vdots \\ x_{n-1} \end{bmatrix} \quad \text{with} \quad x_{\underline{s}} \in \mathbb{C}^{d_2}, \quad \underline{0} \leq \underline{s} \leq \underline{n} - \underline{1},$$

and

$$y = \sum_{\underline{s}=\underline{0}}^{\underline{n}-\underline{1}} (e_{\underline{s}} \otimes y_{\underline{s}}) = \begin{bmatrix} y_{\underline{0}} \\ \vdots \\ y_{\underline{r}} \\ \vdots \\ y_{\underline{n}-\underline{1}} \end{bmatrix} \quad \text{with} \quad y_{\underline{s}} \in \mathbb{C}^{d_1}, \quad \underline{0} \leq \underline{s} \leq \underline{n} - \underline{1}.$$

Henceforth we denote the sets of vectors in $\mathbb{C}^{c(\underline{n})d_2}$ and $\mathbb{C}^{c(\underline{n})d_1}$ written in these forms as $\mathbb{C}^{\underline{n}:d_2}$ and $\mathbb{C}^{\underline{n}:d_1}$, respectively. A linear transformation $L:\mathbb{C}^{\underline{n}:d_2}\to\mathbb{C}^{\underline{n}:d_1}$ can be written uniquely as y=Hx, where

$$H = \sum_{\underline{r},\underline{s}=\underline{0}}^{\underline{n}-\underline{1}} (e_{\underline{r}} \otimes e_{\underline{s}}^T) \otimes H_{\underline{r}\underline{s}} = [H_{\underline{r}\underline{s}}]_{\underline{r},\underline{s}=\underline{0}}^{\underline{n}-\underline{1}} \text{ with } H_{\underline{r}\underline{s}} \in \mathbb{C}^{d_1 \times d_2}, \quad \underline{0} \leq \underline{r},\underline{s} \leq \underline{n}-\underline{1};$$

$$(3)$$

thus,

$$y = Hx = \left(\sum_{\underline{r},\underline{s}=\underline{0}}^{\underline{n-1}} (e_{\underline{r}} \otimes e_{\underline{s}}^T) \otimes H_{\underline{r},\underline{s}}\right) \left(\sum_{\underline{\ell}=\underline{0}}^{\underline{n-1}} e_{\underline{\ell}} \otimes x_{\underline{\ell}}\right)$$
$$= \sum_{\underline{r},\underline{s},\underline{\ell}=\underline{0}}^{\underline{n-1}} (e_{\underline{r}} \otimes e_{\underline{s}}^T) e_{\underline{\ell}} \otimes H_{\underline{r},\underline{s}} x_{\underline{\ell}} = \sum_{\underline{r},\underline{s}=\underline{0}}^{\underline{n-1}} e_{\underline{r}} \otimes H_{\underline{r},\underline{s}} x_{\underline{s}},$$

 $\underline{0} \leq \underline{r} \leq \underline{n} - \underline{1}$, from (2)(a). We will denote the set of matrices in $\mathbb{C}^{c(\underline{n})d_1 \times c(\underline{n})d_2}$ written in the form (3) by $\mathbb{C}^{\underline{n}:d_1 \times d_2}$.

The usual rule for matrix multiplication applies; i.e., if H is as in (3) and

$$G = \sum_{\underline{r},\underline{s}=\underline{0}}^{\underline{n}-\underline{1}} (e_{\underline{r}} \otimes e_{\underline{s}}^T) \otimes G_{\underline{r}\underline{s}} = [G_{\underline{r}\underline{s}}]_{\underline{r},\underline{s}=\underline{0}}^{\underline{n}-\underline{1}} \text{ with } G_{\underline{r}\underline{s}} \in \mathbb{C}^{d_2 \times d_3}, \quad \underline{0} \leq \underline{r},\underline{s} \leq \underline{n} - \underline{1},$$

then

$$\begin{split} HG &= \left(\sum_{\underline{r},\underline{\ell}=\underline{0}}^{\underline{n}-\underline{1}}(e_{\underline{r}}\otimes e_{\underline{\ell}}^T)\otimes H_{\underline{r}\,\underline{\ell}}\right) \left(\sum_{\underline{m},\underline{s}=\underline{0}}^{\underline{n}-\underline{1}}(e_{\underline{m}}\otimes e_{\underline{s}}^T)\otimes G_{\underline{m}\,\underline{s}}\right) \\ &= \sum_{\underline{r},\underline{\ell},\underline{m},\underline{s}=\underline{0}}^{\underline{n}-\underline{1}}\left[(e_{\underline{r}}\otimes e_{\underline{\ell}}^T)(e_{\underline{m}}\otimes e_{\underline{s}}^T)\right]\otimes H_{\underline{r}\,\underline{\ell}}G_{\underline{m}\,\underline{s}} \\ &= \sum_{\underline{r},\underline{\ell},\underline{m},\underline{s}=\underline{0}}^{\underline{n}-\underline{1}}\delta_{\underline{\ell}\underline{m}}\left(e_{\underline{r}}\otimes e_{\underline{s}}^T\right)\otimes H_{\underline{r}\,\underline{\ell}}G_{\underline{m}\,\underline{s}} \quad \text{by (2)(b)} \\ &= \sum_{\underline{r},\underline{s}=\underline{0}}^{\underline{n}-\underline{1}}\left(e_{\underline{r}}\otimes e_{\underline{s}}^T\right)\otimes \left(\sum_{\underline{\ell}=0}^{\underline{n}-\underline{1}}H_{\underline{r}\,\underline{\ell}}G_{\underline{\ell}\,\underline{s}}\right) = \sum_{\underline{r},\underline{s}=\underline{0}}^{\underline{n}-\underline{1}}\left(e_{\underline{r}}\otimes e_{\underline{s}}^T\right)\otimes K_{\underline{r}\,\underline{s}} = [K_{\underline{r}\,\underline{s}}]_{\underline{r},\underline{s}=\underline{0}}^{\underline{n}-\underline{1}}, \end{split}$$

where

$$K_{\underline{r}\underline{s}} = \sum_{\underline{\ell}=\underline{0}}^{\underline{n}-1} H_{\underline{r}\underline{\ell}} G_{\underline{\ell}\underline{s}}, \quad \underline{0} \leq \underline{r}, \underline{s} \leq \underline{n} - \underline{1}.$$

In this paper we consider multilevel block $\underline{\alpha}$ -circulants

$$A = [A_{\underline{s} - \underline{\alpha} \underline{r}}]_{\underline{r}, \underline{s} = \underline{0}}^{\underline{n} - \underline{1}} \text{ where } \underline{\alpha} \in \mathcal{M}_{\underline{n}} \text{ and } A_{\underline{m}} \in \mathbb{C}^{d_1 \times d_2}, \quad \underline{0} \leq \underline{m} \leq \underline{n} - \underline{1}.$$

Multilevel 1-circulants $[A_{\underline{s-r}}]_{\underline{r},\underline{s}=\underline{0}}^{\underline{n-1}}$ have important applications in preconditioning of multilevel and multilevel block Toeplitz matrices $T=[T_{\underline{s-r}}]_{\underline{r},\underline{s}=\underline{0}}^{\underline{n-1}}$; see, e.g., [3]–[7], a very incomplete list. We are not aware of any published results on multilevel $\underline{\alpha}$ -circulants with $\underline{\alpha} > \underline{1}$.

The proofs of some of our results are similar to results obtained in [8] for unilevel block circulants. Nevertheless, we include complete proofs here since we believe that simply referring to [8] would impede the presentation here and would not be convincing in the multilevel setting.

2 Preliminaries

Throughout the rest of this paper all arithmetic operations and relations involving multiindices are entrywise and modulo \underline{n} , i.e., $\underline{r} \equiv \underline{s} \pmod{\underline{n}}$, $\gcd(\underline{\alpha}, \underline{n}) = \underline{q}$ and $\underline{p} = \underline{\alpha}/\underline{q}$ mean that

$$r_j \equiv s_j \pmod{n_j}$$
, $\gcd(\alpha_j, n_j) = q_j$, and $p_j = \alpha_j/q_j$, $1 \le j \le k$,

respectively. Also,

$$\underline{r} + \underline{s} = (r_1 + s_1 \pmod{n_1}, r_2 + s_2 \pmod{n_2}, \dots, r_k + s_k \pmod{n_k})$$

and

$$\underline{r}\,\underline{s} = (r_1s_1\,(\mathrm{mod}\,n_1), r_2s_2\,(\mathrm{mod}\,n_2), \ldots, r_ks_k\,(\mathrm{mod}\,n_k)).$$

We denote

$$\zeta_j = e^{-2\pi i/n_j}, \ 1 \le j \le k, \quad \zeta_j = \zeta_1^{s_1} \zeta_2^{s_2} \cdots \zeta_k^{s_k}, \quad \underline{0} \le \underline{s} \le \underline{n} - \underline{1},$$

and

$$\Phi = \frac{1}{\sqrt{c(\underline{n})}} [\zeta^{\underline{r}\underline{s}}]_{\underline{r},\underline{s}=\underline{0}}^{\underline{n}-\underline{1}} = [\phi_{\underline{0}} \cdots \phi_{\underline{s}} \cdots \phi_{\underline{n}}],$$

with

$$\phi_{\underline{s}} = \frac{1}{\sqrt{c(\underline{n})}} \begin{bmatrix} 1\\ \vdots\\ \xi^{\underline{r}\underline{s}}\\ \vdots\\ \xi^{(\underline{n}-\underline{1})\underline{(s)}} \end{bmatrix}, \quad \underline{0} \leq \underline{s} \leq \underline{n} - \underline{1}. \tag{4}$$

Note that

$$\phi_{\underline{s}} = \psi_{s_1,1} \otimes \psi_{s_2,2} \otimes \cdots \otimes \psi_{s_k,k},$$

where

$$\psi_{s_{j},j} = \frac{1}{\sqrt{n_{j}}} \begin{bmatrix} 1 \\ \xi_{j}^{s_{j}} \\ \vdots \\ \xi_{j}^{(n_{j}-1)s_{j}} \end{bmatrix}, \quad 0 \leq s_{j} \leq n_{j-1}, \quad 1 \leq j \leq k;$$

hence,

$$\phi_{\underline{s}}^* \phi_{\underline{r}} = \delta_{\underline{r}\underline{s}} =_{\text{Def}} \begin{cases} 1 & \text{if } \underline{r} = \underline{s}, \\ 0 & \text{if } \underline{r} \neq \underline{s}, \end{cases} \quad \underline{0} \leq \underline{r}, \underline{s} \leq \underline{n} - \underline{1}. \tag{5}$$

Now let $E_j = [\delta_{r_j,s_j-1}]_{r_j,s_j=0}^{n_j-1}, 1 \le j \le k$,

$$E = E_1 \otimes E_2 \otimes \cdots \otimes E_k = \left[\delta_{\underline{r},\underline{s}-\underline{1}}\right]_{\underline{r},\underline{s}=\underline{0}}^{\underline{n}-\underline{1}},\tag{6}$$

and

$$E^{\underline{u}} = E_1^{u_1} \otimes E_2^{u_2} \otimes \dots \otimes E_k^{u_k} = [\delta_{\underline{r},\underline{s}-\underline{u}}]_{r,s=0}^{\underline{n}-\underline{1}}. \tag{7}$$

It is straightforward to verify that

$$(E^{\underline{u}} \otimes I_{d_2}) \begin{bmatrix} x_{\underline{0}} \\ \vdots \\ x_{\underline{r}} \\ \vdots \\ x_{\underline{n-1}} \end{bmatrix} = \begin{bmatrix} x_{\underline{u}} \\ \vdots \\ x_{\underline{r}+\underline{u}} \\ \vdots \\ x_{\underline{n}-\underline{1}+\underline{u}} \end{bmatrix} \text{ if } x \in \mathbb{C}^{\underline{n}:d_2}$$

$$(8)$$

and

$$(E^{\underline{u}}\otimes I_{d_1})\left([B_{\underline{r}\underline{s}}]^{\underline{n}-\underline{1}}_{\underline{r},\underline{s}=\underline{0}}\right)(E^{-\nu}\otimes I_{d_2})=[B_{\underline{r}+\underline{u},\underline{s}+\underline{\nu}}]^{\underline{n}-\underline{1}}_{\underline{r},\underline{s}=\underline{0}}\quad\text{if}\quad B\in\mathbb{C}^{\underline{n}:d_1\times d_2}.\eqno(9)$$

From (4), (6), and (8) with $\underline{u} = \underline{1}$,

$$E\phi_{\underline{s}} = \frac{1}{\sqrt{c(\underline{n})}} \begin{bmatrix} \zeta^{\underline{s}} \\ \vdots \\ \zeta^{(\underline{r+1})\underline{s}} \\ \vdots \\ \zeta^{(\underline{n-1})\underline{s}} \end{bmatrix} = \zeta^{\underline{s}}\phi_{\underline{s}}, \quad \underline{0} \leq \underline{s} \leq \underline{n} - \underline{1}.$$
 (10)

Hence

$$E\Phi = \Phi D$$
 with $D = \operatorname{diag}\left(1, \dots, \zeta^{\underline{s}}, \dots, \zeta^{(\underline{n-1})\underline{s}}\right)$, so $E = \Phi D \Phi^*$.

Now let

$$R = E \otimes I_{d_1}, \quad S = E \otimes I_{d_2}, \tag{11}$$

$$P_{\underline{s}} = \phi_{\underline{s}} \otimes I_{d_1}, \quad Q_{\underline{s}} = \phi_{\underline{s}} \otimes I_{d_2}, \quad \underline{0} \leq \underline{s} \leq \underline{n} - \underline{1}.$$
 (12)

From (5),

$$P_{\underline{r}}^* P_{\underline{s}} = \delta_{\underline{r}\underline{s}} I_{\underline{n}:d_1}$$
 and $Q_{\underline{r}}^* Q_{\underline{s}} = \delta_{\underline{r}\underline{s}} I_{\underline{n}:d_2}, \quad \underline{0} \leq \underline{r}, \underline{s} \leq \underline{n} - \underline{1}.$ (13)

From (10) and (11),

$$RP_{\underline{s}} = \zeta^{\underline{s}} P_{\underline{s}} \quad \text{and} \quad SQ_{\underline{s}} = \zeta^{\underline{s}} Q_{\underline{s}}, \quad \underline{0} \leq \underline{s} \leq \underline{n} - \underline{1}.$$
 (14)

Also, let

$$P = \begin{bmatrix} P_{\underline{0}} & \cdots & P_{\underline{s}} & \cdots & P_{\underline{n-1}} \end{bmatrix}, \quad Q = \begin{bmatrix} Q_{\underline{0}} & \cdots & Q_{\underline{s}} & \cdots & Q_{\underline{n-1}} \end{bmatrix}, \tag{15}$$

and

$$U_{\underline{\alpha}} = \left[\begin{array}{cccc} P_{\underline{0}} & \cdots & P_{\underline{\alpha}\underline{s}} & \cdots & P_{\underline{\alpha}(\underline{n-1})} \end{array} \right]. \tag{16}$$

From (13), P and Q are unitary. If $\gcd(\underline{\alpha},\underline{n})=\underline{1}$ the mapping $\underline{s}\to\underline{\alpha}\,\underline{s}$ is a permutation of $\mathcal{M}_{\underline{n}}$, so $U_{\underline{\alpha}}$ is unitary. However, if $\gcd(\underline{\alpha},\underline{n})=\underline{q}\succeq\underline{1}$ then the first $c(\underline{p})$

block columns $P_{\underline{0}}, \ldots, P_{\underline{\alpha}\underline{s}}, \ldots, P_{\underline{\alpha}(\underline{p}-\underline{1})}$ of $U_{\underline{\alpha}}$ are repeated $c(\underline{q})$ times, so $U_{\underline{\alpha}}$ is not invertible.

From (14) and (15),

$$R = PD_R P^*$$
 and $S = QD_S Q^*$

where

$$D_R = \bigoplus_{\underline{s}=\underline{0}}^{\underline{n}-\underline{1}} \zeta^{\underline{r}} I_{d_1}$$
 and $D_S = \bigoplus_{\underline{s}=\underline{0}}^{\underline{n}-\underline{1}} \zeta^{\underline{s}} I_{d_2}$.

3 The Ablow-Brenner theorem for multilevel block circulants

Ablow and Brenner [1] showed that $A \in \mathbb{C}^{n \times n}$ is a standard α -circulant $A = [a_{s-\alpha r}] \in \mathbb{C}^{n \times n}$ if and only if

$$([\delta_{r,s-1}]_{r,s=0}^{n-1}) A ([\delta_{r,s-1}]_{r,s=0}^{n-1})^{-\alpha} = A.$$

This was generalized to characterize unilevel block circulants in [8, Theorem 1]. Here we generalize it to multilevel block circulants.

Theorem 1 If $A = [G_{\underline{r}\underline{s}}]_{\underline{r},\underline{s}=\underline{0}}^{\underline{n}-\underline{1}}$ with $G_{\underline{r}\underline{s}} \in \mathbb{C}^{d_1 \times d_2}$ then $RAS^{-\underline{\alpha}} = A$ (see (11)) if and only if A is an $\underline{\alpha}$ -circulant; more precisely, if and only if

$$G_{rs} = A_{s-\alpha r}, \quad \underline{0} \leq \underline{r}, \underline{s} \leq \underline{n} - \underline{1},$$
 (17)

with

$$A_s = G_{0s}, \quad \underline{0} \leq \underline{s} \leq \underline{n} - \underline{1}. \tag{18}$$

PROOF. From (9) and (11), $RAS^{-\underline{\alpha}} = [G_{\underline{r}+\underline{1},\underline{s}+\underline{\alpha}}]^{\underline{n}-\underline{1}}_{\underline{r},\underline{s}=\underline{0}}$. Therefore we must show that (17) is equivalent to

$$G_{\underline{r}+\underline{1},\underline{s}+\underline{\alpha}} = G_{\underline{r}\,\underline{s}}, \quad \underline{0} \leq \underline{r},\underline{s} \leq \underline{n}-\underline{1}.$$
 (19)

If (17) is true then

$$G_{\underline{r}+\underline{1},\underline{s}+\underline{\alpha}} = A_{(s+\alpha)-(r+1)\alpha} = A_{\underline{s}-\underline{\alpha}\underline{r}} = G_{\underline{r}\underline{s}}, \quad \underline{0} \leq \underline{r},\underline{s} \leq \underline{n}-\underline{1}.$$

For the converse we consider blocks at each level independently. Insofar as they involve level p, (17)–(19) can be rewritten as

$$G_{\cdots,(r_p,s_p),\cdots} = A_{\cdots,(s_p-\alpha_p,r_p),\cdots} \quad 0 \le r_p, s_p \le n_p - 1,$$

 $A_{\cdots,(s_p),\cdots} = G_{\cdots,(0,s_p),\cdots} \quad 0 \le s_p \le n_p - 1,$ (20)

and

$$G_{\cdots,(r_p+1,s_p+\alpha_p),\cdots} = G_{\cdots,(r_p,s_p),\cdots} \quad 0 \le r_p, s_p \le n_p - 1.$$
 (21)

Now suppose (20) and (21) hold and

$$G_{\cdots,(r_p,s_p),\cdots} = A_{\cdots,(s_p-\alpha_pr_p),\cdots} \quad 0 \le s_p \le n_p - 1,$$
 (22)

for some $r_p < n_{p-1}$. Replacing s_p by $s_p - \alpha_p$ in (21) and (22) yields

$$G_{\cdots,(r_p+1,s_p),\cdots} = G_{\cdots,(r_p,s_p-\alpha_p),\cdots} \quad 0 \le r_p, s_p \le n_p - 1,$$

and

$$G_{\cdots,(r_p,s_p-\alpha_p),\cdots} = A_{\cdots,(s_p-\alpha_p(r_p+1)),\cdots} \quad 0 \le s \le n_p - 1.$$

Therefore

$$G_{\cdots,(r_p+1,s_p),\cdots} = A_{\cdots,(s_p-\alpha_p(r_p+1)),\cdots} \quad 0 \le s \le n_p-1,$$

which is (22) with r_p replaced by $r_p + 1$. \square

Remark 1 From (7), (11), and (12),

$$R^{\underline{u}} = \mathbf{R}_1^{u_1} \otimes \mathbf{R}_2^{u_2} \otimes \cdots \otimes \mathbf{R}_k^{u_k} \quad ext{and} \quad S^{\underline{v}} = \mathbf{S}_1^{v_1} \otimes \mathbf{S}_2^{v_2} \otimes \cdots \otimes \mathbf{S}_k^{v_k},$$

where

$$\mathbf{R}_j = I_{\mu_j} \otimes E_{n_j} \otimes I_{\nu_j d_1}$$
 and $\mathbf{S}_j = I_{\mu_j} \otimes E_{n_j} \otimes I_{\nu_j d_2}$.

(See (1)). Then, for example,

$$RAS^{-\underline{\alpha}} = A$$
 if and only if $\mathbf{R}_j A\mathbf{S}_i^{-\alpha_j} = A$, $1 \le j \le k$.

Theorem 2 If

$$A = [A_{\underline{s} - \underline{\alpha} \underline{r}}]_{r,s=0}^{\underline{n} - \underline{1}} \in \mathbb{C}^{\underline{n}:d_1 \times d_2} \quad and \quad B = [B_{\underline{s} - \underline{\alpha} \underline{r}}]_{r,s=0}^{\underline{n} - \underline{1}} \in \mathbb{C}^{\underline{n}:d_1 \times d_2}$$

then (i) $AB^* = [C_{\underline{s-r}}]_{r,s=0}^{\underline{n-1}} \in \mathbb{C}^{\underline{n}:d_1 \times d_1}$ with

$$C_{\underline{m}} = \sum_{\ell=0}^{\underline{n}-1} A_{\underline{\ell}} B_{\underline{\ell}-\underline{\alpha}\underline{m}}^*, \quad \underline{0} \leq \underline{m} \leq \underline{n} - \underline{1}. \tag{23}$$

(ii) If $\gcd(\underline{\alpha}, \underline{n}) = \underline{1}$ then $B^*A = [D_{\underline{s-r}}]_{\underline{r},\underline{s}=\underline{0}}^{\underline{n}-\underline{1}} \in \mathbb{C}^{\underline{n}:d_2 \times d_2}$ with

$$D_{\underline{m}} = \sum_{\ell=0}^{\underline{n-1}} B_{\underline{\ell}}^* A_{\underline{m}+\underline{\ell}}, \quad \underline{0} \leq \underline{m} \leq \underline{n} - \underline{1}.$$
 (24)

PROOF. (i) From Theorem 1, $A = RAS^{-\underline{\alpha}}$ and $B = RBS^{-\underline{\alpha}}$. Therefore $AB^* = RAB^*R^{-\underline{1}}$, so Theorem 1 with R = S implies that AB^* is a $\underline{1}$ -circulant. Computing the first block row $(\underline{r} = \underline{0})$ of AB^* yields (23).

(ii) Also, $B^*A = S\underline{\alpha}B^*AS^{-\underline{\alpha}}$, so

$$\mathbf{S}_{j}^{\alpha_{j}} B^{*} A \mathbf{S}_{j}^{-\alpha_{j}} = B^{*} A, \quad 1 \leq j \leq k.$$

Applying this equality β_j times where $\alpha_j \beta_j \equiv 1 \pmod{n_j}$ yields

$$S_i BAS_i^{-1} = B^*A, \quad 1 \le j \le k.$$

Now Theorem 1 and Remark 1 with R=S imply that B^*A is a $\underline{1}$ -circulant. Computing the first block row of B^*A yields $D_{\underline{m}}=\sum_{\underline{\ell}=\underline{0}}^{\underline{n}-\underline{1}}B^*_{-\underline{\alpha}\underline{\ell}}A_{\underline{m}-\underline{\alpha}\underline{\ell}}$. Since $\gcd(\underline{n},\underline{k})=\underline{1}$, $\underline{\ell}\to-\underline{\beta}\underline{\ell}$ is a permutation of $\mathcal{M}_{\underline{n}}$, so we can replace $\underline{\ell}$ by $-\underline{\beta}\underline{\ell}$ in the last sum to obtain (24).

Theorem 3 If

$$A = \left[A_{\underline{s} - \underline{\alpha} \underline{r}} \right]_{\underline{r}, \underline{s} = \underline{0}}^{\underline{n} - \underline{1}} \in \mathbb{C}^{\underline{n} : d_1 \times d_2} \quad and \quad B = \left[B_{\underline{s} - \underline{\beta} \underline{r}} \right]_{r, \underline{s} = \underline{0}}^{\underline{n} - \underline{1}} \in \mathbb{C}^{\underline{n} : d_2 \times d_3}$$
 (25)

then

$$AB = \left[C_{\underline{s} - \underline{\alpha}\beta} \right]_{r,s=0}^{\underline{n}-1} \in \mathbb{C}^{\underline{n}:d_1 \times d_3}, \tag{26}$$

with

$$C_{\underline{m}} = \sum_{\ell=0}^{\underline{n-1}} A_{\underline{\ell}} B_{\underline{m}-\underline{\beta}\underline{\ell}}, \quad \underline{0} \leq \underline{m} \leq \underline{n} - \underline{1}. \tag{27}$$

PROOF. Let $R = E \otimes I_{d_1}$, $S = E \otimes I_{d_2}$, and $T = E \otimes I_{d_3}$. (See (6)). From (25) and Theorem 1,

(a)
$$A = RAS^{-\underline{\alpha}}$$
 and (b) $B = SBT^{-\underline{\beta}}$.

Now write

$$T^{\underline{\beta}} = \mathbf{T}_1^{\beta_1} \otimes \mathbf{T}_2^{\beta_2} \otimes \cdots \otimes \mathbf{T}_k^{\beta_k}$$
 with $\mathbf{T}_j = I_j \otimes E_{n_j} \otimes I_{\nu_j d_3}$, $1 \leq j \leq k$.

From (b) $\mathbf{S}_j B \mathbf{T}_j^{-\beta_j} = B$, $1 \leq j \leq k$. Applying this equality α_j times yields $\mathbf{S}_j^{\alpha_j} B \mathbf{T}_j^{-\alpha_j \beta_j} = B$, $1 \leq j \leq k$. Therefore $S^{\underline{\alpha}} B T^{-\underline{\alpha}\underline{\beta}} = B$, by Remark 1. From this and (a), $R(AB)S^{-\underline{\alpha}\underline{\beta}} = AB$. Now Theorem 1 implies (26) with (27) obtained by computing the entries in the first block row of AB. \square

4 A dft characterization of multilevel α -circulants

Let $\{F_{\underline{\ell}} \mid \underline{\ell} \in \mathcal{M}_{\underline{n}}\}$ and $\{A_{\underline{m}} \mid \underline{m} \in \mathcal{M}_{\underline{n}}\} \subset \mathbb{C}^{d_1 \times d_2}$ be related by

(a)
$$F_{\underline{\ell}} = \sum_{\underline{m}=\underline{0}}^{\underline{n}-\underline{1}} \zeta^{\underline{\ell}\underline{m}} A_{\underline{m}}$$
 and (b) $A_{\underline{m}} = \frac{1}{c(\underline{n})} \sum_{\underline{\ell}=\underline{0}}^{\underline{n}-\underline{1}} \zeta^{-\underline{\ell}\underline{m}} F_{\underline{\ell}},$ (28)

which are equivalent, since $\sum_{\underline{\ell}=\underline{0}}^{\underline{n}-\underline{1}} \xi^{\underline{\alpha}\,\underline{\ell}} = c(\underline{n})\delta_{\underline{\alpha}\,\underline{0}}$. Denote

$$\mathcal{F}_{\mathcal{A}} = \bigoplus_{\ell=0}^{\underline{n-1}} F_{\underline{\ell}}.$$
 (29)

The set $\{F_{\underline{\ell}} \mid \underline{\ell} \in \mathcal{M}_{\underline{n}}\}$ is the discrete Fourier transform (dft) of the set $\{A_{\underline{m}} \mid \underline{m} \in \mathcal{M}_{\underline{n}}\}$.

Theorem 4 A matrix $A \in \mathbb{C}^{\underline{n}:d_1 \times d_2}$ is an $\underline{\alpha}$ -circulant $A = [A_{\underline{s}-\underline{\alpha}\underline{r}}]_{r,s=0}^{\underline{n}-\underline{1}}$ if and only if

$$A = U_{\underline{\alpha}} \mathcal{F}_{\mathcal{A}} Q^* = \sum_{\ell=0}^{n-1} P_{\underline{\alpha}\underline{\ell}} F_{\underline{\ell}} Q_{\underline{\ell}}^*$$
 (30)

(see (15) and (16)), where $\{A_{\underline{m}} \mid \underline{m} \in \mathcal{M}_{\underline{n}}\}\$ and $\{F_{\underline{\ell}} \mid \underline{\ell} \in \mathcal{M}_{\underline{n}}\}\$ are related as in (28).

PROOF. Suppose $A = [A_{\underline{s}-\underline{\alpha}\,\underline{r}}]^{\underline{n}-\underline{1}}_{\underline{r},\underline{s}=\underline{0}}$. From (28),

$$A_{\underline{s}-\underline{\alpha}\underline{r}} = \frac{1}{c(\underline{n})} \sum_{\ell=0}^{\underline{n}-1} \zeta^{-\underline{\ell}(\underline{s}-\underline{\alpha}\underline{r})} F_{\underline{\ell}}.$$

Hence

$$A = \frac{1}{c(\underline{n})} \sum_{\underline{\ell} = \underline{0}}^{\underline{n-1}} \begin{bmatrix} 1 \otimes I_{d_1} \\ \vdots \\ \zeta^{\underline{\ell}\underline{r}\underline{\alpha}} \otimes I_{d_1} \\ \vdots \\ \zeta^{\underline{\ell}(\underline{n-1})\underline{\alpha}} \otimes I_{d_1} \end{bmatrix} F_{\underline{\ell}} \begin{bmatrix} 1 \otimes I_{d_2} \\ \vdots \\ \zeta^{\underline{\ell}\underline{s}} \otimes I_{d_2} \\ \vdots \\ \zeta^{\underline{\ell}(\underline{n-1})} \otimes I_{d_2} \end{bmatrix}^H,$$

so (4), (12) and (15) imply (30). Conversely, suppose (30) holds. Then

$$RAS^{-\underline{\alpha}} = \sum_{\underline{\ell}=\underline{0}}^{\underline{n}-1} (RP_{\underline{\alpha}\underline{\ell}}) F_{\underline{\ell}} (SQ_{\underline{\ell}})^{-\underline{\alpha}} = \sum_{\underline{\ell}=\underline{0}}^{\underline{n}-1} (\zeta^{\underline{\alpha}\underline{\ell}} P_{\underline{\alpha}\underline{\ell}}) F_{\underline{\ell}} (\zeta^{-\underline{\alpha}\underline{\ell}} Q_{\underline{\ell}}^*)$$

$$= \sum_{\underline{\ell}=\underline{0}}^{\underline{n}-1} P_{\underline{\alpha}\underline{\ell}} F_{\underline{\ell}} Q_{\underline{\ell}}^* = A,$$

where (14) implies the second equality. Now Theorem 1 implies that A is an $\underline{\alpha}$ -circulant $A = [A_{\underline{s}-\underline{\alpha}\underline{r}}]_{\underline{r},\underline{s}=\underline{0}}^{\underline{n}-\underline{1}}$, and the argument given in the first half of this proof implies that $\{A_{\underline{m}} \mid \underline{m} \in \mathcal{M}_{\underline{n}}\}$ is as defined by (28). \square

The following theorem provides a representation of A that reduces to (30) if $gcd(\underline{\alpha}, \underline{n}) = \underline{1}$, but is more useful if $gcd(\underline{\alpha}, \underline{n}) > \underline{1}$.

Theorem 5 Suppose $gcd(\underline{\alpha}, \underline{n}) = \underline{q}$ and $\underline{p} = \underline{n}/\underline{q}$. Let

$$\mathbf{Q}_{\underline{\ell},\underline{\alpha}} = \begin{bmatrix} Q_{\underline{\ell}} & \cdots & Q_{\underline{\ell}+\underline{\nu}\underline{p}} & \cdots & Q_{\underline{\ell}+(\underline{q}-\underline{1})\underline{p}} \end{bmatrix}, \quad \underline{0} \leq \underline{\ell} \leq \underline{p} - \underline{1}, \tag{31}$$

$$Q_{\underline{\alpha}} = \begin{bmatrix} \mathbf{Q}_{\underline{0},\underline{\alpha}} & \cdots & \mathbf{Q}_{\underline{\ell},\underline{\alpha}} & \cdots & \mathbf{Q}_{\underline{p}-\underline{1},\underline{\alpha}} \end{bmatrix}, \tag{32}$$

$$V_{\underline{\alpha}} = \begin{bmatrix} P_{\underline{0}} & \cdots & P_{\underline{\ell}\,\underline{\alpha}} & \cdots & P_{(\underline{p}-\underline{1})\underline{\alpha}} \end{bmatrix}, \tag{33}$$

$$\mathbf{F}_{\underline{\ell},\underline{\alpha}} = \begin{bmatrix} F_{\underline{\ell}} & \cdots & F_{\underline{\ell}+\underline{\nu}\,\underline{p}} & \cdots & F_{\underline{\ell}+(\underline{q}-\underline{1})\underline{p}} \end{bmatrix}, \quad \underline{0} \leq \underline{\ell} \leq \underline{p} - \underline{1}, \tag{34}$$

and

$$\mathcal{F}_{\underline{\alpha}} = \bigoplus_{\underline{\ell}=0}^{\underline{p}-1} \mathbf{F}_{\underline{\ell},\underline{\alpha}}.$$
 (35)

Then $Q_{\underline{\alpha}}$ is unitary since its columns are simply a rearrangement of the columns of Q,

$$V_{\alpha}^* V_{\underline{\alpha}} = I_{c(p)d_1}, \tag{36}$$

and (30) can be rewritten as

$$A = \sum_{\ell=0}^{\underline{p-1}} P_{\underline{\alpha}\underline{\ell}} \mathbf{F}_{\underline{\ell},\underline{\alpha}} Q_{\underline{\ell},\underline{\alpha}}^* = \mathcal{V} \mathcal{F}_{\underline{\alpha}} Q_{\underline{\alpha}}^*. \tag{37}$$

PROOF. Since $\underline{\alpha} \ \underline{r} = \underline{\alpha} \ \underline{s}$ with $\underline{0} \le \underline{r}, \underline{s} \le \underline{p} - \underline{1}$ if and only if $\underline{r} = \underline{s}$, (13) implies (36). Since every $\underline{s} \in \mathcal{M}_{\underline{n}}$ can be written uniquely as $\underline{s} = \underline{\ell} + \underline{\nu} \ \underline{p}$ with $\underline{0} \le \underline{\ell} \le \underline{p} - \underline{1}$ and $\underline{0} \le \underline{\nu} \le q - \underline{1}$, the second equality in (30) can be written as

$$A = \sum_{\underline{\ell}=\underline{0}}^{\underline{p}-\underline{1}} \sum_{\underline{\nu}=\underline{0}}^{\underline{q}-\underline{1}} P_{\underline{\alpha}(\underline{\ell}+\underline{\nu}\underline{p})} F_{\underline{\ell}+\underline{\nu}\underline{p}} Q_{\underline{\ell}+\underline{\nu}\underline{p}}^* = \sum_{\underline{\ell}=\underline{0}}^{\underline{p}-\underline{1}} P_{\underline{\alpha}\underline{\ell}} \sum_{\underline{\nu}=\underline{0}}^{\underline{q}-\underline{1}} F_{\underline{\ell}+\underline{\nu}\underline{p}} Q_{\underline{\ell}+\underline{\nu}\underline{p}}^*, \quad (38)$$

where the second equality here is valid because $\underline{p\alpha} \equiv \underline{0} \pmod{\underline{n}}$. Therefore the first equality in (37) is valid because

$$\mathbf{F}_{\underline{\ell},\underline{\alpha}}\mathbf{Q}_{\underline{\ell},\underline{\alpha}}^* = \sum_{\nu=0}^{\underline{q}-\underline{1}} F_{\underline{\ell}+\underline{\nu}\underline{p}} Q_{\underline{\ell}+\underline{\nu}\underline{p}}^*, \quad 0 \le \underline{\ell} \le \underline{p} - \underline{1}.$$

Now (32)–(34) imply the second equality in (37).

5 Solution of Az = w and the least squares problem

In this section $A=[A_{\underline{s}-\underline{\alpha}\,\underline{r}}]^{\underline{n}-\underline{1}}_{\underline{r},\underline{s}=\underline{0}}$. If $z\in\mathbb{C}^{\underline{n}:d_2}$ and $w\in\mathbb{C}^{\underline{n}:d_1}$ we write

$$z = \sum_{\underline{s}=\underline{0}}^{\underline{n}-\underline{1}} Q_{\underline{s}} u_{\underline{s}} \quad \text{and} \quad w = \sum_{\underline{s}=\underline{0}}^{\underline{n}-\underline{1}} P_{\underline{s}} v_{\underline{s}} \quad \text{with} \quad u_{\underline{s}} \in \mathbb{C}^{d_2} \quad \text{and} \quad v_{\underline{s}} \in \mathbb{C}^{d_1}$$
 (39)

(see (15)), $\underline{0} \leq \underline{s} \leq \underline{n} - \underline{1}$.

Theorem 6 If $gcd(\underline{\alpha}, \underline{n}) = \underline{1}$ then

$$||Az - w||^2 = \sum_{\underline{s} = \underline{0}}^{\underline{n} - \underline{1}} ||F_{\underline{s}} u_{\underline{s}} - v_{\underline{\alpha} \underline{s}}||^2$$
(40)

where $\|\cdot\|$ is the Frobenius norm. Therefore the least squares problem for the $c(\underline{n})d_1 \times c(\underline{n})d_2$ matrix A reduces to $c(\underline{n})$ independent least squares problems for the $d_1 \times d_2$ matrices $F_{\underline{s}}, \underline{0} \leq \underline{s} \leq \underline{n} - \underline{1}$. Also,

$$Az = w \quad \text{if and only if} \quad F_{\underline{s}} \underline{u}_{\underline{s}} = v_{\underline{\alpha}\underline{s}}, \quad \underline{0} \leq \underline{s} \leq \underline{n} - \underline{1}.$$
 (41)

PROOF. From (30) and (39),

$$Az - w = \sum_{\underline{s}=\underline{0}}^{\underline{n}-\underline{1}} P_{\underline{\alpha}\underline{s}} F_{\underline{s}} u_{\underline{s}} - \sum_{\underline{s}=\underline{0}}^{\underline{n}-\underline{1}} P_{\underline{s}} v_{\underline{s}} = \sum_{\underline{s}=\underline{0}}^{\underline{n}-\underline{1}} P_{\underline{\alpha}\underline{s}} F_{\underline{s}} u_{\underline{s}} - \sum_{\underline{s}=\underline{0}}^{\underline{n}-\underline{1}} P_{\underline{\alpha}\underline{s}} v_{\underline{\alpha}\underline{s}}$$

$$= \sum_{s=0}^{\underline{n}-\underline{1}} P_{\underline{\alpha}\underline{s}} (F_{\underline{s}} u_{\underline{s}} - v_{\underline{\alpha}\underline{s}}), \tag{42}$$

where the second equality is valid because

$$\sum_{s=0}^{n-1} P_{\underline{s}} v_{\underline{s}} = \sum_{s=0}^{n-1} P_{\underline{\alpha} \, \underline{s}} v_{\underline{\alpha} \underline{s}},$$

since $\gcd(\underline{\alpha},\underline{n})=\underline{1}$. Since $P_{\underline{\alpha}\,\underline{r}}^*P_{\underline{\alpha}\,\underline{s}}=\delta_{\underline{r}\,\underline{s}}I_{\underline{n}:d_1}$ (again, because $\gcd(\underline{\alpha},\underline{n})=\underline{1}$), (42) implies (40), which implies (41)

Theorem 7 Suppose $gcd(\underline{\alpha}, \underline{n}) = \underline{q}$ and $\underline{p} = \underline{n}/\underline{q}$. Then Az = w has no solution unless

$$w = \sum_{\ell=0}^{\underline{p}-1} P_{\underline{\alpha}\,\underline{\ell}} v_{\underline{\alpha}\,\underline{\ell}},\tag{43}$$

in which case z is a solution if and only $z = \sum_{\underline{s}=\underline{0}}^{\underline{n}-\underline{1}} Q_{\underline{s}} u_{\underline{s}}$, where

$$\sum_{\nu=0}^{\underline{q}-\underline{1}} F_{\underline{\ell}+\underline{\nu}\underline{p}} u_{\underline{\ell}+\underline{\nu}\underline{p}} = v_{\underline{\alpha}\underline{\ell}}, \quad \underline{0} \leq \underline{\ell} \leq \underline{n} - \underline{1}. \tag{44}$$

PROOF. From (38) and (39),

$$Az = \sum_{\underline{\ell}=\underline{0}}^{\underline{p-1}} P_{\underline{\alpha},\underline{\ell}} \sum_{\underline{\nu}=\underline{0}}^{\underline{q-1}} F_{\underline{\ell}+\underline{\nu}\underline{p}} u_{\underline{\ell}+\underline{\nu}\underline{p}}.$$

Since $\left\{ \underline{\alpha} \ \underline{\ell} \ | \ \underline{0} \le \underline{\ell} \le \underline{p} - \underline{1} \right\}$ is a set of distinct multiindices, (13) implies that $P_{\underline{\alpha} \ \underline{\ell}}^* P_{\underline{\alpha} \ \underline{m}} = \delta_{\underline{\ell} \ \underline{m}}, \ \underline{0} \le \underline{\ell}, \ \underline{m} \le \underline{p} - \underline{1}$. This and (41) imply that Az = w has no solution unless (43) holds for some $v_{\underline{0}}, \ldots, v_{\underline{\alpha} \ \underline{\ell}}, \ldots, v_{\underline{\alpha} \ \underline{(p-1)}}$, in which case $z = \sum_{\underline{s} = \underline{0}}^{\underline{n-1}} F_{\underline{s}} u_{\underline{s}}$ is a solution if and only if (44) holds. \square

6 Commutativity

The following theorem generalizes the well known commutativity property of 1-circulants $[a_{s-r}]_{r,s=0}^{n-1} \in \mathbb{C}^{n\times n}$.

Theorem 8 Suppose $d_1 = d_2$, $gcd(\underline{\alpha}, \underline{n}) = \underline{1}$, and $\underline{\alpha}\underline{\beta} \equiv \underline{1} \pmod{\underline{n}}$. Let $A = [A_{\underline{s}-\underline{\alpha}\underline{r}}]_{\underline{r},\underline{s}=\underline{0}}^{\underline{n}-\underline{1}}$, $B = [B_{\underline{s}-\underline{\beta}\underline{r}}]_{\underline{r},\underline{s}=\underline{0}}^{\underline{n}-\underline{1}}$,

$$F_{\underline{\ell}} = \sum_{\underline{m}=\underline{0}}^{\underline{n}-\underline{1}} \zeta^{\underline{\ell}\underline{m}} A_{\underline{m}} \quad and \quad G_{\underline{\ell}} = \sum_{\underline{m}=\underline{0}}^{\underline{n}-\underline{1}} \zeta^{\underline{\ell}\underline{m}} B_{\underline{m}}, \quad \underline{0} \leq \underline{\ell} \leq \underline{n} - \underline{1}.$$

Then AB = BA if and only if

$$F_{\underline{\beta}\underline{\ell}}G_{\underline{\ell}} = G_{\underline{\alpha}\,\underline{\ell}}F_{\underline{\ell}}, \quad \underline{0} \preceq \underline{\ell} \preceq \underline{n} - \underline{1}.$$

PROOF. Since $\gcd(\underline{\alpha},\underline{n})=\gcd(\underline{\beta},\underline{n})=\underline{1}$, we may change summation indices $\underline{\ell}\to\underline{\alpha}\,\underline{\ell}$ and $\underline{\ell}\to\beta\underline{\ell}$. Therefore, from Theorem 4 with Q=P,

$$A = \sum_{\underline{\ell} = \underline{0}}^{\underline{n-1}} P_{\underline{\alpha}\underline{\ell}} F_{\underline{\ell}} P_{\underline{\ell}}^* = \sum_{\underline{\ell} = \underline{0}}^{\underline{n-1}} P_{\underline{\ell}} F_{\underline{\beta}\underline{\ell}} P_{\underline{\beta}\underline{\ell}}^*, \quad B = \sum_{\underline{\ell} = \underline{0}}^{\underline{n-1}} P_{\underline{\beta}\underline{\ell}} G_{\underline{\ell}} P_{\underline{\ell}}^* = \sum_{\underline{\ell} = \underline{0}}^{\underline{n-1}} P_{\underline{\ell}} G_{\underline{\alpha}\underline{\ell}} P_{\underline{\alpha}\underline{\ell}}^*,$$

$$AB = \sum_{\ell=0}^{\underline{n-1}} P_{\underline{\ell}} F_{\underline{\beta}\underline{\ell}} G_{\underline{\ell}} P_{\underline{\ell}}^*, \quad \text{and} \quad BA = \sum_{\ell=0}^{\underline{n-1}} P_{\underline{\ell}} G_{\underline{\alpha}\underline{\ell}} F_{\underline{\ell}} P_{\underline{\ell}}^*,$$

which implies the conclusion. \Box

7 The Moore-Penrose inverse of an α -circulant

In this section $\mathcal{A} = \{A_{\underline{m}} \mid \underline{m} \in \mathcal{M}_{\underline{n}}\}$ and $\mathcal{F} = \{F_{\underline{\ell}} \mid \underline{\ell} \in \mathcal{M}_{\underline{n}}\}$ are related as (28). Recall that the Moore-Penrose inverse of a matrix $G \in \mathbb{C}^{r \times s}$ is the unique matrix $G^{\dagger} \in \mathbb{C}^{s \times r}$ that satisfies the Penrose conditions

$$(GG^{\dagger})^* = GG^{\dagger}, \quad (G^{\dagger}G)^* = G^{\dagger}G, \quad GG^{\dagger}G = G \quad \text{and} \quad G^{\dagger}GG^{\dagger} = G^{\dagger}.$$

We need the following lemma.

Lemma 1 Suppose $L \in \mathbb{C}^{r \times p}$, $M \in \mathbb{C}^{s \times q}$, $L^*L = I_r$, $M^*M = I_s$, $G = LCM^*$, and $H = MC^{\dagger}L^*$. Then $H = G^{\dagger}$.

PROOF. (i) The following computations are straightforward:

$$GH = LCC^{\dagger}L^* = L(CC^{\dagger})^*L = (GH)^*,$$

$$HG = MC^{\dagger}CM^* = M(C^{\dagger}C)^*M^* = (HG)^*,$$

$$GHG = LCC^{\dagger}CM^* = LCM^* = G$$

and

$$HGH = MG^{\dagger}GG^{\dagger}L^* = MG^{\dagger}L^* = H,$$

so G and H satisfy the Penrose conditions. \square

For clarity we first consider the case where $gcd(\underline{\alpha}, \underline{n}) = \underline{1}$.

Theorem 9 If $A = [A_{\underline{s}-\underline{\alpha}\underline{r}}]_{\underline{r},\underline{s}=\underline{0}}^{\underline{n}-\underline{1}}$ and $\gcd(\underline{\alpha},\underline{n}) = \underline{1}$, then

$$A^{\dagger} = [B_{\underline{r}-\underline{\alpha},\underline{s}}]_{\underline{r},\underline{s}=\underline{0}}^{\underline{n}-\underline{1}} \quad with \quad B_{\underline{m}} = \frac{1}{c(\underline{n})} \sum_{\underline{\ell}=\underline{0}}^{\underline{n}-\underline{1}} \zeta^{\underline{\ell}\underline{m}} F_{\underline{\ell}}^{\dagger}, \quad \underline{0} \leq \underline{m} \leq \underline{n} - \underline{1}. \tag{45}$$

PROOF. From Theorem 4, $A = U_{\alpha} \mathcal{F}_{\mathcal{A}} P^*$ (see (15), (16), and (29)), which is written in expanded form in (30). As noted following (16), $U_{\underline{\alpha}}$ is unitary because $(\underline{\alpha}, \underline{n}) = \underline{1}$. Since P is unitary in any case, Lemma 1 with $L = U_{\underline{\alpha}}$, M = P, and $C = \mathcal{F}_A$ implies that

$$A^{\dagger} = P \mathcal{F}_{\mathcal{A}}^{\dagger} U_{\alpha}^{*} = \sum_{\underline{\ell}=\underline{0}}^{\underline{n}-\underline{1}} P_{\ell} F_{\ell}^{\dagger} P_{\underline{\alpha}\underline{\ell}}$$

$$= \frac{1}{c(\underline{n})} \sum_{\underline{\ell}=\underline{0}}^{\underline{n}-\underline{1}} \begin{bmatrix} 1 \otimes I_{d_{2}} \\ \vdots \\ \zeta^{\underline{\ell}\underline{r}} \otimes I_{d_{2}} \\ \vdots \\ \zeta^{\underline{\ell}(\underline{n}-\underline{1})} \otimes I_{d_{2}} \end{bmatrix} F_{\underline{\ell}}^{\dagger} \begin{bmatrix} 1 \otimes I_{d_{1}} \\ \vdots \\ \zeta^{\underline{\ell}\underline{\alpha}\underline{s}} \otimes I_{d_{1}} \\ \vdots \\ \zeta^{\underline{\ell}\underline{\alpha}(\underline{n}-\underline{1})} \otimes I_{d_{1}} \end{bmatrix}^{H}$$

$$= \frac{1}{c(\underline{n})} \begin{bmatrix} \sum_{\underline{\ell}=\underline{0}}^{\underline{n}-\underline{1}} \zeta^{\underline{\ell}(\underline{r}-\underline{\alpha}\underline{s})} F_{\ell}^{\dagger} \end{bmatrix}_{\underline{r},\underline{s}=\underline{0}}^{\underline{n}-\underline{1}} = [B_{\underline{r}-\underline{\alpha}\underline{s}}]_{\underline{r},\underline{s}=\underline{0}}^{\underline{n}-\underline{1}},$$

$$(46)$$

from (45).

Theorem 10 Let $A = [A_{\underline{s}-\underline{\alpha}\underline{r}}]_{\underline{r},\underline{s}=\underline{0}}^{\underline{n}-\underline{1}}$, $\gcd(\underline{\alpha},\underline{n}) = \underline{q}$, and $\underline{p} = \underline{k}/\underline{q}$. Let $\mathbf{F}_{\underline{\ell},\underline{\alpha}}$ be as in (34) and partition $\mathbf{F}_{\ell,\alpha}^{\dagger}$ as

$$\mathbf{F}_{\underline{\ell},\underline{\alpha}}^{\dagger} = \begin{bmatrix} G_{\underline{\ell},\underline{\alpha}} \\ \vdots \\ G_{\underline{\ell}+\underline{\nu}\underline{p},\underline{\alpha}} \\ \vdots \\ G_{\underline{\ell}+(q-\underline{1})p,\underline{\alpha}} \end{bmatrix}, \quad \underline{0} \leq \underline{\ell} \leq \underline{p} - \underline{1}, \tag{47}$$

where $G_{\underline{\ell},\underline{\alpha}} \in \mathbb{C}^{d_2 \times d_1}$, $\underline{0} \leq \underline{\ell} \leq \underline{n} - \underline{1}$. Then

$$A^{\dagger} = [B_{\underline{r}-\underline{\alpha}\underline{s}}]_{\underline{r},\underline{s}=\underline{0}}^{\underline{n}-\underline{1}} \quad with \quad B_{\underline{m}} = \frac{1}{c(\underline{n})} \sum_{\ell=0}^{\underline{n}-\underline{1}} \zeta^{\underline{\ell}\underline{m}} G_{\underline{\ell},\underline{\alpha}}, \quad \underline{0} \leq \underline{m} \leq \underline{n} - \underline{1}. \tag{48}$$

PROOF. From Theorem 5 (specifically, (37)), $A = \mathcal{V}_{\underline{\alpha}} \mathcal{F}_{\underline{\alpha}} \mathcal{Q}_{\underline{\alpha}}^*$. Recalling (36), Lemma 1 with $L = \mathcal{V}_{\underline{\alpha}}$, $M = \mathcal{Q}_{\underline{\alpha}}$, and $C = \mathcal{F}_{\underline{\alpha}}$ implies that

$$A^{\dagger} = \mathcal{Q}_{\underline{\alpha}} \mathcal{F}_{\underline{\alpha}}^{\dagger} \mathcal{V}_{\underline{\alpha}}^{*} = \sum_{\underline{\ell} = \underline{0}}^{\underline{p} - 1} \mathbf{Q}_{\underline{\ell},\underline{\alpha}} \mathbf{F}_{\underline{\ell},\underline{\alpha}}^{\dagger} P_{\underline{\alpha}\,\underline{\ell}}^{*} = \sum_{\underline{\ell} = \underline{0}}^{\underline{p} - 1} \left(\sum_{\underline{\nu} = \underline{0}}^{\underline{q} - 1} \mathcal{Q}_{\underline{\ell} + \underline{\nu}\,\underline{p}} G_{\underline{\ell} + \underline{\nu}\,\underline{p},\underline{\alpha}} \right) P_{\underline{\alpha}\,\underline{\ell}}^{*},$$

where the second equality follows from (32), (33), and (35) and the third equality follows from (31) and (47). Since $P_{\underline{\alpha}(\underline{\ell}+\underline{\nu}\,\underline{p})} = P_{\underline{\alpha}\,\underline{\ell}}, \underline{0} \leq \underline{\nu} \leq \underline{q} - \underline{1}$, we can now write

$$A^\dagger = \sum_{\underline{\ell}=\underline{0}}^{\underline{p}-\underline{1}} \underbrace{Q_{\underline{\ell}+\underline{\nu}\,\underline{p}}}_{\underline{P}} G_{\underline{\ell}+\underline{\nu}\,\underline{p},\underline{\alpha}} P_{\underline{\alpha}(\underline{\ell}+\underline{\nu}\,\underline{p})}^* = \sum_{\underline{\ell}=\underline{0}}^{\underline{n}-\underline{1}} \underline{Q_{\underline{\ell}}} G_{\underline{\ell},\underline{\alpha}} P_{\underline{\alpha}\,\underline{\ell}}^*.$$

Now (4) and (12) imply that

$$A^{\dagger} = \frac{1}{c(\underline{n})} \sum_{\underline{\ell}=\underline{0}}^{\underline{n}-\underline{1}} \begin{bmatrix} 1 \otimes I_{d_2} \\ \vdots \\ \zeta^{\underline{\ell}\underline{r}} \otimes I_{d_2} \\ \vdots \\ \zeta^{\underline{\ell}(\underline{n}-\underline{1})} \otimes I_{d_2} \end{bmatrix} G_{\underline{\ell},\underline{\alpha}} \begin{bmatrix} 1 \otimes I_{d_1} \\ \vdots \\ \zeta^{\underline{\ell}\underline{\alpha}\underline{s}} \otimes I_{d_1} \\ \vdots \\ \zeta^{\underline{\ell}\underline{\alpha}(\underline{n}-\underline{1})} \otimes I_{d_1} \end{bmatrix}^{H}$$

$$= \frac{1}{c(\underline{n})} \left[\sum_{\underline{\ell}=\underline{0}}^{\underline{n}-\underline{1}} \zeta^{\underline{\ell}(\underline{r}-\underline{\alpha}\underline{s})} G_{\underline{\ell},\underline{\alpha}} \right]_{r,s=0}^{\underline{n}-\underline{1}} = [B_{\underline{r}-\underline{\alpha}\underline{s}}]_{\underline{r},\underline{s}=\underline{0}}^{\underline{n}-\underline{1}}$$

with $B_{\underline{0}}, ..., B_{\underline{m}}, ..., B_{\underline{n-1}}$ as in (48).

Remark 2 If $A = [a_{\underline{s} - \underline{\alpha}\underline{r}}]^{\underline{n-1}}_{\underline{r},\underline{s} = \underline{0}} \in \mathbb{C}^{\underline{n}:1 \times 1}$ then (28) and (34) reduce to

$$f_{\underline{\ell}} = \sum_{\underline{m}=\underline{0}}^{\underline{n}-\underline{1}} a_{\underline{m}} \zeta^{\underline{\ell}\underline{m}} \text{ and } \mathbf{f}_{\underline{\ell},\underline{\alpha}} = \begin{bmatrix} f_{\underline{\ell}} & f_{\underline{\ell}+\underline{p}} & \cdots & f_{\underline{\ell}+(\underline{q}-\underline{1})\underline{p}} \end{bmatrix}, \quad \underline{0} \leq \underline{\ell} \leq \underline{p} - \underline{1}.$$

Since

$$\mathbf{f}_{\underline{\ell},\underline{\alpha}}^{\dagger} = \frac{1}{\|\mathbf{f}_{\underline{\ell},\underline{\alpha}}\|^2} \begin{bmatrix} \overline{f}_{\underline{\ell}} \\ \vdots \\ \overline{f}_{\underline{\ell}+\underline{\nu}\underline{p}} \\ \vdots \\ \overline{f}_{\underline{\ell}+(\underline{q}-\underline{1})\underline{p}} \end{bmatrix} \quad \text{if} \quad \mathbf{f}_{\underline{\ell},\underline{\alpha}} \neq 0 \quad \text{or} \quad \mathbf{f}_{\underline{\ell},\underline{\alpha}}^{\dagger} = 0 \quad \text{if} \quad \mathbf{f}_{\underline{\ell},\underline{\alpha}} = 0,$$

it follows that

$$g_{\underline{\ell}+\underline{\nu}\underline{p},\underline{\alpha}} = \begin{cases} \overline{f}_{\underline{\ell}+\underline{\nu}\underline{p}}/|\mathbf{f}_{\underline{\ell},\underline{\alpha}}|^2 & \text{if} \quad \mathbf{f}_{\underline{\ell},\underline{\alpha}} \neq 0, \\ 0 & \text{if} \quad \mathbf{f}_{\underline{\ell},\underline{\alpha}} = \underline{0}, \end{cases} \quad \underline{0} \leq \underline{\ell} \leq \underline{p} - \underline{1}, \quad \underline{0} \leq \underline{\nu} \leq \underline{q} - \underline{1}.$$

Hence

$$A^{\dagger} = [b_{\underline{r}-\underline{\alpha}\underline{s}}]_{r,\underline{s}=\underline{0}}^{\underline{n}-\underline{1}} \quad \text{where} \quad b_m = \frac{1}{c(\underline{n})} \sum_{\underline{\ell}=\underline{0}}^{\underline{n}-\underline{1}} g_{\underline{\ell},\underline{\alpha}} \zeta^{\underline{\ell}\underline{m}}.$$

8 The case where $gcd(\alpha, n) = 1$ and $d_1 = d_2$

In this section we assume that $gcd(\underline{\alpha}, \underline{n}) = \underline{1}$ and $d_1 = d_2 = d$, so (30) becomes

$$A = U_{\alpha} \mathcal{F}_{\mathcal{A}} P^*. \tag{49}$$

Theorem 11 $A = [A_{\underline{s}-\underline{\alpha}\,\underline{r}}]_{\underline{r},\underline{s}=\underline{0}}^{\underline{n}-\underline{1}}$ is invertible if and only if $\gcd(\underline{\alpha},\underline{n}) = \underline{1}$ and $F_{\underline{0}},\ldots,F_{\underline{m}},\ldots,F_{\underline{n}-\underline{1}}$ are all invertible, in which case

$$A^{-1} = \left[B_{\underline{r} - \underline{\alpha}\underline{s}}\right]_{\underline{r},\underline{s} = \underline{0}}^{\underline{n} - \underline{1}} \quad with \quad B_{\underline{m}} = \frac{1}{c(\underline{n})} \sum_{\ell=0}^{\underline{n} - \underline{1}} \zeta^{\underline{\ell}\underline{m}} F_{\underline{\ell}}^{-1}, \quad \underline{0} \leq \underline{m} \leq \underline{n} - \underline{1}, \quad (50)$$

and the solution of Az = w is $z = \sum_{\underline{\ell}=\underline{0}}^{\underline{n-1}} P_{\underline{\ell}} F_{\underline{\ell}}^{-\underline{1}} v_{\underline{\alpha}\underline{\ell}}$.

PROOF. If A is invertible then $U_{\underline{\alpha}}$ must be invertible, which is true if and only if $\gcd(\underline{\alpha},\underline{n})=\underline{1}$. Hence this is a necessary condition for A to be invertible. If $\gcd(\underline{\alpha},\underline{n})=\underline{1}$ then (41) implies that A is invertible if and only if $F_{\underline{0}},\ldots,F_{\underline{s}},\ldots,F_{\underline{n-1}}$ are all invertible or, equivalently, $F_{\underline{s}}^{\dagger}=F_{\underline{s}}^{-1}, \underline{0} \leq \underline{s} \leq \underline{n-1}$. Now Theorem 9 implies (50) which, with (39) and (41), implies the final conclusion. \square

Theorem 12 Suppose A is as in (49) and $\underline{\alpha}\beta \equiv \underline{1} \pmod{\underline{n}}$. Then:

- (i) A is Hermitian if and only if $P_{\underline{\beta}\underline{\ell}}F_{\underline{\beta}\underline{\ell}}^* = P_{\underline{\alpha}\underline{\ell}}F_{\underline{\ell}}, \underline{0} \leq \underline{\ell} \leq \underline{n} \underline{1}$
- (ii) A is normal if and only if $F_{\underline{\beta}\underline{\ell}}F_{\underline{\beta}\underline{\ell}}^* = F_{\underline{\ell}}^*F_{\underline{\ell}}, \underline{0} \leq \underline{\ell} \leq \underline{n} \underline{1}$
- (iii) A is EP (i.e., $A^{\dagger}A = AA^{\dagger}$) if and only if $F_{\underline{\ell}}^{\dagger}F_{\underline{\ell}} = F_{\underline{\beta}\underline{\ell}}F_{\underline{\beta}\underline{\ell}}^{\dagger}$, $\underline{0} \leq \underline{\ell} \leq \underline{n} \underline{1}$.

PROOF. From (49) and (46) with $\underline{\alpha} = \underline{1}$,

$$A = \sum_{\ell=0}^{\underline{n-1}} P_{\underline{\alpha}\underline{\ell}} F_{\underline{\ell}} P_{\underline{\ell}}^*, \quad A^* = \sum_{\ell=0}^{\underline{n-1}} P_{\underline{\ell}} F_{\underline{\ell}}^* P_{\underline{\alpha}\underline{\ell}}^*, \quad \text{and} \quad A^{\dagger} = \sum_{\ell=0}^{\underline{n-1}} P_{\underline{\ell}} F_{\underline{\ell}}^{\dagger} P_{\underline{\alpha}\underline{\ell}}^*. \quad (51)$$

(i) Since $\underline{\alpha}\underline{\beta} \equiv 1 \pmod{\underline{n}}$, replacing $\underline{\ell}$ by $\underline{\beta}\underline{\ell}$ in the second sum in (51) yields $A^* = \sum_{\underline{\ell}=\underline{0}}^{\underline{n}-\underline{1}} P_{\underline{\beta}\underline{\ell}} F_{\underline{\beta}\underline{\ell}}^* P_{\underline{\ell}}^*$, and comparing this with the first sum in (51) yields (i). (ii) From (51),

$$AA^* = \sum_{\ell=0}^{\underline{n-1}} P_{\underline{\alpha}\underline{\ell}} F_{\underline{\ell}} F_{\underline{\ell}}^* P_{\underline{\alpha}\underline{\ell}}^* = \sum_{\ell=0}^{\underline{n-1}} P_{\underline{\ell}} F_{\underline{\beta}\underline{\ell}} F_{\underline{\beta}\underline{\ell}}^* P_{\underline{\ell}}^* \quad \text{and} \quad A^*A = \sum_{\ell=0}^{\underline{n-1}} P_{\underline{\ell}} F_{\underline{\ell}}^* F_{\underline{\ell}} P_{\underline{\ell}}^*,$$

which implies (ii).

(iii) From (51).

$$AA^{\dagger} = \sum_{\ell=0}^{n-1} P_{\underline{\alpha}\underline{\ell}} F_{\underline{\ell}} F_{\underline{\ell}}^{\dagger} P_{\underline{\alpha}\underline{\ell}}^{*} = \sum_{\ell=0}^{n-1} P_{\underline{\ell}} F_{\underline{\beta}\underline{\ell}} F_{\underline{\beta}\underline{\ell}}^{\dagger} P_{\underline{\ell}}^{*} \quad \text{and} \quad A^{\dagger}A = \sum_{\ell=0}^{n-1} P_{\underline{\ell}} F_{\underline{\ell}}^{\dagger} F_{\underline{\ell}} P_{\underline{\ell}}^{*},$$

which implies (iii). □

Remark 3 If A is a square matrix and there is a matrix B such that ABA = A, BAB = B, and AB = BA, then B is unique and is called the group inverse of A, denoted by $B = A^{\#}$. Theorem 12(iii) implies that $A^{\dagger} = A^{\#}$ if and only if $F_{\underline{\ell}}^{\dagger} F_{\underline{\ell}} = F_{\underline{\beta}\underline{\ell}} F_{\underline{\beta}\underline{\ell}}^{\dagger}$, $\underline{0} \leq \underline{\ell} \leq \underline{n} - \underline{1}$.

9 The eigenvalue problem with $\alpha = 1$

Here we assume that $\underline{\alpha} = \underline{1}$ and $d_1 = d_2 = d$, so (6) and (12) reduce to

$$R = S = E_1 \otimes E_2 \otimes \cdots \otimes E_k \otimes I_d = ([\delta_{\underline{r},\underline{s}-\underline{1}}]^{\underline{n}-\underline{1}}_{\underline{r},\underline{s}=\underline{0}}) \otimes I_d,$$

$$P_{\underline{s}} = Q_{\underline{s}} = \phi_{\underline{s}} \otimes I_d, \quad \underline{0} \leq \underline{s} \leq \underline{n} - \underline{1},$$

and (30) reduces to

$$A = P \mathcal{F}_{\mathcal{A}} P^* = \sum_{s=0}^{\underline{n}-1} P_s F_s P_s^*.$$

The following theorem and its proof are motivated by [2, Theorem 2].

Theorem 13 Let

$$\mathcal{S}_R = \bigcup_{\ell=0}^{\underline{n-1}} \left\{ z \in \mathbb{C}^{\underline{n}:d} \mid Rz = \zeta^{\underline{\ell}} z \right\}.$$

If λ is an eigenvalue of A let $\mathcal{E}_A(\lambda)$ be the λ -eigenspace of A; i.e.

$$\mathcal{E}_A(\lambda) = \{ z \mid Az = \lambda z \}.$$

Then:

- (i) If λ is an eigenvalue of $A = [A_{\underline{s-r}}]_{\underline{r,s=0}}^{\underline{n-1}}$ then $\mathcal{E}_A(\lambda)$ has a basis in \mathcal{S}_R .
- (ii) If $A \in \mathbb{C}^{\underline{n}:d \times d}$ and has $c(\underline{n})d$ linearly independent eigenvectors in \mathcal{S}_R , then A is a 1-circulant.

PROOF. (i) From (41) with $w=\lambda z$ and $\underline{\alpha}=\underline{1}, z=\sum_{\underline{\ell}=0}^{\underline{k}-\underline{1}}P_{\underline{\ell}}u_{\underline{\ell}}\in\mathcal{E}_A(\lambda)$ if and only if $F_{\underline{\ell}}u_{\underline{\ell}}=\lambda u_{\underline{\ell}}, \quad \underline{0}\leq\underline{\ell}\leq\underline{n}-\underline{1}$. Therefore λ is an eigenvalue of A if and only if it is an eigenvalue of $F_{\underline{\ell}}$ for some $\underline{\ell}\in\mathcal{M}_{\underline{n}}$. Let \mathcal{T}_λ be the subset of $\mathcal{M}_{\underline{n}}$ for which this is true. Then $\mathcal{E}_A(\lambda)$ consists of linear combinations of the vectors of the form $P_{\underline{\ell}}u_{\underline{\ell}}$ with $\underline{\ell}\in\mathcal{T}_\lambda$ and $(\lambda,u_{\underline{\ell}})$ an eigenpair of $F_{\underline{\ell}}$. Since $RP_{\underline{\ell}}=\zeta^{\underline{\ell}}P_{\underline{\ell}}$ (see (6)), this completes the proof of (i).

(ii) From Theorem 1 with R=S and $\underline{\alpha}=\underline{1}$, we must show that RA=AR. If $Az=\lambda z$ and $Rz=\xi^{\underline{s}}z$ then $RAz=\lambda Rz=\lambda \xi^{\underline{s}}z$ and $ARz=\xi^{\underline{s}}Az=\xi^{\underline{s}}\lambda z$. Hence ARz=RAz for all z in a basis for $\mathbb{C}^{\underline{n}:d}$, so AR=RA. \square

Theorem 14 Suppose $\{F_{\underline{\ell}} \mid \underline{\ell} \in \mathcal{M}_{\underline{n}}\}$ and $\{A_{\underline{m}} \mid \underline{m} \in \mathcal{M}_{\underline{n}}\}$ are related as in (28), and $F_{\underline{\ell}} = \Psi_{\underline{\ell}} J_{\underline{\ell}} \Psi_{\underline{\ell}}^{-1}$ is the Jordan canonical form of $F_{\underline{\ell}}$, $\underline{0} \leq \underline{\ell} \leq \underline{n} - \underline{1}$. Let

$$\Gamma = \left[\begin{array}{cccc} P_{\underline{0}} \Psi_{\underline{0}} & \cdots & P_{\underline{\ell}} \Psi_{\underline{\ell}} & \cdots & P_{\underline{n}} \Psi_{\underline{n}} \end{array} \right].$$

Then

$$[A_{\underline{s}-\underline{r}}]_{\underline{r},\underline{s}=\underline{0}}^{\underline{n}-\underline{1}} = \Gamma \left(\bigoplus_{\underline{\ell}=\underline{0}}^{\underline{n}-\underline{1}} J_{\underline{\ell}} \right) \Gamma^{-1}.$$

In particular, suppose that $F_{\underline{0}}, \ldots, F_{\underline{\ell}}, \ldots, F_{\underline{n-1}}$ are all diagonalizable with spectral decompositions

$$F_{\underline{\ell}} = T_{\underline{\ell}} D_{\underline{\ell}} T_{\underline{\ell}}^*, \quad \underline{0} \leq \ell \leq \underline{n} - \underline{1},$$

and

$$\Delta = \left[\begin{array}{ccc} P_{\underline{0}} D_{\underline{0}} & \cdots & P_{\underline{\ell}} D_{\underline{\ell}} & \dots & P_{\underline{n-1}} D_{\underline{n-1}} \end{array} \right].$$

Then

$$A = \Delta \left(\bigoplus_{\ell=0}^{\underline{n-1}} D_{\underline{\ell}} \right) \Delta^{-1}.$$

References

- [1] C. M. Ablow, J. L. Brenner, Roots and canonical forms for circulant matrices, Trans. Amer. Math. Soc. 107 (1963) 360–376.
- [2] A. L. Andrew, Eigenvectors of certain matrices, Linear Algebra Appl. 7 (1973) 151–162.
- [3] V. Olshevsky, I. Oseledets and E. Tyrtyshnikov, Tensor properties of multilevel Toeplitz and related matrices, Lin. Alg. Appl. 412 (2006) 1–21
- [4] S. Serra Capizzano, A Korovkin-type theory for finite Toeplitz operators via matrix algebras, Numerische Mathematik 82 (1999) 117–142.
- [5] S. Serra Capizzano, A Korovkin based approximation of multilevel Toeplitz matrices (with rectangular unstructured blocks) via multilevel trigonometric matrix spaces, SIAM Journal on Numerical Analysis 36 (1999) 1831–1857.
- [6] S. Serra Capizzano and E. Tyrtyshnikov, Any circulant-like preconditioner for multilevel matrices is not superlinear, SIAM J. Matrix Anal. Appl. 21-2 (1999) 431Ű-439.
- [7] S. Serra-Capizzano, Stefano and C. Tablino-Possio, Multigrid methods for multi-level circulant matrices SIAM J. Sci. Comput. 26 (2004) 55-Ű85.
- [8] W. F. Trench, Properties of unilevel block circulants, Linear Algebra Appl. 430 (2009) 2012Ű-2025.
- [9] E. Tyrtyshnikov, Optimal and superoptimal circulant preconditioners, SIAM J. Matrix Anal. Appl. 13 (1992) 459-473.
- [10] E. E. Tyrtyshnikov, Toeplitz matrices, some analogs and applications (in Russian), Inst. of Numer. Math., Rus. Acad. of Sci. (1989).

[11] V. V. Voevodin, E. E. Tyrtyshnikov, Computer Processes with Toeplitz Matrices, Nauka, Moscow, 1987 (in Russian),