Properties of multilevel block $\underline{\alpha}$-circulants

William F. Trench*
Trinity University, San Antonio, Texas 78212-7200, USA
Mailing address: 659 Hopkinton Road, Hopkinton, NH 03229 USA

Abstract

In a previous paper we characterized unilevel block α-circulants $A=\left[A_{s-\alpha r}\right]_{r, s=0}^{n-1}$, $A_{m} \in \mathbb{C}^{d_{1} \times d_{2}}, 0 \leq m \leq n-1$, in terms of the discrete Fourier transform $\mathcal{F}_{A}=$ $\left\{F_{0}, F_{1}, \ldots, F_{n-1}\right\}$ of $\mathcal{A}=\left\{A_{0}, A_{1} \ldots, A_{n-1}\right\}$, defined by $F_{\ell}=\frac{1}{n} \sum_{m=0}^{n-1} e^{-2 \pi i \ell m / n} A_{m}$. We showed that most theoretical and computational problems concerning A can be conveniently studied in terms of corresponding problems concerning the Fourier coefficients $F_{0}, F_{1}, \ldots, F_{n-1}$ individually. In this paper we show that analogous results hold for $(k+1)$-level matrices, where the first k levels have block circulant structure and the entries at the $(k+1)$-st level are unstructured rectangular matrices.

MSC: 15A09; 15A15; 15A18; 15A99

Keywords: Circulant; Block circulant; Multilevel; Discrete Fourier transform; MoorePenrose Inverse; Eigenvalue problem;

1 Introduction

We consider $(k+1)$-level block matrices where the first k levels are circulant with orders $n_{1}, n_{2}, \ldots, n_{k} \geq 2$ and the entries in the $(k+1)$-st level are arbitrary $d_{1} \times d_{2}$ matrices with $d_{1}, d_{2} \geq 1$. The systematic study of multilevel matrices was initiated by Voevodin and Tyrtyshnikov in the Russian publication [11], and in the English mathematical literature by Tyrtyshnikov [9, 10].

If $p \geq 2$ is an integer, let $\mathbb{Z}_{p}=\{0,1, \ldots, p-1\}$. Suppose $n_{1}, n_{2}, \ldots, n_{k}$ are integers ≥ 2 and let

$$
\mathcal{M}_{\underline{n}}=\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}} \times \cdots \times \mathbb{Z}_{n_{k}}
$$

We denote members of $\mathcal{M}_{\underline{n}}$ by $\underline{r}=\left(r_{1}, r_{2}, \ldots, r_{k}\right), \underline{s}=\left(s_{1}, s_{2}, \ldots, s_{k}\right)$, etc.; in particular, $\underline{0}=(0,0, \ldots, 0)$ and $\underline{1}=(1,1, \ldots, 1)$.

[^0]Let
$c(\underline{r})=\prod_{j=1}^{k} r_{j}, \quad \mu_{j}=\prod_{i=1}^{j-1} n_{i}, \quad$ and $v_{j}=\prod_{i=j+1}^{k} n_{i}, 1 \leq j \leq k, \quad$ with $\mu_{1}=v_{k}=1$.
Following Tyrtyshnikov, we call members of $\mathcal{M}_{\underline{n}}$ multiindices. Henceforth it is be understood that multiindices are ordered lexicographically; i.e., $\underline{r}=\underline{s}$ if $r_{j}=s_{j}$, $1 \leq j \leq k ; \underline{r} \prec \underline{s}$ (which we also write as $\underline{s} \succ \underline{r}$) if $r_{1}<s_{1}$ or $r_{j}=s_{j}, 1 \leq j \leq i<k$ and $r_{i+1}<s_{i+1}$; and $\underline{r} \preceq \underline{s}$ if $\underline{r}=\underline{s}$ or $\underline{r} \prec \underline{s}$. If the members of $\mathcal{M}_{\underline{n}}$ are listed in lexicographic order then the position of \underline{r} in the list is

$$
\gamma(\underline{r})=\sum_{j=1}^{k} r_{j} \prod_{i=j+1}^{k} n_{i}, \quad \underline{0} \preceq \underline{r} \preceq \underline{n}-\underline{1} .
$$

If $\left(e_{0 m}, e_{1 m}, \ldots, e_{m-1, m}\right)$ is the natural basis for \mathbb{C}^{m} and

$$
e_{\underline{r}}=e_{r_{1} n_{1}} \otimes e_{r_{2} n_{2}} \otimes \cdots \otimes e_{r_{k} n_{k}}, \quad \underline{0} \preceq \underline{r} \leq \underline{n}-\underline{1},
$$

then $\mathscr{B}=\left(e_{\underline{0}}, \ldots, e_{\underline{r}}, \ldots, e_{\underline{n}-\underline{1}}\right)$ is a multilevel basis for $\mathbb{C}^{c} \underline{(\underline{n}}$. For later reference we note that

$$
\begin{equation*}
\text { (a) } \quad\left(e_{\underline{r}} \otimes e_{\underline{s}}^{T}\right) e_{\underline{\ell}}=\delta_{\underline{\ell} \underline{s}} e_{\underline{r}} \quad \text { and (b) } \quad\left(e_{\underline{r}} \otimes e_{\underline{\ell}}^{T}\right)\left(e_{\underline{m}} \otimes e_{\underline{s}}^{T}\right)=\delta_{\underline{\ell} \underline{m}} e_{\underline{r}} \otimes e_{\underline{s}}^{T} \text {. } \tag{2}
\end{equation*}
$$

If d_{1} and d_{2} are positive integers then arbitrary vectors $x \in \mathbb{C}^{d_{2} c(\underline{n})}$ and $y \in$ $\mathbb{C}^{d_{1} c(\underline{n})}$ can be written uniquely as

$$
x=\sum_{\underline{s}=\underline{0}}^{\underline{n}-1}\left(e_{\underline{s}} \otimes x_{\underline{s}}\right)=\left[\begin{array}{c}
x_{\underline{0}} \\
\vdots \\
x_{\underline{r}} \\
\vdots \\
x_{\underline{n}-1}
\end{array}\right] \quad \text { with } \quad x_{\underline{s}} \in \mathbb{C}^{d_{2}}, \quad \underline{0} \preceq \underline{s} \preceq \underline{n}-\underline{1} \text {, }
$$

and

$$
y=\sum_{\underline{s}=\underline{0}}^{\underline{n}-\underline{1}}\left(e_{\underline{s}} \otimes y_{\underline{s}}\right)=\left[\begin{array}{c}
y_{\underline{0}} \\
\vdots \\
y_{\underline{r}} \\
\vdots \\
y_{\underline{n}-\underline{1}}
\end{array}\right] \quad \text { with } \quad y_{\underline{s}} \in \mathbb{C}^{d_{1}}, \quad \underline{0} \preceq \underline{s} \preceq \underline{n}-\underline{1}
$$

Henceforth we denote the sets of vectors in $\mathbb{C}^{c(\underline{n}) d_{2}}$ and $\mathbb{C}^{c} \underline{(n)} d_{1}$ written in these forms as $\mathbb{C} \underline{n}: d_{2}$ and $\mathbb{C} \underline{n}: d_{1}$, respectively. A linear transformation $L: \mathbb{C} \underline{n}: d_{2} \rightarrow \mathbb{C} \underline{n}: d_{1}$ can be written uniquely as $y=H x$, where

$$
\begin{equation*}
H=\sum_{\underline{r}, \underline{s}=\underline{0}}^{\underline{n}-1}\left(e_{\underline{r}} \otimes e_{\underline{s}}^{T}\right) \otimes H_{\underline{r} \underline{s}}=\left[H_{\underline{r} \underline{s}}^{\underline{n} \underline{r}, \underline{1}=\underline{0}} \text { with } H_{\underline{r} \underline{s}} \in \mathbb{C}^{d_{1} \times d_{2}}, \quad \underline{0} \preceq \underline{r}, \underline{s} \preceq \underline{n}-\underline{1} ;\right. \tag{3}
\end{equation*}
$$

thus,

$$
\begin{aligned}
y & =H x=\left(\sum_{\underline{r}, \underline{s}=\underline{0}}^{\underline{n}-\underline{1}}\left(e_{\underline{r}} \otimes e_{\underline{s}}^{T}\right) \otimes H_{\underline{r} \underline{s}}\right)\left(\sum_{\underline{\ell}=\underline{0}}^{\underline{n}-1} e_{\underline{\ell}} \otimes x_{\underline{\ell}}\right) \\
& =\sum_{\underline{r}, \underline{s}, \underline{\ell}=\underline{0}}^{n-1}\left(e_{\underline{r}} \otimes e_{\underline{s}}^{T}\right) e_{\underline{\ell}} \otimes H_{\underline{r} \underline{s}} x_{\underline{\ell}}=\sum_{\underline{r}, \underline{s}=\underline{0}}^{n-1} e_{\underline{r}} \otimes H_{\underline{r} \underline{s}} x_{\underline{s}},
\end{aligned}
$$

$\underline{0} \preceq \underline{r} \preceq \underline{n}-\underline{1}$, from (2)(a). We will denote the set of matrices in $\left.\mathbb{C}^{c}(\underline{n}) d_{1} \times c \underline{n}\right) d_{2}$ written in the form (3) by \mathbb{C} : $: d_{1} \times d_{2}$.

The usual rule for matrix multiplication applies; i.e., if H is as in (3) and

$$
G=\sum_{\underline{r}, \underline{s}=\underline{0}}^{\underline{n}-1}\left(e_{\underline{r}} \otimes e_{\underline{s}}^{T}\right) \otimes G_{\underline{r} \underline{s}}=\left[G_{\underline{r} \underline{s}}\right]_{\underline{r}, \underline{s}=\underline{1}}^{\underline{\underline{1}}} \text { with } G_{\underline{r} \underline{s}} \in \mathbb{C}^{d_{2} \times d_{3}}, \quad \underline{0} \preceq \underline{r}, \underline{s} \preceq \underline{n}-\underline{1},
$$

then

$$
\begin{aligned}
& H G=\left(\sum_{\underline{r}, \underline{\ell}=\underline{0}}^{\underline{n}-1}\left(e_{\underline{r}} \otimes e_{\underline{\ell}}^{T}\right) \otimes H_{\underline{r} \underline{\ell}}\right)\left(\sum_{\underline{m}, \underline{s}=\underline{0}}^{\underline{n}-\underline{1}}\left(e_{\underline{m}} \otimes e_{\underline{s}}^{T}\right) \otimes G_{\underline{m} \underline{s}}\right) \\
& =\sum_{\underline{r}, \underline{\ell}, \underline{m}, \underline{s}=\underline{0}}^{\underline{n}-\underline{1}}\left[\left(e_{\underline{r}} \otimes e_{\underline{\ell}}^{T}\right)\left(e_{\underline{m}} \otimes e_{\underline{s}}^{T}\right)\right] \otimes H_{\underline{r} \underline{\ell}} G_{\underline{m} \underline{s}} \\
& =\sum_{\underline{r}, \underline{\ell}, \underline{m}, \underline{s}=\underline{0}}^{\underline{n-1}} \delta_{\underline{\ell} \underline{m}}\left(e_{\underline{r}} \otimes e_{\underline{\underline{s}}}^{T}\right) \otimes H_{\underline{r} \underline{\ell}} G_{\underline{m} \underline{s}} \quad \text { by }(2)(\mathrm{b}) \\
& =\sum_{\underline{r}, \underline{s}=\underline{0}}^{\underline{n}-1}\left(e_{\underline{r}} \otimes e_{\underline{s}}^{T}\right) \otimes\left(\sum_{\underline{\ell}=\underline{0}}^{\underline{n}-1} H_{\underline{r} \underline{\ell}} G_{\underline{\ell} \underline{s}}\right)=\sum_{\underline{r}, \underline{s}=\underline{0}}^{\underline{n}-1}\left(e_{\underline{r}} \otimes e_{\underline{s}}^{T}\right) \otimes K_{\underline{r} \underline{s}}=\left[K_{\underline{r} \underline{s}}\right]_{\underline{r}, \underline{s}=\underline{0}}^{\underline{n}-\underline{1}},
\end{aligned}
$$

where

$$
K_{\underline{r} \underline{s}}=\sum_{\underline{\ell}=\underline{0}}^{\underline{n}-1} H_{\underline{r} \underline{\ell}} G_{\underline{\ell} \underline{s}}, \quad \underline{0} \preceq \underline{r}, \underline{s} \preceq \underline{n}-\underline{1} .
$$

In this paper we consider multilevel block $\underline{\alpha}$-circulants

$$
A=\left[A_{\underline{s}-\underline{\alpha} \underline{r}}\right]_{\underline{n}, \underline{n}=\underline{n}}^{\underline{n}} \text { where } \underline{\alpha} \in \mathcal{M}_{\underline{n}} \text { and } A_{\underline{m}} \in \mathbb{C}^{d_{1} \times d_{2}}, \quad \underline{0} \preceq \underline{m} \preceq \underline{n}-\underline{1} .
$$

Multilevel $\underline{1}$-circulants $\left[A_{\underline{s}-\underline{r}}\right] \underline{\underline{r}} \underline{\underline{s}} \underline{\underline{1}} \underline{\underline{0}}$, have important applications in preconditioning of multilevel and multilevel block Toeplitz matrices $T=\left[T_{\underline{s}-\underline{r}}\right]_{\underline{r}, \underline{n}=\underline{0}}^{\underline{0}}$; see, e.g., [3]-[7], a very incomplete list. We are not aware of any published results on multilevel $\underline{\alpha}$ circulants with $\underline{\alpha} \succ \underline{1}$.

The proofs of some of our results are similar to results obtained in [8] for unilevel block circulants. Nevertheless, we include complete proofs here since we believe that simply referring to [8] would impede the presentation here and would not be convincing in the multilevel setting.

2 Preliminaries

Throughout the rest of this paper all arithmetic operations and relations involving multiindices are entrywise and modulo \underline{n}, i.e., $\underline{r} \equiv \underline{s}(\bmod \underline{n}), \operatorname{gcd}(\underline{\alpha}, \underline{n})=\underline{q}$ and $\underline{p}=\underline{\alpha} / \underline{q}$ mean that

$$
r_{j} \equiv s_{j} \quad\left(\bmod n_{j}\right), \quad \operatorname{gcd}\left(\alpha_{j}, n_{j}\right)=q_{j}, \quad \text { and } \quad p_{j}=\alpha_{j} / q_{j}, \quad 1 \leq j \leq k
$$

respectively. Also,

$$
\underline{r}+\underline{s}=\left(r_{1}+s_{1}\left(\bmod n_{1}\right), r_{2}+s_{2}\left(\bmod n_{2}\right), \ldots, r_{k}+s_{k}\left(\bmod n_{k}\right)\right)
$$

and

$$
\underline{r} \underline{s}=\left(r_{1} s_{1}\left(\bmod n_{1}\right), r_{2} s_{2}\left(\bmod n_{2}\right), \ldots, r_{k} s_{k}\left(\bmod n_{k}\right)\right)
$$

We denote

$$
\zeta_{j}=e^{-2 \pi i / n_{j}}, 1 \leq j \leq k, \quad \zeta^{\underline{s}}=\zeta_{1}^{s_{1}} \zeta_{2}^{s_{2}} \cdots \zeta_{k}^{s_{k}}, \quad \underline{0} \preceq \underline{s} \preceq \underline{n}-\underline{1}
$$

and

$$
\Phi=\frac{1}{\sqrt{c(\underline{n})}}\left[\zeta^{\underline{r}}\right]_{\underline{\underline{s}, \underline{s}=\underline{0}}}^{\underline{n}-\underline{1}}=\left[\begin{array}{lllll}
\phi_{\underline{0}} & \cdots & \phi_{\underline{s}} & \cdots & \phi_{\underline{n}}
\end{array}\right],
$$

with

$$
\phi_{\underline{\boldsymbol{s}}}=\frac{1}{\sqrt{c(\underline{n})}}\left[\begin{array}{c}
1 \tag{4}\\
\vdots \\
\zeta^{\underline{s}} \underline{s_{n}} \\
\vdots \\
\zeta^{(\underline{n}-1)(\underline{s})}
\end{array}\right], \quad \underline{0} \leq \underline{s} \leq \underline{n}-\underline{1} .
$$

Note that

$$
\phi_{\underline{s}}=\psi_{s_{1}, 1} \otimes \psi_{s_{2}, 2} \otimes \cdots \otimes \psi_{s_{k}, k}
$$

where

$$
\psi_{s_{j}, j}=\frac{1}{\sqrt{n_{j}}}\left[\begin{array}{c}
1_{s_{j}} \\
\zeta_{j} \\
\vdots \\
\zeta_{j}^{\left(n_{j}-1\right) s_{j}}
\end{array}\right], \quad 0 \leq s_{j} \leq n_{j-1}, \quad 1 \leq j \leq k
$$

hence,

$$
\phi_{\underline{s}}^{*} \phi_{\underline{r}}=\delta_{\underline{r} \underline{s}}=\operatorname{Def}\left\{\begin{array}{lll}
1 & \text { if } & \underline{r}=\underline{s}, \tag{5}\\
0 & \text { if } & \underline{r} \neq \underline{s},
\end{array} \quad \underline{0} \preceq \underline{r}, \underline{s} \preceq \underline{n}-\underline{1} .\right.
$$

Now let $E_{j}=\left[\delta_{r_{j}, s_{j}-1}\right]_{r_{j}, s_{j}=0}^{n_{j}-1}, 1 \leq j \leq k$,

$$
\begin{equation*}
E=E_{1} \otimes E_{2} \otimes \cdots \otimes E_{k}=\left[\delta_{\underline{r}, \underline{s}-1}\right]_{\underline{r}, \underline{s}=\underline{0}}^{\underline{n}-1} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
E^{\underline{u}}=E_{1}^{u_{1}} \otimes E_{2}^{u_{2}} \otimes \cdots \otimes E_{k}^{u_{k}}=\left[\delta_{\underline{r}, \underline{s}-\underline{u}}\right]_{\underline{r}, \underline{s}=\underline{0},}^{\underline{n}} . \tag{7}
\end{equation*}
$$

It is straightforward to verify that

$$
\left(E^{\underline{u}} \otimes I_{d_{2}}\right)\left[\begin{array}{c}
x_{\underline{0}} \tag{8}\\
\vdots \\
x_{\underline{r}} \\
\vdots \\
x_{\underline{n}-1}
\end{array}\right]=\left[\begin{array}{c}
x_{\underline{u}} \\
\vdots \\
x_{\underline{r}+\underline{u}} \\
\vdots \\
x_{\underline{n}-\underline{1}+\underline{u}}
\end{array}\right] \text { if } x \in \mathbb{C}^{\underline{n}: d_{2}}
$$

and

From (4), (6), and (8) with $\underline{u}=\underline{1}$,

$$
E \phi_{\underline{s}}=\frac{1}{\sqrt{c(\underline{n})}}\left[\begin{array}{c}
\zeta^{s} \tag{10}\\
\vdots \\
\zeta^{(\underline{r}+1) \underline{s}} \\
\vdots \\
\zeta^{(\underline{n}-1) \underline{s}}
\end{array}\right]=\zeta^{\underline{s}} \phi_{\underline{s}}, \quad \underline{0} \preceq \underline{s} \preceq \underline{n}-\underline{1} .
$$

Hence

$$
E \Phi=\Phi D \quad \text { with } \quad D=\operatorname{diag}\left(1, \ldots, \zeta^{\underline{s}}, \ldots, \zeta^{(\underline{n}-1) \underline{s}}\right), \quad \text { so } \quad E=\Phi D \Phi^{*}
$$

Now let

$$
\begin{gather*}
R=E \otimes I_{d_{1}}, \quad S=E \otimes I_{d_{2}} \tag{11}\\
P_{\underline{s}}=\phi_{\underline{s}} \otimes I_{d_{1}}, \quad Q_{\underline{s}}=\phi_{\underline{s}} \otimes I_{d_{2}}, \quad \underline{0} \preceq \underline{s} \preceq \underline{n}-\underline{1} \tag{12}
\end{gather*}
$$

From (5),

$$
\begin{equation*}
P_{\underline{r}}^{*} P_{\underline{s}}=\delta_{\underline{r} \underline{s}} I_{\underline{n}: d_{1}} \quad \text { and } \quad Q_{\underline{r}}^{*} Q_{\underline{s}}=\delta_{\underline{r} \underline{s}} I_{\underline{n}}: d_{2}, \quad \underline{0} \preceq \underline{r}, \underline{s} \preceq \underline{n}-\underline{1} . \tag{13}
\end{equation*}
$$

From (10) and (11),

$$
\begin{equation*}
R P_{\underline{s}}=\zeta^{\underline{s}} P_{\underline{s}} \quad \text { and } \quad S Q_{\underline{s}}=\zeta^{\underline{s}} Q_{\underline{s}}, \quad \underline{0} \preceq \underline{s} \preceq \underline{n}-\underline{1} . \tag{14}
\end{equation*}
$$

Also, let

$$
P=\left[\begin{array}{lllll}
P_{\underline{0}} & \cdots & P_{\underline{s}} & \cdots & P_{\underline{n}-1}
\end{array}\right], \quad Q=\left[\begin{array}{lllll}
Q_{\underline{0}} & \cdots & Q_{\underline{s}} & \cdots & Q_{\underline{n}-1} \tag{15}
\end{array}\right],
$$

and

$$
U_{\underline{\alpha}}=\left[\begin{array}{lllll}
P_{\underline{0}} & \cdots & P_{\underline{\alpha} \underline{s}} & \cdots & P_{\underline{\alpha}(\underline{n}-1)} \tag{16}
\end{array}\right] .
$$

From (13), P and Q are unitary. If $\operatorname{gcd}(\underline{\alpha}, \underline{n})=\underline{1}$ the mapping $\underline{s} \rightarrow \underline{\alpha} \underline{s}$ is a permutation of $\mathcal{M}_{\underline{n}}$, so $U_{\underline{\alpha}}$ is unitary. However, if $\operatorname{gcd}(\underline{\alpha}, \underline{n})=\underline{q} \succ \underline{1}$ then the first $c(\underline{p})$
block columns $P_{\underline{0}}, \ldots, P_{\underline{\alpha} \underline{s}}, \ldots, P_{\underline{\alpha}(\underline{p}-1)}$ of $U_{\underline{\alpha}}$ are repeated $c(\underline{q})$ times, so $U_{\underline{\alpha}}$ is not invertible.

From (14) and (15),

$$
R=P D_{R} P^{*} \quad \text { and } \quad S=Q D_{S} Q^{*}
$$

where

$$
D_{R}=\bigoplus_{\underline{s}=\underline{0}}^{\underline{n}-\underline{1}} \zeta^{\underline{r}} I_{d_{1}} \quad \text { and } \quad D_{S}=\bigoplus_{\underline{s}=\underline{0}}^{\underline{n}-\underline{1}} \zeta^{\underline{s}} I_{d_{2}}
$$

3 The Ablow-Brenner theorem for multilevel block circulants

Ablow and Brenner [1] showed that $A \in \mathbb{C}^{n \times n}$ is a standard α-circulant $A=\left[a_{s-\alpha r}\right] \in$ $\mathbb{C}^{n \times n}$ if and only if

$$
\left(\left[\delta_{r, s-1}\right]_{r, s=0}^{n-1}\right) A\left(\left[\delta_{r, s-1}\right]_{r, s=0}^{n-1}\right)^{-\alpha}=A
$$

This was generalized to characterize unilevel block circulants in [8, Theorem 1]. Here we generalize it to multilevel block circulants.

Theorem 1 If $A=\left[G_{\underline{r} \underline{s}}\right]_{\underline{r}, \underline{\underline{n}} \underline{\underline{0}} \underline{\underline{0}} \text {, with } G_{\underline{r} \underline{s}} \in \mathbb{C}^{d_{1} \times d_{2}} \text { then } R A S^{-\underline{\alpha}}=A(\text { see (11)) if }}$ and only if A is an $\underline{\alpha}$-circulant; more precisely, if and only if

$$
\begin{equation*}
G_{\underline{r} \underline{s}}=A_{\underline{s}-\underline{\alpha} \underline{r}}, \quad \underline{0} \preceq \underline{r}, \underline{s} \preceq \underline{n}-\underline{1}, \tag{17}
\end{equation*}
$$

with

$$
\begin{equation*}
A_{\underline{s}}=G_{\underline{0} \underline{s}}, \quad \underline{0} \preceq \underline{s} \preceq \underline{n}-\underline{1} . \tag{18}
\end{equation*}
$$

Proof. From (9) and (11), $R A S^{-\underline{\alpha}}=\left[G_{\underline{r}+1, \underline{s}+\underline{\alpha}} \underline{\underline{r}}_{\underline{r}}^{\underline{n}} \underline{\underline{1}} \underline{\underline{0}}\right.$. Therefore we must show that (17) is equivalent to

$$
\begin{equation*}
G_{\underline{r}+1, \underline{s}+\underline{\alpha}}=G_{\underline{r} \underline{s}}, \quad \underline{0} \preceq \underline{r}, \underline{s} \preceq \underline{n}-\underline{1} . \tag{19}
\end{equation*}
$$

If (17) is true then

$$
G_{\underline{r}+1, \underline{s}+\underline{\alpha}}=A_{(\underline{s}+\underline{\alpha})-(\underline{r}+\underline{1}) \alpha}=A_{\underline{s}-\underline{\alpha} \underline{r}}=G_{\underline{r} \underline{s}}, \quad \underline{0} \preceq \underline{r}, \underline{s} \preceq \underline{n}-\underline{1} .
$$

For the converse we consider blocks at each level independently. Insofar as they involve level p, (17)-(19) can be rewritten as

$$
\begin{gather*}
G_{\cdots,\left(r_{p}, s_{p}\right), \cdots}=A_{\ldots,\left(s_{p}-\alpha_{p}, r_{p}\right), \cdots \quad} \quad 0 \leq r_{p}, s_{p} \leq n_{p}-1, \\
A_{\ldots,\left(s_{p}\right), \cdots}=G_{\ldots,\left(0, s_{p}\right), \cdots \quad} 0 \leq s_{p} \leq n_{p}-1, \tag{20}
\end{gather*}
$$

and

$$
\begin{equation*}
G_{\ldots,\left(r_{p}+1, s_{p}+\alpha_{p}\right), \cdots}=G_{\ldots,\left(r_{p}, s_{p}\right), \cdots \quad} \quad 0 \leq r_{p}, s_{p} \leq n_{p}-1 . \tag{21}
\end{equation*}
$$

Now suppose (20) and (21) hold and

$$
\begin{equation*}
G_{\ldots,\left(r_{p}, s_{p}\right), \cdots}=A_{\ldots,\left(s_{p}-\alpha_{p} r_{p}\right), \cdots \quad 0 \leq s_{p} \leq n_{p}-1, ~}^{1, \cdots} \tag{22}
\end{equation*}
$$

for some $r_{p}<n_{p-1}$. Replacing s_{p} by $s_{p}-\alpha_{p}$ in (21) and (22) yields

$$
G_{\ldots,\left(r_{p}+1, s_{p}\right), \ldots}=G_{\ldots,\left(r_{p}, s_{p}-\alpha_{p}\right), \cdots \quad 0 \leq r_{p}, s_{p} \leq n_{p}-1, ~}^{\text {, }}
$$

and

$$
G_{\ldots,\left(r_{p}, s_{p}-\alpha_{p}\right), \cdots}=A_{\ldots,\left(s_{p}-\alpha_{p}\left(r_{p}+1\right)\right), \cdots \quad 0 \leq s \leq n_{p}-1 .}
$$

Therefore

$$
G_{\ldots,\left(r_{p}+1, s_{p}\right), \cdots=A_{\ldots,},\left(s_{p}-\alpha_{p}\left(r_{p}+1\right)\right), \cdots \quad 0 \leq s \leq n_{p}-1, ~}^{1}
$$

which is (22) with r_{p} replaced by $r_{p}+1$.
Remark 1 From (7), (11), and (12),

$$
R^{\underline{u}}=\mathbf{R}_{1}^{u_{1}} \otimes \mathbf{R}_{2}^{u_{2}} \otimes \cdots \otimes \mathbf{R}_{k}^{u_{k}} \quad \text { and } \quad S^{\underline{v}}=\mathbf{S}_{1}^{v_{1}} \otimes \mathbf{S}_{2}^{v_{2}} \otimes \cdots \otimes \mathbf{S}_{k}^{v_{k}}
$$

where

$$
\mathbf{R}_{j}=I_{\mu_{j}} \otimes E_{n_{j}} \otimes I_{v_{j} d_{1}} \quad \text { and } \quad \mathbf{S}_{j}=I_{\mu_{j}} \otimes E_{n_{j}} \otimes I_{v_{j} d_{2}}
$$

(See (1)). Then, for example,

$$
R A S^{-\underline{\alpha}}=A \quad \text { if and only if } \quad \mathbf{R}_{j} A \mathbf{S}_{j}^{-\alpha_{j}}=A, \quad 1 \leq j \leq k
$$

Theorem 2 If

$$
A=\left[A_{\underline{s}-\underline{\alpha} \underline{r}}\right]_{\underline{r}, \underline{s}=\underline{\underline{0}}}^{\underline{n}-\underline{1}} \in \mathbb{C}^{\underline{n}: d_{1} \times d_{2}} \quad \text { and } \quad B=\left[B_{\underline{s}-\underline{\alpha} \underline{r}}\right]_{\underline{r}, \underline{\underline{n}}=\underline{\underline{0}}}^{\underline{\underline{1}}} \in \mathbb{C}^{\underline{n}}: d_{1} \times d_{2}
$$

then (i) $A B^{*}=\left[C_{\underline{s}-\underline{r}}\right]_{\underline{r}, \underline{s}=\underline{\underline{1}}}^{\underline{n}-\mathbb{C}} \in \mathbb{C}^{\underline{n}}: d_{1} \times d_{1}$ with

$$
\begin{equation*}
C_{\underline{m}}=\sum_{\underline{\ell}=\underline{0}}^{\underline{n}-1} A_{\underline{\ell}} B_{\underline{\ell}-\underline{\alpha} \underline{m}}^{*}, \quad \underline{0} \preceq \underline{m} \preceq \underline{n}-\underline{1} . \tag{23}
\end{equation*}
$$

(ii) If $\operatorname{gcd}(\underline{\alpha}, \underline{n})=\underline{1}$ then $B^{*} A=\left[D_{\underline{s}-\underline{r}}\right]_{\underline{r}, \underline{\underline{n}}=\underline{\underline{0}}}^{\underline{\underline{1}}} \in \mathbb{C} \underline{\underline{n}}: d_{2} \times d_{2}$ with

$$
\begin{equation*}
D_{\underline{m}}=\sum_{\underline{\ell}=\underline{0}}^{\underline{n-1}} B_{\underline{\ell}}^{*} A_{\underline{m}+\underline{\ell}}, \quad \underline{0} \preceq \underline{m} \preceq \underline{n}-\underline{1} \tag{24}
\end{equation*}
$$

Proof. (i) From Theorem 1, $A=R A S^{-\underline{\alpha}}$ and $B=R B S^{-\underline{\alpha}}$. Therefore $A B^{*}=$ $R A B^{*} R^{-1}$, so Theorem 1 with $R=S$ implies that $A B^{*}$ is a 1 -circulant. Computing the first block row $(\underline{r}=\underline{0})$ of $A B^{*}$ yields (23).
(ii) Also, $B^{*} A=S^{\underline{\alpha}} B^{*} A S^{-\underline{\alpha}}$, so

$$
\mathbf{S}_{j}^{\alpha_{j}} B^{*} A \mathbf{S}_{j}^{-\alpha_{j}}=B^{*} A, \quad 1 \leq j \leq k
$$

Applying this equality β_{j} times where $\alpha_{j} \beta_{j} \equiv 1\left(\bmod n_{j}\right)$ yields

$$
\mathbf{S}_{j} B A \mathbf{S}_{j}^{-1}=B^{*} A, \quad 1 \leq j \leq k
$$

Now Theorem 1 and Remark 1 with $R=S$ imply that $B^{*} A$ is a 1 -circulant. Computing the first block row of $B^{*} A$ yields $D_{\underline{m}}=\sum_{\underline{\ell}=\underline{0}}^{\underline{n}-1} B_{-\underline{\alpha} \underline{\ell}}^{*} A_{\underline{m}-\underline{\alpha} \ell}$. Since $\operatorname{gcd}(\underline{n}, \underline{k})=\underline{1}$, $\underline{\ell} \rightarrow-\underline{\beta} \underline{\ell}$ is a permutation of $\mathcal{M}_{\underline{n}}$, so we can replace $\underline{\ell}$ by $-\underline{\beta} \underline{\ell}$ in the last sum to obtain (24).

Theorem 3 If

$$
\begin{equation*}
A=\left[A_{\underline{s}-\underline{\alpha} \underline{r}}\right]_{\underline{r}, \underline{s}=\underline{0}}^{\underline{n}-1} \in \mathbb{C}^{\underline{n}: d_{1} \times d_{2} \quad \text { and } \quad B=\left[B_{\underline{\underline{s}}-\underline{\beta} \underline{r}}\right]_{\underline{r}, \underline{s}=\underline{0}}^{\underline{n}-\underline{1}} \in \mathbb{C}^{\underline{n}}: d_{2} \times d_{3} .} \tag{25}
\end{equation*}
$$

then

$$
\begin{equation*}
A B=\left[C_{\underline{s}-\underline{\alpha} \underline{\beta} \underline{r}}\right]_{\underline{r}, \underline{n} \underline{\underline{r}} \underline{\underline{1}}} \in \mathbb{C}^{\underline{n}: d_{1} \times d_{3}} \tag{26}
\end{equation*}
$$

with

$$
\begin{equation*}
C_{\underline{m}}=\sum_{\underline{\ell}=\underline{0}}^{\underline{n}-1} A_{\underline{\ell}} B_{\underline{m}-\underline{\beta} \underline{\ell}}, \quad \underline{0} \preceq \underline{m} \preceq \underline{n}-\underline{1} . \tag{27}
\end{equation*}
$$

Proof. Let $R=E \otimes I_{d_{1}}, S=E \otimes I_{d_{2}}$, and $T=E \otimes I_{d_{3}}$. (See (6)). From (25) and Theorem 1,

$$
\text { (a) } A=R A S^{-\underline{\alpha}} \quad \text { and } \quad \text { (b) } \quad B=S B T^{-\underline{\beta}} \text {. }
$$

Now write

$$
T^{\underline{\beta}}=\mathbf{T}_{1}^{\beta_{1}} \otimes \mathbf{T}_{2}^{\beta_{2}} \otimes \cdots \otimes \mathbf{T}_{k}^{\beta_{k}} \quad \text { with } \quad \mathbf{T}_{j}=I_{j} \otimes E_{n_{j}} \otimes I_{v_{j} d_{3}}, \quad 1 \leq j \leq k
$$

From (b) $\mathbf{S}_{j} B \mathbf{T}_{j}^{-\beta_{j}}=B, 1 \leq j \leq k$. Applying this equality α_{j} times yields $\mathbf{S}_{j}^{\alpha_{j}} B \mathbf{T}_{j}^{-\alpha_{j} \beta_{j}}=B, 1 \leq j \leq k$. Therefore $S^{\underline{\alpha}} B T^{-\underline{\alpha} \underline{\beta}}=B$, by Remark 1. From this and (a), $R(A B) S^{-\underline{\alpha} \underline{\beta}}=A B$. Now Theorem 1 implies (26) with (27) obtained by computing the entries in the first block row of $A B$.

4 A dft characterization of multilevel $\underline{\alpha}$-circulants

Let $\left\{F_{\underline{\ell}} \mid \underline{\ell} \in \mathcal{M}_{\underline{n}}\right\}$ and $\left\{A_{\underline{m}} \mid \underline{m} \in \mathcal{M}_{\underline{n}}\right\} \subset \mathbb{C}^{d_{1} \times d_{2}}$ be related by
(a) $\quad F_{\underline{\ell}}=\sum_{\underline{m}=\underline{0}}^{\underline{n}-1} \zeta^{\underline{\ell}} A_{\underline{m}} \quad$ and (b) $\quad A_{\underline{m}}=\frac{1}{c \underline{n})} \sum_{\underline{\ell}=\underline{0}}^{n-1} \zeta^{-\underline{\ell} \underline{m}} F_{\underline{\ell}}$,
which are equivalent, since $\sum_{\underline{\ell}=\underline{0}}^{\underline{n}-1} \zeta^{\underline{\alpha} \ell}=c(\underline{n}) \delta_{\underline{\alpha} \underline{0}}$. Denote

$$
\begin{equation*}
\mathcal{F}_{\mathcal{A}}=\bigoplus_{\underline{\ell}=\underline{0}}^{\underline{n}-1} F_{\underline{\ell}} . \tag{29}
\end{equation*}
$$

The set $\left\{F_{\underline{\ell}} \mid \underline{\ell} \in \mathcal{M}_{\underline{n}}\right\}$ is the discrete Fourier transform (dft) of the set $\left\{A_{\underline{m}} \mid \underline{m} \in \mathcal{M}_{\underline{n}}\right\}$.

Theorem 4 A matrix $A \in \mathbb{C}^{\underline{n}: d_{1} \times d_{2}}$ is an $\underline{\alpha}$-circulant $A=\left[A_{\underline{\underline{s}}-\underline{\alpha} \underline{\underline{\alpha}}}\right]_{\underline{r}, \underline{\underline{n}}=\underline{\underline{0}}}^{\underline{1}}$ if and only if

$$
\begin{equation*}
A=U_{\underline{\alpha}}^{\mathcal{F}_{\mathcal{A}}} Q^{*}=\sum_{\underline{\ell}=\underline{0}}^{n-1} P_{\underline{\alpha} \underline{\ell}} F_{\underline{\ell}} Q_{\underline{\ell}}^{*} \tag{30}
\end{equation*}
$$

(see (15) and (16)), where $\left\{A_{\underline{m}} \mid \underline{m} \in \mathcal{M}_{\underline{n}}\right\}$ and $\left\{F_{\underline{\ell}} \mid \underline{\ell} \in \mathcal{M}_{\underline{n}}\right\}$ are related as in (28).
Proof. Suppose $A=\left[A_{\underline{s}-\underline{\alpha} \underline{r}}\right]_{\underline{r}, \underline{n}=\underline{\underline{0}}}^{\underline{n}}$. From (28),

$$
A_{\underline{s}-\underline{\alpha} \underline{r}}=\frac{1}{c(\underline{n})} \sum_{\underline{\ell}=\underline{0}}^{n-1} \zeta^{-\underline{\ell}(\underline{s}-\underline{\alpha} \underline{r})} F_{\underline{\ell}} .
$$

Hence

$$
A=\frac{1}{c(\underline{n})} \sum_{\underline{\ell}=\underline{0}}^{n-\underline{1}}\left[\begin{array}{c}
1 \otimes I_{d_{1}} \\
\vdots \\
\zeta \underline{\ell} \underline{\alpha} \otimes I_{d_{1}} \\
\vdots \\
\zeta^{\underline{\ell}(\underline{n}-1) \underline{\alpha}} \otimes I_{d_{1}}
\end{array}\right] F_{\underline{\ell}}\left[\begin{array}{c}
1 \otimes I_{d_{2}} \\
\vdots \\
\zeta \underline{\underline{s}} \otimes I_{d_{2}} \\
\vdots \\
\zeta \underline{\underline{(n}-1)} \otimes I_{d_{2}}
\end{array}\right]
$$

so (4), (12) and (15) imply (30). Conversely, suppose (30) holds. Then

$$
\begin{aligned}
R A S^{-\underline{\alpha}} & =\sum_{\underline{\ell}=\underline{0}}^{n-1}\left(R P_{\underline{\alpha} \underline{\ell}}\right) F_{\underline{\ell}}\left(S Q_{\underline{\ell}}\right)^{-\underline{\alpha}}=\sum_{\underline{\ell}=\underline{0}}^{n-1}\left(\zeta_{\underline{\underline{\alpha}} \underline{\ell}} P_{\underline{\alpha} \underline{\ell}}\right) F_{\underline{\ell}}\left(\zeta^{-\underline{\alpha} \ell} Q_{\underline{\ell}}^{*}\right) \\
& =\sum_{\underline{\ell}=\underline{0}}^{n-1} P_{\underline{\alpha} \underline{\underline{\alpha}}} F_{\underline{\ell}} Q_{\underline{\ell}}^{*}=A,
\end{aligned}
$$

where (14) implies the second equality. Now Theorem 1 implies that A is an $\underline{\alpha}$-circulant $A=\left[A_{\underline{s}-\underline{\alpha} \underline{r}}\right]_{\underline{r}, \underline{n}=\underline{0} \underline{0}}^{\underline{0}}$, and the argument given in the first half of this proof implies that $\left\{A_{\underline{m}} \mid \underline{m} \in \mathcal{M}_{\underline{n}}\right\}$ is as defined by (28). $\quad \square$

The following theorem provides a representation of A that reduces to (30) if $\operatorname{gcd}(\underline{\alpha}, \underline{n})=$ $\underline{1}$, but is more useful if $\operatorname{gcd}(\underline{\alpha}, \underline{n}) \succ \underline{1}$.

Theorem 5 Suppose $\operatorname{gcd}(\underline{\alpha}, \underline{n})=\underline{q}$ and $\underline{p}=\underline{n} / \underline{q}$. Let

$$
\begin{gather*}
\mathbf{Q}_{\underline{\ell}, \underline{\alpha}}=\left[\begin{array}{llllll}
Q_{\underline{\ell}} & \cdots & Q_{\underline{\ell}+\underline{p} \underline{p}} & \cdots & Q_{\underline{\ell}+(\underline{q-1}) \underline{p}}
\end{array}\right], \underline{0} \preceq \underline{\ell} \leq \underline{p}-\underline{1}, \tag{31}\\
Q_{\underline{\alpha}}=\left[\begin{array}{lllll}
\mathbf{Q}_{\underline{0}, \underline{\alpha}} & \cdots & \mathbf{Q}_{\underline{\ell}, \underline{\alpha}} & \cdots & \mathbf{Q}_{\underline{p}-\underline{1}, \underline{\alpha}}
\end{array}\right], \tag{32}\\
V_{\underline{\alpha}}=\left[\begin{array}{lllll}
P_{\underline{0}} & \cdots & P_{\underline{\ell} \underline{\alpha}} & \cdots & P_{(\underline{p}-1) \underline{\alpha}}
\end{array}\right], \tag{33}\\
\mathbf{F}_{\underline{\ell}, \underline{\alpha}}=\left[\begin{array}{lllll}
F_{\underline{\ell}} & \cdots & F_{\underline{\ell}+\underline{p} \underline{p}} & \cdots & F_{\underline{\ell}+(\underline{q}-1) \underline{p}}
\end{array}\right], \quad \underline{0} \preceq \underline{\ell} \preceq \underline{p}-\underline{1}, \tag{34}
\end{gather*}
$$

and

$$
\begin{equation*}
\mathcal{F}_{\underline{\alpha}}=\bigoplus_{\underline{\ell}=0}^{\underline{p}-1} \mathbf{F}_{\underline{\ell}, \underline{\alpha}} . \tag{35}
\end{equation*}
$$

Then $\mathcal{Q}_{\underline{\alpha}}$ is unitary since its columns are simply a rearrangement of the columns of Q,

$$
\begin{equation*}
V_{\underline{\alpha}}^{*} V_{\underline{\alpha}}=I_{c(\underline{p})} d_{1}, \tag{36}
\end{equation*}
$$

and (30) can be rewritten as

$$
\begin{equation*}
A=\sum_{\underline{\ell}=0}^{\underline{p}-1} P_{\underline{\alpha} \underline{\ell}} \mathbf{F}_{\underline{\ell}, \underline{\alpha}} Q_{\underline{\ell}, \underline{\alpha}}^{*}=\mathcal{V}_{\underline{F_{\alpha}}} Q_{\underline{\alpha}}^{*} . \tag{37}
\end{equation*}
$$

PROOF. Since $\underline{\alpha} \underline{r}=\underline{\alpha} \underline{s}$ with $\underline{0} \preceq \underline{r}, \underline{s} \preceq \underline{p}-\underline{1}$ if and only if $\underline{r}=\underline{s}$, (13) implies (36). Since every $\underline{s} \in \mathcal{M}_{\underline{n}}$ can be written uniquely as $\underline{s}=\underline{\ell}+\underline{v} \underline{p}$ with $\underline{0} \preceq \underline{\ell} \preceq \underline{p}-\underline{1}$ and $\underline{0} \preceq \underline{v} \preceq \underline{q}-\underline{1}$, the second equality in (30) can be written as

$$
\begin{equation*}
A=\sum_{\underline{\ell}=\underline{0} \underline{v}=\underline{0}}^{\underline{p}-\underline{1}} \sum_{\underline{\alpha}(\underline{\ell}+\underline{v} \underline{p})} F_{\underline{\ell}+\underline{v} \underline{p}} Q_{\underline{\ell}+\underline{p} \underline{p}}^{*}=\sum_{\underline{\ell}=\underline{0}}^{\underline{p}-1} P_{\underline{\alpha} \underline{\ell}} \sum_{\underline{\nu}=\underline{0}}^{\underline{q}-1} F_{\underline{\ell}+\underline{p} \underline{p}} Q_{\underline{\ell}+\underline{v} \underline{p}}^{*} \tag{38}
\end{equation*}
$$

where the second equality here is valid because $\underline{p} \underline{\alpha} \equiv \underline{0}(\bmod \underline{n})$. Therefore the first equality in (37) is valid because

$$
\mathbf{F}_{\underline{\ell}, \underline{\alpha}} \mathbf{Q}_{\underline{\ell}, \underline{\alpha}}^{*}=\sum_{\underline{\nu}=\underline{0}}^{\underline{q}-\underline{1}} F_{\underline{\ell}+\underline{v} \underline{p}} Q_{\underline{\ell}+\underline{v} \underline{p}}^{*}, \quad 0 \preceq \underline{\ell} \preceq \underline{p}-\underline{1} .
$$

Now (32)-(34) imply the second equality in (37).

5 Solution of $A z=w$ and the least squares problem

In this section $A=\left[A_{\underline{s}-\underline{\alpha} \underline{r}}\right] \underline{\underline{r}, \underline{s}=\underline{0}} \underline{\underline{0}}$. If $z \in \mathbb{C} \underline{n}: d_{2}$ and $w \in \mathbb{C} \underline{n}: d_{1}$ we write

$$
\begin{equation*}
z=\sum_{\underline{s}=\underline{0}}^{n-1} Q_{\underline{s}} u_{\underline{s}} \quad \text { and } \quad w=\sum_{\underline{s}=\underline{0}}^{\underline{n}-1} P_{\underline{s}} v_{\underline{s}} \quad \text { with } \quad u_{\underline{s}} \in \mathbb{C}^{d_{2}} \quad \text { and } \quad v_{\underline{s}} \in \mathbb{C}^{d_{1}} \tag{39}
\end{equation*}
$$

(see (15)), $\underline{0} \preceq \underline{s} \preceq \underline{n}-\underline{1}$.
Theorem 6 If $\operatorname{gcd}(\underline{\alpha}, \underline{n})=\underline{1}$ then

$$
\begin{equation*}
\|A z-w\|^{2}=\sum_{\underline{s}=\underline{0}}^{\underline{n}-\underline{1}}\left\|F_{\underline{s^{\prime}}} u_{\underline{s}}-v_{\underline{\alpha} \underline{s}}\right\|^{2} \tag{40}
\end{equation*}
$$

where $\|\cdot\|$ is the Frobenius norm. Therefore the least squares problem for the $c(\underline{n}) d_{1} \times$ $c(\underline{n}) d_{2}$ matrix A reduces to $c(\underline{n})$ independent least squares problems for the $d_{1} \times d_{2}$ matrices $F_{\underline{s}}, \underline{0} \preceq \underline{s} \preceq \underline{n}-\underline{1}$. Also,

$$
\begin{equation*}
A z=w \quad \text { if and only if } \quad F_{\underline{s}} u_{\underline{s}}=v_{\underline{\alpha} \underline{s}}, \quad \underline{0} \preceq \underline{s} \preceq \underline{n}-\underline{1} . \tag{41}
\end{equation*}
$$

Proof. From (30) and (39),

$$
\begin{align*}
A z-w & =\sum_{\underline{s}=\underline{0}}^{\underline{n}-1} P_{\underline{\alpha} \underline{s}} F_{\underline{s}} u_{\underline{s}}-\sum_{\underline{s}=\underline{0}}^{\underline{n}-1} P_{\underline{s}} v_{\underline{s}}=\sum_{\underline{s}=\underline{0}}^{\underline{n}-1} P_{\underline{\alpha} \underline{s}} F_{\underline{s}} u_{\underline{s}}-\sum_{\underline{s}=\underline{0}}^{\underline{n}-1} P_{\underline{\alpha} \underline{s}} v_{\underline{\alpha} \underline{s}} \\
& \left.=\sum_{\underline{s}=\underline{0} \underline{\underline{s}} \underline{ }}^{n-1} P_{\underline{s} \underline{s}} u_{\underline{s}}-v_{\underline{\alpha} \underline{s} \underline{ }}\right) \tag{42}
\end{align*}
$$

where the second equality is valid because

$$
\sum_{\underline{s}=\underline{0}}^{\underline{n}-1} P_{\underline{s}} v_{\underline{s}}=\sum_{\underline{s}=\underline{0}}^{\underline{n}-1} P_{\underline{\alpha} \underline{s}} v_{\underline{\alpha s}},
$$

since $\operatorname{gcd}(\underline{\alpha}, \underline{n})=\underline{1}$. Since $P_{\underline{\alpha} \underline{r}}^{*} P_{\underline{\alpha} \underline{s}}=\delta_{\underline{r} \underline{\underline{s}}} I_{\underline{n}}: d_{1}$ (again, because $\operatorname{gcd}(\underline{\alpha}, \underline{n})=\underline{1}$), (42) implies (40), which implies (41) \square

Theorem 7 Suppose $\operatorname{gcd}(\underline{\alpha}, \underline{n})=\underline{q}$ and $\underline{p}=\underline{n} / \underline{q}$. Then $A z=w$ has no solution unless

$$
\begin{equation*}
w=\sum_{\underline{\ell}=\underline{0}}^{\underline{p}-\underline{1}} P_{\underline{\alpha} \underline{\ell}} v_{\underline{\alpha} \underline{\ell}}, \tag{43}
\end{equation*}
$$

in which case z is a solution if and only $z=\sum_{\underline{\underline{s}}=\underline{\underline{0}}}^{\underline{1}} Q_{\underline{s}} u_{\underline{s}}$, where

$$
\begin{equation*}
\sum_{\underline{\nu}=\underline{0}}^{\underline{q}-1} F_{\underline{\ell}+\underline{p} \underline{p}} u_{\underline{\ell}+\underline{\nu} \underline{p}}=v_{\underline{\alpha} \underline{\ell}}, \quad \underline{0} \preceq \underline{\ell} \preceq \underline{n}-\underline{1} . \tag{44}
\end{equation*}
$$

Proof. From (38) and (39),

$$
A z=\sum_{\underline{\ell}=\underline{0}}^{\underline{p}-\underline{1}} P_{\underline{\alpha}, \underline{\ell}} \sum_{\underline{\nu}=\underline{0}}^{\underline{q}-\underline{1}} F_{\underline{\ell}+\underline{\nu} \underline{p}} u_{\underline{\ell}+\underline{\nu} \underline{p}} .
$$

Since $\{\underline{\alpha} \underline{\ell} \mid \underline{0} \preceq \underline{\ell} \preceq \underline{p}-\underline{1}\}$ is a set of distinct multiindices, (13) implies that $P_{\underline{\alpha} \underline{\ell}}^{*} P_{\underline{\alpha} \underline{m}}=$ $\delta_{\underline{\ell} \underline{m}}, \underline{0} \preceq \underline{\ell}, \underline{m} \preceq \underline{p}-\underline{1}$. This and (41) imply that $A z=w$ has no solution unless (43) holds for some $v_{\underline{\underline{0}}}, \ldots, v_{\underline{\alpha} \underline{\ell}}, \ldots, v_{\underline{\alpha}(\underline{p}-1)}$, in which case $z=\sum_{\underline{\underline{s}}=\underline{\underline{0}}}^{\underline{-}} F_{\underline{s}} u_{\underline{s}}$ is a solution if and only if (44) holds.

6 Commutativity

The following theorem generalizes the well known commutativity property of 1-circulants $\left[a_{s-r}\right]_{r, s=0}^{n-1} \in \mathbb{C}^{n \times n}$.

Theorem 8 Suppose $d_{1}=d_{2}, \operatorname{gcd}(\underline{\alpha}, \underline{n})=\underline{1}$, and $\underline{\alpha} \underline{\beta} \equiv \underline{1}(\bmod \underline{n})$. Let $A=$ $\left[A_{\underline{s}-\underline{\alpha} \underline{r}}\right]_{\underline{r}, \underline{s}=\underline{0}}^{\underline{n}-\underline{1}}, B=\left[B_{\underline{s}-\underline{\beta} \underline{r}}\right]_{\underline{r}, \underline{s} \underline{\underline{n}}=\underline{0}}$,

$$
F_{\underline{\ell}}=\sum_{\underline{m}=\underline{0}}^{\underline{n}-1} \zeta^{\underline{\ell} \underline{m}} A_{\underline{m}} \quad \text { and } \quad G_{\underline{\ell}}=\sum_{\underline{m}=\underline{0}}^{\underline{n}-\underline{1}} \zeta^{\underline{\ell} \underline{m}} B_{\underline{m}}, \quad \underline{0} \preceq \underline{\ell} \preceq \underline{n}-\underline{1} .
$$

Then $A B=B A$ if and only if

$$
F_{\underline{\beta} \underline{\ell}} G_{\underline{\ell}}=G_{\underline{\alpha} \underline{\ell}} F_{\underline{\ell}}, \quad \underline{0} \preceq \underline{\ell} \preceq \underline{n}-\underline{1} .
$$

PROOF. Since $\operatorname{gcd}(\underline{\alpha}, \underline{n})=\operatorname{gcd}(\underline{\beta}, \underline{n})=\underline{1}$, we may change summation indices $\underline{\ell} \rightarrow \underline{\alpha} \underline{\ell}$ and $\underline{\ell} \rightarrow \underline{\beta} \underline{\ell}$. Therefore, from Theorem 4 with $Q=P$,

$$
\begin{gathered}
A=\sum_{\underline{\ell}=\underline{0}}^{\underline{n}-1} P_{\underline{\alpha} \underline{\ell}} F_{\underline{\ell}} P_{\underline{\ell}}^{*}=\sum_{\underline{\ell}=\underline{0}}^{\underline{n}-\underline{1}} P_{\underline{\ell}} F_{\underline{\beta} \underline{\ell}} P_{\underline{\beta} \underline{\ell}}^{*}, \quad B=\sum_{\underline{\ell}=\underline{0}}^{n-1} P_{\underline{\beta} \underline{\ell}} G_{\underline{\ell}} P_{\underline{\underline{\ell}}}^{*}=\sum_{\underline{\ell}=\underline{0}}^{n-1} P_{\underline{\ell}} G_{\underline{\alpha} \underline{\ell}} P_{\underline{\alpha} \ell}^{*}, \\
A B=\sum_{\underline{\ell}=\underline{0}}^{\underline{n}-1} P_{\underline{\ell}} F_{\underline{\beta} \underline{\ell}} G_{\underline{\ell}} P_{\underline{\ell}}^{*}, \quad \text { and } \quad B A=\sum_{\underline{\ell}=\underline{0}}^{\underline{n}-1} P_{\underline{\ell}} G_{\underline{\alpha} \underline{\ell}} F_{\underline{\ell}} P_{\underline{\ell}}^{*},
\end{gathered}
$$

which implies the conclusion.

7 The Moore-Penrose inverse of an $\underline{\alpha}$-circulant

In this section $\mathscr{A}=\left\{A_{\underline{m}} \mid \underline{m} \in \mathcal{M}_{\underline{n}}\right\}$ and $\mathcal{F}=\left\{F_{\underline{\ell}} \mid \underline{\ell} \in \mathcal{M}_{\underline{n}}\right\}$ are related as (28).
Recall that the Moore-Penrose inverse of a matrix $G \in \mathbb{C}^{r \times s}$ is the unique matrix $G^{\dagger} \in \mathbb{C}^{s \times r}$ that satisfies the Penrose conditions

$$
\left(G G^{\dagger}\right)^{*}=G G^{\dagger}, \quad\left(G^{\dagger} G\right)^{*}=G^{\dagger} G, \quad G G^{\dagger} G=G \quad \text { and } \quad G^{\dagger} G G^{\dagger}=G^{\dagger}
$$

We need the following lemma.
Lemma 1 Suppose $L \in \mathbb{C}^{r \times p}, M \in \mathbb{C}^{s \times q}, L^{*} L=I_{r}, M^{*} M=I_{s}, G=L C M^{*}$, and $H=M C^{\dagger} L^{*}$. Then $H=G^{\dagger}$.

Proof. (i) The following computations are straightforward:

$$
\begin{gathered}
G H=L C C^{\dagger} L^{*}=L\left(C C^{\dagger}\right)^{*} L=(G H)^{*}, \\
H G=M C^{\dagger} C M^{*}=M\left(C^{\dagger} C\right)^{*} M^{*}=(H G)^{*}, \\
G H G=L C C^{\dagger} C M^{*}=L C M^{*}=G
\end{gathered}
$$

and

$$
H G H=M G^{\dagger} G G^{\dagger} L^{*}=M G^{\dagger} L^{*}=H
$$

so G and H satisfy the Penrose conditions.
For clarity we first consider the case where $\operatorname{gcd}(\underline{\alpha}, \underline{n})=\underline{1}$.

Theorem 9 If $A=\left[A_{\underline{s}-\underline{\alpha} \underline{r}}\right]_{\underline{n}, \underline{\underline{n}}=\underline{0}}^{\underline{1}}$ and $\operatorname{gcd}(\underline{\alpha}, \underline{n})=\underline{1}$, then

$$
\begin{equation*}
A^{\dagger}=\left[B_{\underline{r}-\underline{\alpha} \underline{\underline{\alpha}}}\right]_{\underline{r}, \underline{s}=\underline{0}}^{\underline{n}-\underline{1}} \quad \text { with } \quad B_{\underline{m}}=\frac{1}{c(\underline{n})} \sum_{\underline{\ell}=\underline{0}}^{n-1} \zeta^{\underline{\ell} \underline{m}} F_{\underline{\ell}}^{\dagger}, \quad \underline{0} \leq \underline{m} \preceq \underline{n}-\underline{1} . \tag{45}
\end{equation*}
$$

Proof. From Theorem 4, $A=U_{\alpha} \mathcal{F}_{\mathcal{A}} P^{*}$ (see (15), (16), and (29)), which is written in expanded form in (30). As noted following (16), $U_{\underline{\alpha}}$ is unitary because $(\underline{\alpha}, \underline{n})=\underline{1}$. Since P is unitary in any case, Lemma 1 with $L=U_{\underline{\alpha}}^{\underline{\alpha}}, M=P$, and $C=\mathcal{F}_{A}$ implies that

$$
\begin{align*}
& A^{\dagger}=P \mathcal{F}_{\mathcal{A}}^{\dagger} U_{\alpha}^{*}=\sum_{\underline{\ell}=\underline{0}}^{\underline{n}-1} P_{\ell} F_{\ell}^{\dagger} P_{\underline{\alpha} \underline{\ell}} \tag{46}\\
& =\frac{1}{c \underline{(n)}} \sum_{\underline{\ell}=\underline{0}}^{n-1}\left[\begin{array}{c}
1 \otimes I_{d_{2}} \\
\vdots \\
\zeta \underline{\underline{r}} \otimes I_{d_{2}} \\
\vdots \\
\zeta \underline{\ell}(\underline{n}-1) \\
\sigma_{d_{2}}
\end{array}\right] F_{\underline{\ell}}^{\dagger}\left[\begin{array}{c}
1 \otimes I_{d_{1}} \\
\vdots \\
\zeta \underline{\underline{\alpha} \underline{s}} \otimes I_{d_{1}} \\
\vdots \\
\zeta \underline{\underline{\ell}(\underline{n}-1)} \otimes I_{d_{1}}
\end{array}\right]^{H} \\
& =\frac{1}{c(\underline{n})}\left[\sum_{\underline{\ell}=\underline{0}}^{\underline{n}-\underline{1}} \zeta^{\underline{\ell}(\underline{(r-\alpha} \underline{\alpha})} F_{\ell}^{\dagger}\right]_{\underline{r}, \underline{s}=0}^{\underline{n}-\underline{1}}=\left[B_{\underline{r}-\underline{\alpha} \underline{s}}\right] \underline{\underline{n}, \underline{s}=\underline{0}},
\end{align*}
$$

from (45).
Theorem 10 Let $A=\left[A_{\underline{s}-\underline{\alpha} \underline{r}}\right] \underline{\underline{r} \underline{s} \underline{\underline{1}}, \underline{0}}, \operatorname{gcd}(\underline{\alpha}, \underline{n})=\underline{q}$, and $\underline{p}=\underline{k} / \underline{q}$. Let $\mathbf{F}_{\underline{\ell}, \underline{\alpha}}$ be as in (34) and partition $\mathbf{F}_{\underline{\ell}, \underline{\alpha}}^{\dagger}$ as

$$
\mathbf{F}_{\underline{\ell}, \underline{\alpha}}^{\dagger}=\left[\begin{array}{c}
G_{\underline{\ell}, \underline{\alpha}} \tag{47}\\
\vdots \\
G_{\underline{\ell}+\underline{p}, \underline{\alpha}} \\
\vdots \\
G_{\underline{\ell}+(\underline{q}-1) \underline{p}, \underline{\alpha}}
\end{array}\right], \quad \underline{0} \leq \underline{\ell} \leq \underline{p}-\underline{1},
$$

where $G_{\underline{\ell}, \underline{\alpha}} \in \mathbb{C}^{d_{2} \times d_{1}}, \underline{0} \preceq \underline{\ell} \preceq \underline{n}-\underline{1}$. Then

$$
\begin{equation*}
A^{\dagger}=\left[B_{\underline{r}-\underline{\alpha}}\right]_{\underline{\underline{n}}, \underline{\underline{1}}=\underline{0}}^{\frac{1}{0}} \quad \text { with } \quad B_{\underline{m}}=\frac{1}{c(\underline{n})} \sum_{\underline{\ell}=\underline{0}}^{n-\underline{1}} \zeta^{\underline{\ell}} G_{\underline{\ell}, \underline{\alpha}}, \quad \underline{0} \preceq \underline{m} \preceq \underline{n}-\underline{1} . \tag{48}
\end{equation*}
$$

Proof. From Theorem 5 (specifically, (37)), $A=\mathcal{V}_{\underline{\alpha}} \mathcal{F}_{\underline{\alpha}} Q_{\underline{\alpha}}^{*}$. Recalling (36), Lemma 1 with $L=\mathcal{V}_{\underline{\alpha}}, M=\mathcal{Q}_{\underline{\alpha}}$, and $C=\mathcal{F}_{\underline{\alpha}}$ implies that
where the second equality follows from (32), (33), and (35) and the third equality follows from (31) and (47). Since $P_{\underline{\alpha}(\underline{\ell}+\underline{\nu} \underline{p}}=P_{\underline{\alpha} \underline{\ell}, \underline{0} \preceq \underline{\nu} \preceq \underline{q}-\underline{1}}$, we can now write

$$
A^{\dagger}=\sum_{\underline{\ell}=\underline{0} \underline{v}=\underline{0}}^{\underline{p}-1} \sum_{\underline{\ell}+\underline{\underline{p}} \underline{p}-1} G_{\underline{\ell}+\underline{v} \underline{p}, \underline{\alpha}} P_{\underline{\alpha} \underline{\ell}+\underline{\nu} \underline{p})}^{*}=\sum_{\underline{\ell}=\underline{0}}^{\underline{n}-1} Q_{\underline{\ell}} G_{\underline{\ell}, \underline{\alpha}} P_{\underline{\alpha} \underline{\ell}}^{*}
$$

Now (4) and (12) imply that

$$
\left.\begin{array}{rl}
A^{\dagger} & =\frac{1}{c(\underline{n})} \sum_{\underline{\ell}=\underline{0}}^{n-1}\left[\begin{array}{c}
1 \otimes I_{d_{2}} \\
\vdots \\
\zeta \underline{\underline{r}} \otimes I_{d_{2}} \\
\vdots \\
\zeta \underline{\ell}(\underline{n-1})
\end{array} I_{d_{2}}\right.
\end{array}\right] G_{\underline{\ell}, \underline{\alpha}}\left[\begin{array}{c}
1 \otimes I_{d_{1}} \\
\vdots \\
\zeta \underline{\underline{\alpha} \underline{s}} \otimes I_{d_{1}} \\
\vdots \\
\zeta \underline{\underline{\alpha} \underline{(n-1})} \otimes I_{d_{1}}
\end{array}\right]^{H}
$$

with $B_{\underline{0}}, \ldots, B_{\underline{m}}, \ldots, B_{\underline{n}-\underline{1}}$ as in (48). $\quad \square$
Remark 2 If $A=\left[a_{\underline{s}-\underline{\alpha r}} \underline{\underline{n}}_{\underline{\underline{n}}, \underline{s}=\underline{0}} \in \mathbb{C} \underline{\underline{n}}: 1 \times 1\right.$ then (28) and (34) reduce to

$$
f_{\underline{\ell}}=\sum_{\underline{m}=\underline{0}}^{\underline{n}-1} a_{\underline{m}} \zeta^{\underline{\ell} \underline{m}} \text { and } \quad \mathbf{f}_{\underline{\ell}, \underline{\alpha}}=\left[\begin{array}{llll}
f_{\underline{\ell}} & f_{\underline{\ell}+\underline{p}} & \cdots & f_{\underline{\ell}+(\underline{q}-\underline{1}) \underline{p}}
\end{array}\right], \quad \underline{0} \preceq \underline{\ell} \preceq \underline{p}-\underline{1} .
$$

Since

$$
\mathbf{f}_{\underline{\ell}, \underline{\alpha}}^{\dagger}=\frac{1}{\left\|\mathbf{f}_{\underline{\ell}, \underline{\alpha}}\right\|^{2}}\left[\begin{array}{c}
\bar{f}_{\underline{\ell}} \\
\vdots \\
\bar{f}_{\underline{\ell}+\underline{v} \underline{p}} \\
\vdots \\
\bar{f}_{\underline{\ell}+(\underline{q}-1) \underline{p}}
\end{array}\right] \quad \text { if } \quad \mathbf{f}_{\underline{\ell}, \underline{\alpha}} \neq 0 \quad \text { or } \quad \mathbf{f}_{\underline{\ell}, \underline{\alpha}}^{\dagger}=0 \quad \text { if } \quad \mathbf{f}_{\underline{\ell, \underline{\alpha}}}=0
$$

it follows that

Hence

$$
A^{\dagger}=\left[b_{\underline{r}-\underline{\alpha} \underline{s}}\right]_{r, \underline{n}=\underline{0}}^{\underline{1}} \quad \text { where } \quad b_{m}=\frac{1}{c(\underline{n})} \sum_{\underline{\ell}=\underline{0}}^{n-1} g_{\underline{\ell}, \underline{\alpha}} \zeta^{\underline{\ell} \underline{m}}
$$

8 The case where $\operatorname{gcd}(\underline{\alpha}, \underline{n})=\underline{1}$ and $d_{1}=d_{2}$

In this section we assume that $\operatorname{gcd}(\underline{\alpha}, \underline{n})=\underline{1}$ and $d_{1}=d_{2}=d$, so (30) becomes

$$
\begin{equation*}
A=U_{\underline{\alpha}} \mathcal{F}_{\mathcal{A}} P^{*} \tag{49}
\end{equation*}
$$

Theorem $11 A=\left[A_{\underline{s}-\underline{\alpha} \underline{r}}\right]_{\underline{n}, \underline{n}=\underline{0}}^{\underline{1}}$ is invertible if and only $\operatorname{if} \operatorname{gcd}(\underline{\alpha}, \underline{n})=\underline{1}$ and $F_{\underline{0}}, \ldots$, $F_{\underline{m}}, \ldots, F_{\underline{n}-\underline{1}}$ are all invertible, in which case

$$
\begin{equation*}
A^{-1}=\left[B_{\underline{r}-\underline{\alpha} \underline{s}}\right]_{\underline{r}, \underline{s} \underline{n}=\underline{0}}^{n-1} \quad \text { with } \quad B_{\underline{m}}=\frac{1}{c(\underline{n})} \sum_{\underline{\ell}=\underline{0}}^{n-1} \zeta \underline{\underline{m}} \underline{m}_{\underline{\ell}}^{-1}, \quad \underline{0} \preceq \underline{m} \preceq \underline{n}-\underline{1} \tag{50}
\end{equation*}
$$

and the solution of $A z=w$ is $z=\sum_{\underline{\ell}=\underline{0}}^{\underline{n}-1} P_{\underline{\ell}} F_{\underline{\ell}}^{-1} v_{\underline{\alpha} \underline{\ell}}$.
Proof. If A is invertible then $U_{\underline{\alpha}}$ must be invertible, which is true if and only if $\operatorname{gcd}(\underline{\alpha}, \underline{n})=\underline{1}$. Hence this is a necessary condition for A to be invertible. If $\operatorname{gcd}(\underline{\alpha}, \underline{n})=$ $\underline{1}$ then (41) implies that A is invertible if and only if $F_{\underline{0}}, \ldots, F_{\underline{s}}, \ldots, F_{\underline{n}-\underline{1}}$ are all invertible or, equivalently, $F_{\underline{s}}^{\dagger}=F_{\underline{s}}^{-1}, \underline{0} \preceq \underline{s} \preceq \underline{n}-\underline{1}$. Now Theorem 9 implies (50) which, with (39) and (41), implies the final conclusion.
Theorem 12 Suppose A is as in (49) and $\underline{\alpha} \underline{\beta} \equiv \underline{1}(\bmod \underline{n})$. Then:
(i) A is Hermitian if and only if $P_{\underline{\beta} \underline{\ell}} F_{\underline{\beta} \underline{\ell}}^{*}=P_{\underline{\alpha} \underline{\ell}} F_{\underline{\ell}}, \underline{0} \preceq \underline{\ell} \preceq \underline{n}-\underline{1}$
(ii) A is normal if and only if $F_{\underline{\beta} \underline{\ell}} F_{\underline{\beta} \underline{\ell}}^{*}=F_{\underline{\ell}}^{*} F_{\underline{\ell}}, \underline{0} \preceq \underline{\ell} \preceq \underline{n}-\underline{1}$
(iii) A is $E P$ (i.e., $A^{\dagger} A=A A^{\dagger}$) if and only if $F_{\underline{\ell}}^{\dagger} F_{\underline{\ell}}=F_{\underline{\underline{\beta}} \underline{\ell}} F_{\underline{\underline{\ell}} \underline{\ell}}^{\dagger} \underline{0} \leq \underline{\ell} \preceq \underline{n}-\underline{1}$.

Proof. From (49) and (46) with $\underline{\alpha}=\underline{1}$,

$$
\begin{equation*}
A=\sum_{\underline{\ell}=\underline{0}}^{n-1} P_{\underline{\alpha} \underline{\ell}} F_{\underline{\ell}} P_{\underline{\ell}}^{*}, \quad A^{*}=\sum_{\underline{\ell}=\underline{0}}^{n-1} P_{\underline{\ell}} F_{\underline{\ell}}^{*} P_{\underline{\alpha} \underline{\ell}}^{*}, \quad \text { and } \quad A^{\dagger}=\sum_{\underline{\ell}=\underline{0}}^{n-1} P_{\underline{\ell}} F_{\underline{\ell}}^{\dagger} P_{\underline{\alpha} \underline{\ell}}^{*} \tag{51}
\end{equation*}
$$

(i) Since $\underline{\alpha} \underline{\beta} \equiv 1(\bmod \underline{n})$, replacing $\underline{\ell}$ by $\underline{\beta} \underline{\ell}$ in the second sum in (51) yields $A^{*}=\sum_{\underline{\ell}=\underline{\underline{0}} \underline{\underline{1}}}^{\underline{\beta}} P_{\underline{\beta} \underline{\ell}} F_{\underline{\beta} \underline{\ell}}^{*} P_{\underline{\ell}}^{*}$, and comparing this with the first sum in (51) yields (i).
(ii) From (51),

$$
A A^{*}=\sum_{\underline{\ell}=\underline{0}}^{n-1} P_{\underline{\alpha} \underline{\ell}} F_{\underline{\ell}} F_{\underline{\ell}}^{*} P_{\underline{\alpha} \underline{\ell}}^{*}=\sum_{\underline{\ell}=\underline{0}}^{n-1} P_{\underline{\ell}} F_{\underline{\beta} \underline{\ell}} F_{\underline{\beta} \underline{\ell}}^{*} P_{\underline{\ell}}^{*} \quad \text { and } \quad A^{*} A=\sum_{\underline{\ell}=\underline{0}}^{n-1} P_{\underline{\ell}} F_{\underline{\ell}}^{*} F_{\underline{\ell}} P_{\underline{\ell}}^{*},
$$

which implies (ii).
(iii) From (51),

$$
A A^{\dagger}=\sum_{\underline{\ell}=\underline{0}}^{n-1} P_{\underline{\alpha} \underline{\ell}} F_{\underline{\ell}} F_{\underline{\ell}}^{\dagger} P_{\underline{\alpha} \underline{\ell}}^{*}=\sum_{\underline{\ell}=\underline{0}}^{n-1} P_{\underline{\ell}} F_{\underline{\beta} \underline{\ell}} F_{\underline{\beta} \underline{\ell}}^{\dagger} P_{\underline{\ell}}^{*} \quad \text { and } \quad A^{\dagger} A=\sum_{\underline{\ell}=\underline{0}}^{n-1} P_{\underline{\ell}} F_{\underline{\ell}}^{\dagger} F_{\underline{\ell}} P_{\underline{\ell}}^{*} \text {, }
$$

which implies (iii).

Remark 3 If A is a square matrix and there is a matrix B such that $A B A=A, B A B=$ B, and $A B=B A$, then B is unique and is called the group inverse of A, denoted by $B=A^{\#}$. Theorem 12 (iii) implies that $A^{\dagger}=A^{\#}$ if and only if $F_{\underline{\ell}}^{\dagger} F_{\underline{\ell}}=F_{\underline{\underline{\beta}} \underline{\ell}} F_{\underline{\beta} \underline{\ell}}^{\dagger}$, $\underline{0} \preceq \underline{\ell} \preceq \underline{n}-\underline{1}$.

9 The eigenvalue problem with $\underline{\alpha}=\underline{1}$

Here we assume that $\underline{\alpha}=\underline{1}$ and $d_{1}=d_{2}=d$, so (6) and (12) reduce to

$$
\begin{gathered}
R=S=E_{1} \otimes E_{2} \otimes \cdots \otimes E_{k} \otimes I_{d}=\left(\left[\delta_{\underline{r}, \underline{s}-1}\right]_{\underline{r} \underline{\underline{s}}=\underline{0}}^{\underline{0}}\right) \otimes I_{d} \\
P_{\underline{s}}=Q_{\underline{s}}=\phi_{\underline{s}} \otimes I_{d}, \quad \underline{0} \preceq \underline{s} \preceq \underline{n}-\underline{1}
\end{gathered}
$$

and (30) reduces to

$$
A=P \mathcal{F}_{\mathscr{A}} P^{*}=\sum_{\underline{s}=\underline{0}}^{n-1} P_{s} F_{s} P_{s}^{*}
$$

The following theorem and its proof are motivated by [2, Theorem 2].
Theorem 13 Let

$$
\gtrdot_{R}=\bigcup_{\underline{\ell}=\underline{0}}^{\underline{n}-1}\left\{z \in \mathbb{C}^{\underline{n}}: d \mid R z=\zeta \underline{\ell} z\right\}
$$

If λ is an eigenvalue of A let $\xi_{A}(\lambda)$ be the λ-eigenspace of A; i.e,

$$
\mathcal{E}_{A}(\lambda)=\{z \mid A z=\lambda z\}
$$

Then:
(i) If λ is an eigenvalue of $A=\left[A_{\underline{s}-\underline{r}}\right]_{\underline{r}, \underline{\underline{r}}=\underline{0}}^{\underline{\underline{1}}}$ then $\mathcal{E}_{A}(\lambda)$ has a basis in 8_{R}.
(ii) If $A \in \mathbb{C}^{\underline{n}}: d \times d$ and has $c(\underline{n}) d$ linearly independent eigenvectors in \wp_{R}, then A is a 1 -circulant.

Proof. (i) From (41) with $w=\lambda z$ and $\underline{\alpha}=\underline{1}, z=\sum_{\underline{\ell}=0}^{\underline{k}=\underline{1}} P_{\underline{\ell}} u_{\underline{\ell}} \in \mathcal{E}_{A}(\lambda)$ if and only if $F_{\underline{\ell}} u_{\underline{\ell}}=\lambda u_{\underline{\ell}}, \quad \underline{0} \preceq \underline{\ell} \preceq \underline{n}-\underline{1}$. Therefore λ is an eigenvalue of A if and only if it is an eigenvalue of $F_{\underline{\ell}}$ for some $\underline{\ell} \in \mathcal{M}_{\underline{n}}$. Let τ_{λ} be the subset of $\mathcal{M}_{\underline{n}}$ for which this is true. Then $\mathcal{E}_{A}(\lambda)$ consists of linear combinations of the vectors of the form $P_{\underline{\ell}} u_{\underline{\ell}}$ with $\underline{\ell} \in \mathcal{T}_{\lambda}$ and $\left(\lambda, u_{\underline{\ell}}\right)$ an eigenpair of $F_{\underline{\ell}}$. Since $R P_{\underline{\ell}}=\zeta_{\underline{\ell}} P_{\underline{\ell}}$ (see (6)), this completes the proof of (i).
(ii) From Theorem 1 with $R=S$ and $\underline{\alpha}=\underline{1}$, we must show that $R A=A R$. If $A z=\lambda z$ and $R z=\zeta^{\underline{s}} z$ then $R A z=\lambda R z=\lambda \zeta^{\underline{s}} z$ and $A R z=\zeta^{\underline{s}} A z=\zeta^{\underline{s}} \lambda z$. Hence $A R z=R A z$ for all z in a basis for $\mathbb{C} \underline{n}: d$, so $A R=R A$.

Theorem 14 Suppose $\left\{F_{\underline{\ell}} \mid \underline{\ell} \in \mathcal{M}_{\underline{n}}\right\}$ and $\left\{A_{\underline{m}} \mid \underline{m} \in \mathcal{M}_{\underline{n}}\right\}$ are related as in (28), and $F_{\underline{\ell}}=\Psi_{\underline{\ell}} J_{\underline{\ell}} \Psi_{\underline{\ell}}^{-1}$ is the Jordan canonical form of $\overline{F_{\underline{\ell}}}, \underline{0} \preceq \underline{\ell} \preceq \underline{n}-\underline{1}$. Let

$$
\Gamma=\left[\begin{array}{lllll}
P_{\underline{0}} \Psi_{\underline{0}} & \cdots & P_{\underline{\ell}} \Psi_{\underline{\ell}} & \cdots & P_{\underline{n}} \Psi_{\underline{n}}
\end{array}\right]
$$

Then

$$
\left[A_{\underline{s}-\underline{r}}\right]_{\underline{r}, \underline{s}=\underline{0}}^{\frac{n}{\underline{1}}}=\Gamma\left(\bigoplus_{\underline{\ell}=\underline{0}}^{\underline{n}-\underline{1}} J_{\underline{\ell}}\right) \Gamma^{-1}
$$

In particular, suppose that $F_{\underline{0}}, \ldots, F_{\underline{\ell}}, \ldots, F_{\underline{n}-\underline{1}}$ are all diagonalizable with spectral decompositions

$$
F_{\underline{\ell}}=T_{\underline{\ell}} D_{\underline{\ell}} T_{\underline{\ell}}^{*}, \quad \underline{0} \preceq \ell \preceq \underline{n}-\underline{1},
$$

and

$$
\Delta=\left[\begin{array}{lllll}
P_{\underline{0}} D_{\underline{0}} & \cdots & P_{\underline{\ell}} D_{\underline{\ell}} & \cdots & P_{\underline{n}-\underline{1}} D_{\underline{n}-\underline{1}}
\end{array}\right] .
$$

Then

$$
A=\Delta\left(\bigoplus_{\underline{\ell}=\underline{0}}^{\underline{n}-1} D_{\underline{\ell}}\right) \Delta^{-1}
$$

References

[1] C. M. Ablow, J. L. Brenner, Roots and canonical forms for circulant matrices, Trans. Amer. Math. Soc. 107 (1963) 360-376.
[2] A. L. Andrew, Eigenvectors of certain matrices, Linear Algebra Appl. 7 (1973) 151-162.
[3] V. Olshevsky, I. Oseledets and E. Tyrtyshnikov, Tensor properties of multilevel Toeplitz and related matrices, Lin. Alg. Appl. 412 (2006) 1-21
[4] S. Serra Capizzano, A Korovkin-type theory for finite Toeplitz operators via matrix algebras, Numerische Mathematik 82 (1999) 117-142.
[5] S. Serra Capizzano, A Korovkin based approximation of multilevel Toeplitz matrices (with rectangular unstructured blocks) via multilevel trigonometric matrix spaces, SIAM Journal on Numerical Analysis 36 (1999) 1831-1857.
[6] S. Serra Capizzano and E. Tyrtyshnikov, Any circulant-like preconditioner for multilevel matrices is not superlinear, SIAM J. Matrix Anal. Appl. 21-2 (1999) 431Û́-439.
[7] S. Serra-Capizzano, Stefano and C. Tablino-Possio, Multigrid methods for multilevel circulant matrices SIAM J. Sci. Comput. 26 (2004) 55-Ü85.
[8] W. F. Trench, Properties of unilevel block circulants, Linear Algebra Appl. 430 (2009) 2012U゙-2025.
[9] E. Tyrtyshnikov, Optimal and superoptimal circulant preconditioners, SIAM J. Matrix Anal. Appl. 13 (1992) 459-473.
[10] E. E. Tyrtyshnikov, Toeplitz matrices, some analogs and applications (in Russian), Inst. of Numer. Math., Rus. Acad. of Sci. (1989).
[11] V. V. Voevodin, E. E. Tyrtyshnikov, Computer Processes with Toeplitz Matrices, Nauka, Moscow, 1987 (in Russian),

[^0]: *e-mail:wtrench@trinity.edu

