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Abstract

n—1
r,s=0"

In a previous paper we characterized unilevel block a-circulants A = [Ag_qr]
Am € cd Xdz, 0 <m < n— 1, in terms of the discrete Fourier transform ¥4 =
{Fo,F1,...,Fy_1}of A ={Ag, A1 ..., Ay—1},definedby F; = % an_=10 e—Zni(m/nAm.
We showed that most theoretical and computational problems concerning A can be
conveniently studied in terms of corresponding problems concerning the Fourier
coefficients Fg, Fy, ..., F,—1 individually. In this paper we show that analogous
results hold for (k + 1)-level matrices, where the first k levels have block circu-
lant structure and the entries at the (k + 1)-st level are unstructured rectangular

matrices.
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1 Introduction

We consider (k + 1)-level block matrices where the first k levels are circulant with
orders ny, ny, ..., ny > 2 and the entries in the (k 4+ 1)-st level are arbitrary dy X d5
matrices with dy, d, > 1. The systematic study of multilevel matrices was initiated by
Voevodin and Tyrtyshnikov in the Russian publication [11], and in the English mathe-
matical literature by Tyrtyshnikov [9, 10].

If p > 2is an integer, let Z, = {0,1,..., p — 1}. Suppose ny, na, ..., ny are
integers > 2 and let

Mp =Zpy, X Lipy X+ X L, .

We denote members of M, by r = (r1,7r2,...,7k), S = (51,52,...,5k), etc.; in
particular, 0 = (0,0,...,0)and 1 = (1, 1,...,1).
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Let

k Jj—1 k
c(ﬁ:l_[rj, p,ﬂ,-:l_[ni, andv; = 1_[ ni, 1 <j <k, withuy =vg =1.
j=1 i=1 i=j+1

ey

Following Tyrtyshnikov, we call members of M, multiindices. Henceforth it is

be understood that multiindices are ordered lexicographically; i.e., r = sif r; = s},

1 <j <k;r <s(whichwealsowriteass > r)ifr; <sjorr; =s;,1<j <i <k

and r;41 < sjy1;andr X sifr = s orr < 5. If the members of M, are listed in
lexicographic order then the position of r in the list is

k k
V(L)=er l_[ ni, 0=xr=<xn-1.

j=1  i=j+1
If (eom- €1m, - - - » €m—1,m) 18 the natural basis for C™ and

er =e€riny Qeryny, @ ®ern, 03r==n-1,

then B8 = (g, ..., er,...,en—1) is a multilevel basis for C°®@. For later reference we
note that

@ (er®el)eg=08g5e, and(b) (e, ® el Nem®el) =8mer®el. (2)

If d; and d, are positive integers then arbitrary vectors x € C%¢® and y €
C41¢® can be written uniquely as

Xo
n—1 :
x=Z(e£®x£)= Xr with xie(Cdz, 0<s=<n-1,
s=0 :
L Xn—1 |
and
"y ]
n—1
y=)(s®y)=| with y;eCh, 0<s=<n-1.
s=0 :
L Vn-1 |

Henceforth we denote the sets of vectors in C¢®%2 and C¢®91 written in these forms
as C%92 and C=91 | respectively. A linear transformation L : C%%2 — CZ41 can be
written uniquely as y = H x, where

n—1
H= Y (,®e¢])® Hys = [Hu]i;io with Hyg € CO22 0 0 <r,s <n—1;

r,s=0
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thus,

n—1 n—1
y = Hx= Z(eL®e§)®HL£ Ze£®x£
r,s=0
n—1 n

= (er ® eg)% ® Hysxy

r,s.£=0 rs=0

Il
o
I~
&
=
en
=
12

0 <r < n—1, from (2)(a). We will denote the set of matrices in C¢@a1xc@d2 yritten
in the form (3) by Czd1%xd2,
The usual rule for matrix multiplication applies; i.e., if H is as in (3) and

n—1

G = Z (er ® egT) ® Grs = [Gu]%;l:o with G, € Chxds 0<r,s<n—1,
r,s=0 -
then
n—1 n—1
HG = (er®e])® Hyy (em®e]) ® Gy
r.{=0 m,s=0
n—1
= ) le®e))em®el))® HriGms
r.t,m,s=0
n—1
= > Sum(er®el)® HyyGms by (2)(b)
r.t,m,s=0
n—1 n—1 n—1
= Z (er®ef)® HyGys | = (e ® egT) ® Krs = [Ku]i;l:ga
r,s= £=0 r,s=0
where
n—1
Kggz HlﬁGﬁga Qflaﬁfﬂ_l
=0

In this paper we consider multilevel block ¢-circulants

A= [Ag—gi]i,;io where o € M, and 4, € Cch>*h g<m=<n—1.

Multilevel 1-circulants [As—, %;io have important applications in preconditioning of

multilevel and multilevel block Toeplitz matrices 7 = [TE_L]%;l:O; see, e.g., [3]-[71],
a very incomplete list. We are not aware of any published results on multilevel a-
circulants with o > 1.

The proofs of some of our results are similar to results obtained in [8] for unilevel
block circulants. Nevertheless, we include complete proofs here since we believe that
simply referring to [8] would impede the presentation here and would not be convincing

in the multilevel setting.



2 Preliminaries

Throughout the rest of this paper all arithmetic operations and relations involving multi-
indices are entrywise and modulo n, i.e., r = s (mod n), ged(a,n) =g and p = g/g
mean that

ri=s; (modnj), ged(aj,n;)=gq;, and p;=aj/q;, 1=j =<k,

respectively. Also,

r+s=(r1+s1(modny), ra + 52 (modns), ..., ry + sk (modng))
and
rs = (r1s1 (modny), rasy (modny), ..., risg (modng)).
We denote
=i 1< <k, =000 08 0=xs=<n—1,
and |
-1
¢ = [é{i]ii;g = [ $o bs bn ]a
c(n)
with
1
¢s = ! é‘ii 0<s=<n-—1 (@)
s — y M o0 - =
T e )
{@=DE)
Note that
¢g = 1/fsul ® I/f32,2 - ® 1/fsk,k’
where
1
py
1 & ,
Vsji = = : » Ossj<nj, 1=j<k
;E."j —Ds;
hence,
Sy =8 =pr d L LTS o (5)
ST i p s, ST T
—1 .
Nowlet Ej = [8;;,5,-1], 5,0 1 < J <k,
E=E®E® ®Ep = 11,50, 6)
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and

EL=E}' @ EY’ @+ ® Ef* = [Brs-ulf oty @)
It is straightforward to verify that
Xo Xu
(B @ 15) | x, | =| xp4u |ifxeCre® (8)
Xn—1 Xn—1+u

and
(El® Idl) ([ng]igl:g (E_v & Idz) = [BL+E,§+y]i;l=g if Be Cﬂ:dlxayz‘ )]

From (4), (6), and (8) withu =1,

-
| :
Ep, = (r+Ds =p, 0=<s=<n—1. 10
Ps NaD) ¢ F¢s, 0=xs=n-1 (10)
_;@—L)s_

Hence
E® =&D with D = diag(1,...,@,...,;(&—92), so E = ®Do*,

Now let
R=EQ®Il;, S=E®Iy,, (11
Ps=¢s® 14, Qs=0¢s®1q,, 0=s=n—1 (12)
From (5),

P;Pg:8gglﬂ:d1 and QZQQZ‘SLQIQ:dza 0=r,sxn—-1 (13)

From (10) and (11),
RP; =¢*P; and SQ; =0"Qs, 0=Xs=n-—1 (14)
Also, let
p:[pg cee Py e Pﬂ—l]’ Q=[Qg e Qg e Qﬂ—l]’
(15)
and
Up=[ Py -+ Pas = Paw |- (16)

From (13), P and Q are unitary. If gcd(o,n) = 1 the mapping s — « s is a permu-
tation of My, so Uy is unitary. However, if ged(ee.n) = ¢ > 1 then the first ¢(p)



block columns Py, ..., Pys, ..., Py(p—1) of Uy are repeated c(g) times, so Uy is not
invertible. Bl
From (14) and (15),

R=PDgrP* and S =0DsQO"
where

n—1
Dr=ED ¢ and Ds =P,
s=0

3 The Ablow-Brenner theorem for multilevel block cir-
culants

Ablow and Brenner [1] showed that A € C"*" is a standard a-circulant A = [a5_q,] €
C™" if and only if

([8r,s—1 ’:;io) A ([8r,s—1 ’:;io)_a = A.

This was generalized to characterize unilevel block circulants in [8, Theorem 1]. Here
we generalize it to multilevel block circulants.

Theorem 1 If A = [Gs|* L) with Gpg € CU*% then RAS™ = A (see (11)) if
and only if A is an a-circulant; more precisely, if and only if

Grs = Asar, 0=r,s=n-1, (17)
with
As =Gos, 0=s=n—1 (18)
PROOF. From (9) and (11), RAS™% = [GL+L,£+g]i;l=g- Therefore we must show that
(17) is equivalent to
Gri1s+e = Grs, 0=Xr,s<n-1 (19)

If (17) is true then
Grirsta = Ata)-+De = As—ar = Grs, 0=r,s=n—1

For the converse we consider blocks at each level independently. Insofar as they involve
level p, (17)—(19) can be rewritten as

G~~~,(rp,sp),~~~ = A~~~,(sp—ap,rp),~~~ 0<rp,sp=<np—1,
A...,(sp),... = G~~~,(0,s,,),~~~ 0<sp=<np,-—1, (20)
and
G~~~,(r,,+1,s,,+a,,),~~~ = G~~~,(rp,sp),~~~ 0<rp,sp<np,—1 21



Now suppose (20) and (21) hold and

G~~~,(r,,,s,,),~~~ = A~~~,(s,,—a,,r,,),m 0<sp=<np,-—1, (22)

for some r, < np—1. Replacing s, by s, — ap in (21) and (22) yields

G~~~,(r,,+1,s,,),m = G~~~,(r,,,s,,—o¢,,),m 0<rp,sp<np—1,
and

G~~~,(r,,,s,,—ot,,),~~~ = A~~~,(s,,—o¢,,(r,,+1)),m 0<s< np— 1.
Therefore

G~~~,(rp+1,sp),~~~ = A~~~,(s,,—o¢,,(r,,+1)),m 0<s< np— 1,

which is (22) with rj, replaced by r, + 1. O
Remark 1 From (7), (11), and (12),
RE=R'®R?®---@R* and S2=S]'®S;?® --®S,;*,
where
Rj=1u; ® En; ®lv;a, and Sj=1y; ® En; ® Iy;a,.
(See (1)). Then, for example,
RAS™ = A ifandonlyif R;AS;" =4, 1<j<k

Theorem 2 If

—1 . —1 .
A= [Ai—gg]i —o € crdixd gnd B = [BE—&L]iE;O e crhixd

[

then (i) AB* = [Cy—, |5 2, € CEOXA yith
Cm=) ABj,, 0=m=n-1 (23)
(i) Ifged(e.n) = 1then B*A = [Dy_ |5 L) € CEXE yih
Dm=) BfAnys, 0=Xm=n-—1 (24)

PROOF. (i) From Theorem 1, A = RAS % and B = RBS™%. Therefore AB* =
RAB*R™L, so Theorem 1 with R = S implies that AB* is a 1-circulant. Computing
the first block row (r = 0) of AB* yields (23).

(ii) Also, B¥*A = S£B*AS™¢, so

S/B*AS;* = B*A, 1<j <k



Applying this equality 8, times where o;8; = 1 (mod n;) yields

S;BAS;' = B*A, 1<j <k
Now Theorem 1 and Remark 1 with R = S imply that B* 4 is a 1-circulant. Comput-
ing the first block row of B* A4 yields D,,, = %;% B* , ;Am—q¢- Since ged(n, k) = 1,

£ — —pBL is a permutation of My, so we can replace £ by —B£ in the last sum to obtain
(24). O

Theorem 3 If
n—1 .
c Cﬂldlxd2 and B = I:Bi_ﬁljl € (Cl-dzxds (25)

then
0 c Cg:dlxag’ (26)
with

sz AgBm_éﬁ, 0<m=<n-1. 27)

PROOF. Let R=E®14,,S = E®Iy,,and T = E ® I4,. (See (6)). From (25) and
Theorem 1,
() A=RAS™ and (b) B =SBT L.

Now write

TE=T0' QTP ® - ®@TH with T, =1;®E,, ®L,,a5, 1<) <k

From (b) S‘,-BTJ_.ﬁj = B, 1 < j < k. Applying this equality «; times yields
S/ BT,“ Pi = B, 1 < j < k. Therefore S2BT%8 = B, by Remark 1. From

this and (a), R(AB)S ~2B — AB. Now Theorem 1 implies (26) with (27) obtained by
computing the entries in the first block row of AB. [

4 A dft characterization of multilevel «-circulants

Let {Fy | L€ My} and {Ap | me My} C C41>d> be related by

n—-1 n—1
n—1 oL
@ Fp=) ("4, and(d) Ay=——> mF, (28)
c(n)
m=0 £=0
which are equivalent, since Z%;% 2L — ¢(n)8y 0. Denote

IS

-1
Fu= Fy. (29)

les
1

The set { Fy | £ € My} is the discrete Fourier transform (dft) of the set { Ay, | me My}



Theorem 4 A matrix A € CE4>9 jg qpn q-circulant A = [Ai_gl]%;io if and only if

A=UyFpQ* = Py F QZ (30)

(see (15) and (16)), where {Aﬂ | m € :Ml} and {F |ﬁ € :Ml} are related as in (28).

PROOF. Suppose 4 = [As—gi]igl:g- From (28),
1 n—1
As gy = ;—ﬁ(i—gz) Fy.
c(n) Py
Hence
1 ® Idl 1 ® Idz
1 n—-1 :
A= —— tra o 1 F, Ls @[ ,
() ; ® Iq, L ® g,
£=0 : :
tta—Da @ 1 a4 tte-D g g &

s0 (4), (12) and (15) imply (30). Conversely, suppose (30) holds. Then

n—1 2l
RAS™® = 3 (RPy)Fy(SQ) ™™ =) [((* Py F((7240))
=0 =0

n—1
= ) PutFOf =4,
£=0

where (14) implies the second equality. Now Theorem 1 implies that A is an ¢-circulant
A= [Ag—q L]%;l:O’ and the argument given in the first half of this proof implies that
{Am | m € My) is as defined by (28). 0O

The following theorem provides a representation of A that reduces to (30) if gcd(o, n) =
1, but is more useful if ged(ee, n) > 1.

Theorem 5 Suppose ged(ae,n) = q and p =n/q. Let

Qua=[ Q¢  Qurvp =+ Qur@g-vp |. 0=<L=p—1, 31)
Qq = [ Qoo -+ Qe --- QE—LQ ]a (32)
Vo=[ P =+ Pra =+ Pp-na ], (33)
Fro=[ Ft Frepp Firg-vp | 0=L=p—1, (34)



and
-1

S

@ |

Fo =

Fra. (35)

[

=0

Then Qg is unitary since its columns are simply a rearrangement of the columns of Q,

Ve Va = Le(pyay» (36)
and (30) can be rewritten as
p—1
A=) PyFra0;, = VFu@y. (37)
£=0

Since every s € M, can be w;itgen_u;liauay ass ={ + v p with0 =< £ =< p—1and
0 < v < ¢ — 1, the second equality in (30) can be written as

p—1lg-1 p—1 q—1
A= Z Patvp F £+H£QZ+£P = Z Par ) Fi _+z£QZ+zp’ (38)
£=0v=0 T t=0  v=0 -

where the second equality here is valid because pa = 0 (mod n). Therefore the first
equality in (37) is valid because

q—1
FroQie =) FriwQiy 03L=p-1
=0

Now (32)—(34) imply the second equality in (37). O

S Solution of Az = w and the least squares problem

In this section A = [Ag—gg]%;io- If z € C%9 and w € C%91 we write

n—1 n—1
z= Qsus and w = Z Psvs with u; € C? and vy € CH (39)
s=0 £=0

(see (15)),0=s =n—1.
Theorem 6 If gcd(a,n) = 1 then

n—1
Az —w|? = Z”Fgug_vggnz (40)
=0

where || - || is the Frobenius norm. Therefore the least squares problem for the ¢ (n)d; x
c(n)d, matrix A reduces to c(n) independent least squares problems for the dy X d»
matrices Fg, 0 < s <n— 1. Also,

Az =w ifandonlyif Fsus =vg4s, 0=Xs=<n-—1 41)

10



PROOF. From (30) and (39),

n—1 n—1 n—1 n—1
Az—w = Z PysFous — )  Psvg = Z Py s Fugs — Z PysVas
s=0 s=0 s=0 s=
n—1
= Py s(Fsus — vas), 42)
s=0

since ged(a, n) = 1. Since Py, Pas = 8y 51n:a, (again, because ged(a, n) = 1), (42)
implies (40), which implies (41) O

Theorem 7 Suppose ged(a,n) = q and p = n/q. Then Az = w has no solution
unless

W= Pyrvgs (43)

in which case z is a solution if and only z = Zf;% Qsug, where

-1

B}

F+z£”£+z£=1}g£a 0=<xf=<n—-1. (44)

p—1 qg—1
Az = Z Py g Z Fryvpltetvp
£=0 v=0

holds for some vy, ..., Vg, ..., VUg(p—1), in Which case z = Zg;é Fyuy is a solution
if and only if (44) holds. O h
6 Commutativity

The following theorem generalizes the well known commutativity property of 1-circulants
n—1 Cnxn
[as—r]r,s=0 € .

11



Theorem 8 Suppose di = d, ged(a,n) = 1, and af = 1 (mod n). Let A =

n—1

—1
[As-arlrs=o- B = [Bs—prlys=0-

n-1 n-l
m= m=

PROOF. Since ged(e, n) = ged(B, n) = 1, we may change summation indices £ — o £
and £ — BL. Therefore, from Theorem 4 with Q = P,

n—1 n—1 n—1 n—1

A=Y Py FyPf =) PiFgPs,. B=Y PgGP} =) PGyiPy.
£=0 £=0 h £=0 £=0
n—1 n—1
AB = Py FpGyPS. and BA = PGy FiP/,
=0 =0

which implies the conclusion. [

7 The Moore-Penrose inverse of an «-circulant

In this section A = {Ap | me My} and ¥ = {F, | £ € My} are related as (28).
Recall that the Moore-Penrose inverse of a matrix G € C"** is the unique matrix
GT € C*" that satisfies the Penrose conditions

(GGHY* =GGT, GT6)*=G6TG, GG'G=G and GTGG' =GT.
We need the following lemma.

Lemma 1 Suppose L € C"*P,. M € C, L*L = I,, M*M = I;,, G = LCM™*,
and H = MCYL*. Then H = G7.

PROOF. (i) The following computations are straightforward:
GH = LCC'L* = L(CCT*L = (GH)*,
HG = MCTCM* = M(CTC)*M* = (HG)*,
GHG = LCCTCM* = LCM* =G

and
HGH = MGTGGTL* = MGTL* = H,

so G and H satisfy the Penrose conditions. [
For clarity we first consider the case where ged(a, n) = 1.

12



Theorem 9 If A = [Ay_g, 1%L and ged(e, 1) = 1, then

|‘i

-1
B lﬂ_
n—1 . L I}
ATzwkuKFgwszﬂzzﬁggpmi,Qjmjﬂ—L (45)

PROOF. From Theorem 4, A = U, ¥4 P* (see (15), (16), and (29)), which is written
in expanded form in (30). As noted following (16), U, is unitary because («,n) = 1.
Since P is unitary in any case, Lemma 1 with L = Uy, M = P, and C = ¥4 implies
that

AT = PFRUS =) PR Py (46)
1® 14, 1 ® Iy, H
1 n—1 : .
= —F ® 1 FT é‘ﬁgi ® Iz
W & | |
é-((n—L) ® Idz ;ﬁa(n—l) ® I,
n—1 n-l1
1 ~ —_ f—
= -(n) éﬁ(L @) Fg = [BL_QE]i,El:ga
c(n) =

from (45).

Theorem 10 Let A = [As—o,],
(34) and partition FZ oGS

[ Gra ]
Fio=| Othpe |. 0xl=p-L @7
L G£+(1—L)g,g i

where Gy o € C%xd 0 < <n—1.Then

—1
_ 1 =
n—1 L
A" = [Brgslp=g With Bn=—— © (}_0 Gy, 0xm=n—1 (48)

PROOF. From Theorem 5 (specifically, (37)), A = Vo Fg (Q; . Recalling (36), Lemma 1
with L = Vy, M = @4, and C = ¥, implies that

S

p—1 fq-1
At =@, 7)v; = ZQMFM EDD Qt+vpGervpe | Poe:

les
Il

(=]

<
Il

13



where the second equality follows from (32), (33), and (35) and the third equality
follows from (31) and (47). Since Pyg+yv p) = P, 0 X1 < q-— 1, we can now write

p—1g-1 n—1
* *
AT = Z OttvpGrivpa a(t+vp) = Z O0cGraPyy-
£=01r=0 =0

1® 14 191, "
1 n—1
AT = — £L®1d Gy §£Q£®]d
Cm) = 2 L0 1
;5 @-D & 1, ;ﬁa(n—l) ® I
n—1 n-1
1 ~— L(r— —1
) (Zj; 729Gy, = [Brasly =0
=0 r,s=0
with By, ..., By, ..., By—1 asin (48). O
Remark 2 If A = [a i—u]i;ig e C=1X1 then (28) and (34) reduce to
n—1
fe= améﬁm and fpq = [ fe f£+g f£+(g—L)g ], 0=xf=p—1
m=0
Since
_ _£ _
t 1 - , t ,
f,, = 5 L4y p if frq#0 or f,, =0 if fg, =0,
Le = gl . Le
|/ 4+@-Dp

it follows that

f v p/feal® if frg #0,
= - 0<f<p-1 0=v=g-1
i if £, =0, gzt=zp-L Jz=kz=4-2
Hence
1 n—1
Al = (br—as f;ig where b, = @(Z_:Ogﬁﬂéﬁm‘

14



8 The case where gcd(a,n) = 1and d; = d,

In this section we assume that gcd(e, n) = 1 and d; = d; = d, so (30) becomes

A= UgFu P, (49)
Theorem 11 A = [Ai—gi]i,;l:g is invertible if and only if ged(a,n) = 1 and Fy, ...,
Fu, ..., Fu_1 are all invertible, in which case
1 n—1
—1 n-1 . Lm p—1
AT = [Brgslys=q with  Bp = = Y ttmE 0xm=n—1. (50)
=0
and the solution of Az = wisz = Z%;% PgF(_l Vg £-

PROOF. If A is invertible then U, must be invertible, which is true if and only if
ged(a, n) = 1. Hence this is a necessary condition for A to be invertible. If ged(o, n) =
1 then (41) implies that A4 is invertible if and only if Fy, ..., Fy, ..., F,—; are all in-
vertible or, equivalently, F; = Fs_l, 0 < s < n—1. Now Theorem 9 implies (50)
which, with (39) and (41), implies_the final conclusion. 0O

Theorem 12 Suppose A is as in (49) and af = 1 (mod n). Then:

(i) A is Hermitian if and only ifPﬁﬁFf}"£ =Py Fp.0<x€=<n—-1

n—1 n—1 n—1
A= PQEFLP(*, A = Z PQF(*P;(, and AT = Z PgFgP;(. 51
=0 £=0 {=0

(i) Since ¢ = 1 (mod n), replacing £ by B £ in the second sum in (51) yields
A* = Z;é PEEFEEPZ’ and comparing this with the first sum in (51) yields (i).
(i) From (51),

n—1 n—1 n—1
AA* = PgﬁF_FZPg*ﬁz P_F_ﬁFngZ and A*A = ZPQFZFﬁPZ’
=0 =0 =0

which implies (ii).

(iii) From (51),
n—1 n—1 n—1

AAY =3 P FF[ Py =) PiFgFy, Pf and ATA =73 PFJFP;,
=0 =0 =0

which implies (iii). O

15



Remark 3 If A4 is a square matrix and there is a matrix B such that ABA = A, BAB =
B, and AB = BA, then B is unique and is called the group inverse of A, denoted by

B = A*. Theorem 12(iii) implies that A" = A* if and only if F/F, = Fg,F}
0 =

A
<f=<n-1

9 The eigenvalue problem with o = 1
Here we assume that @ = 1 and dy = d> = d, so (6) and (12) reduce to

R=S=EIQEQ®  ®E®Ili=8.1lr,29) ® 4.

and (30) reduces to

A= PFuP* =) PFP;.

§=0

The following theorem and its proof are motivated by [2, Theorem 2].

Theorem 13 Let
n—1

Sr = U{ze@ﬂ:d|Rz=§£z}.
£=0

If A is an eigenvalue of A let & 4(A) be the A-eigenspace of A; i.e,
€4(h) = {z| Az = Az}.

Then:

(i) If A is an eigenvalue of A = [As—r i;l:g then & 4(A) has a basis in Sg.

(i) If A € C%9*4 gnd has c(n)d linearly independent eigenvectors in Sg, then A
is a 1-circulant.

PROOF. (i) From (41) withw = Az anda =1,z = Z%;% Ppug € &4(1) if and only
if Foug = Aug, 0 < £ < n— 1. Therefore A is an eiéenvalue of A if and only if it
is an eigenvalue of Fy for some £ € M,. Let T be the subset of M, for which this is
true. Then &4(A) consists of linear combinations of the vectors of the form Pyu, with
£ € T; and (A, ug) an eigenpair of Fy. Since RPy = §£P£ (see (6)), this completes the
proof of (i).

(ii) From Theorem 1 with R = § and @ = 1, we must show that RA = AR. If
Az = Az and Rz = {2z then RAz = ARz = A{fz and ARz = (£ Az = (£Az.
Hence ARz = RAz forall z in a basis for C%?,s0o AR = RA. 0

Theorem 14 Suppose {Fg | Le :Ml} and {Aﬂ | m e :Ml} are related as in (28), and
F = llfgjgllfe_l is the Jordan canonical form of Fg,0 < £ <n —1. Let

r=[ P% - P - Pu¥ |.
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Then

n—1
Asrlpmg =T [P | I
£=0
In particular, suppose that Fy, ..., Fy, ..., Fy_1 are all diagonalizable with spectral
decompositions
Fy=TyDT/, 0=<{=<n—1,
and
A=[ PyDo PyDy Py 1Dpy |
Then
n—1
A=A Dy|a™!
£=0
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