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Abstract

Let C"*"(4) denote the set of continuous n X n matrices on an interval 4. We
say that R € C"*"({) is a nontrivial k-involution if R = P (@]g;(l) é‘elde) p1

where ¢ = e 271/K do+dy+---+dp_y =n,and P’ = P @]g;(l) Ug with Uy €
C9exde(g). We say that A € C"™"(J) is R-symmetric if R(t)A(1)R™1(t) =
A(t), t € 4, and we show that if A is R-symmetric then solving x’ = A(f)x or
x" = A(t)x + f(t) reduces to solving k independent dy x d; systems, 0 < £ <
k — 1. We consider the asymptotic behavior of the solutions in the case where
d = [to, 00). Finally, we sketch analogous results for linear systems of difference
equations.
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1 Introduction

Throughout this paper d is an interval on the real line and C?, C? (d), CP*9, CP*4(4),
and CY () are respectively the following sets: complex p-vectors, continuous com-
plex p-vector functions on 4, complex p x g matrices, continuous complex p x g matrix
functions on 4, and continuously differentiable complex p x ¢ matrix functions on d.
(“Complex" can just as well be replaced by “real.") If z € C? and B € CP*? then ||z||
and || B|| are respectively any norm of z and the corresponding induced norm of B;i.e.,
18]l = max {|| Bz | =] = 1.
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We consider nonautonomous systems of linear differential equations
x'=A@M)x with A eC”"(J) (1)

and
x'=A@M)x + f() with A € C”"(J) and f € C"(4), 2)

where A has special structure that we will specify in Section 2. We will show that
the structure can be exploited to expedite solving these system and, if d = [fo o0, tO
study the asymptotic behavior of their solutions. To illustrate the second point, we
recall that (1) is said to have linear asymptotic equilibrium if every nontrivial solu-
tion of (1) approaches a nonzero limit as ¢ — oo or, equivalently, for every ¢ € C",
(1) has a unique solution x such that lim;— . x(#) = c¢. The simplest condition for
linear asymptotic equilibrium of (1) (attributed by Wintner [13] to Bocher) is that
foo |A(t)|| dt < oo. (Conti [3, 4], Sansone and Conti [5], Wintner [13], the author
[6, 7], and others have weakened this condition, but in all cases there is ultimately a
requirement that foo |B(z)|| dt < oo for some B € C"*"(4) derived from A.)

By way of motivation we first consider two examples. For the first we introduce

the notation { = e~27/k and
1
) [dD ) ) ] ith ® ! ¢ ® 1 3)
= 0 1 e k— w1 = —— . d>
! vk :
é—(k—l)(
0<{<k-—1,wherek >2andd > 1.
Example 1 If A = [As—r]]f;io is a variable block circulant with Ag, A1, ..., Ax_1 €

C4xd(g), then [*||A(t)||dt < oo if and only if [ [|4,(t)]|dt < 00, 0 < r <
k — 1. Hence, applying Bocher’s theorem directly to (1) yields no conclusion if
S IA,@)|ldt = oo for some r € {0,1,...,k — 1}. However, it is well known
(see, e.g., [12]) that

k—1 k—1
A:d)(@n) o* = Z©5F5®Z, “4)

£=0 {=0
where
k—1
Fp=) "4y eC™ ), 0<t<k-1 5)
£=0

({Fo, F1, ..., Fy_1} is the discrete Fourier transform of {Ag, A1, ..., Ax—1}.) There-
fore every solution of (1) is of the form

k—1
x:Z@eW where y, = Fry;, 0<{<k-—1.
£=0



Moreover, if 4 = [tg, 00),
8= {€| / | Fe ()| dt < oo} £0, and ug e C?, (eS8,

then applying Bocher’s theorem separately to y;, = Fy(¢)y¢, £ € 8, shows that x" =
A(t)x has a unique solution such that

tlggox(t) = Zq)(u(.
tes

As observed by Ablow and Brenner [1] for the case where d = 1, the decomposi-
tion (4) is possible because the block circulant A commutes with

k—1
R = [8r5-1tmoai)fsmg = @ (EB ;‘Id) o,
{=0

We explored this idea more generally in [11, 12].

Example 2 Suppose R € C"*, R # +1,and R> = I, s0
B I, 0 P
R=(r 0] —J[@]’

PP=1, 00=I, PQ=0 and QP =0.

where

In [10] we defined a matrix A to be R-symmetric if it commutes with A and showed
that A is R-symmetric if and only if

Ap 0 /P : rXxr SX§
A=[P Q][ 0 AQ1||:§1|WIthAPEC and Ag € C™°.

Therefore, if A € C"™"(d) is R-symmetric for all ¢ € J, then the solutions of (1) are
of the form x = Pu + Qv where v’ = Apu and v/ = Agv. Moroever, Bdcher’s
theorem implies that if foo |Ap()||dt < oo and uy € C" then (1) has a unique
solution yp = Pu such that lim; oo yp(t) = Pugp. Also, if foo Ao ()| dt < oo
and vg € C° then (1) has a unique solution yg = Qv such that lim; o yo () = Quvo.

In these two examples R is a constant matrix. Here we extend these ideas to include
the possibility that A in (1) commutes with a variable matrix function R which is k-
involutory (defined precisely in the next section) for all z. We will show how to solve
such systems efficiently and indicate how their asymptotic behavior can be analyzed
by appropriate application of theorems such as Bocher’s.

In Section 4 we sketch an analogous approach to linear systems of difference equa-
tions with coefficient matrices that commute with appropriately defined variable k-
involutory matrix functions.



2 Preliminaries

Henceforth n and k are integers such that2 < k < n and dy, dy, ..., dx—1 are positive

integers such that Zlg;(l, d¢y = n. In [10, 11] we defined a nontrivial k-involution
R € C™" to be a constant matrix of the form

k—1
R=PDP™' where D=1y, (6)
£=0

and showed that if A € C™" commutes with R then all computational problems as-
sociated with A reduce to the corresponding problems for k independent systems with
coefficient matrices in C4*%¢ (0 < ¢ < k —1. Here we define a nontrivial k-involution
to be a matrix function R € C"™*"({) of the form (6), where P is a fundamental (i.e.,
invertible solution) matrix for the system

k—1
P’ = PU with U= P U, and Uy e C¥%(4), 0<t <k —1. (7
£=0

As we will see, (7) is a technical assumption that seems to be crucial for the construc-
tion of a useful theory of R-symmetric differential systems. (Except for D and Dy as
in (6) and (9) below, a boldface symbol always denotes a direct sum of this form in
which the identifiers of the direct sum - U in this case - and the summands - Uy, Uj,
..., Ug—1 in this case - are related as they are here.) We say that R is equidimensional
with width d if n = kd and dy = d; = --- = dx_; = d. Note that R¥(¢) = I for all
t € dand R™(t9) # I forany tp € J if m < k.

We define A € C"*"(4) to be R-symmetric if RAR™! = A. If A is R-symmetric
we say that the systems (1) and (2) are R-symmetric. We show that solving an R-
symmetric system of linear differential equations reduces to solving k independent
systems with coefficient matrices in Cdexde (4),0 < ¢ <k — 1. We also consider
the asymptotic behavior of solutions of R-symmetric systems in the case where J =
[to, 00). In Section 4 we sketch an analogous theory of nonautonomous R-symmetric
systems of difference equations.

We write
P=[Py P -+ Py ] with PpeC™¥ (), 0<l<k-1,
and .
Py
) P, ~ J ~
Pl = with P, € C*"(f), s0 Py¢Pm = Stmla, , (8)
Py

0<4{,m<k—1.From (7),

PéZP(U(, 0<l<k-1.



Since R-symmetry is particularly transparent if R is equidimensional, we consider
this case separately. To this end, let £ = [8,,3_1]]fgi0 ® Iz, and B = [B;; lr‘;io,
where B,y € C4%d (4),0 < r,s <k — 1, and subscripts are to be reduced modulo k.
Then

k—1
EBE™' = [Bri1541]55Ly and E® = @D, where Dy = @;% )
{=0

and @ is as in (3). Therefore
(a) E = ®Dy®* and (b) EBE~! = B ifandonlyif B = [4,_,]*.L,., (10)

r,s=0°
with Ag, A1, ..., Ay € C3*4 (4). (Conclusion (b) is a special case of [12, Theorem
1], an elementary extension of [1, Theorem 2.1].)
Theorem 1 If R isas in (6) anddy = dy = -+ = dx_, = d then RAR™' = A ifand
only if

OP AP ®* = [A,_ 5L, with Ao, Ay, ..., Ax_y € C¥4(4) (11)

r,s=

and ® as in (3). In this case
k—1
A=PFP' =) PFP, (12)
{=0

with Fy, F1, ..., Fr_1 asin (5).
PROOF. Since R = PDyP ! and E = ®D,d*, we can write
R = PO*(®Dg®d*)®P ! = PO*EDP L.

Then
RAR™' = PO*EOP 'AP®*E 'oP !,

so RAR™! = A if and only if
EOP 'APO*E™! = oP ' AP D",
Therefore, (10)(b) implies (11). Since (5) is equivalent to

k—1
1 _
Ay = EZF@; n  0<m<k-—1,

{=0

we can write
= k=1 k—1
[Asr1ito = [Zz“““n] =) @ F 0] = PFO*,
{=0 r,s=0 {=0
so (11) implies that P~ 1AP =F, which implies (12). 0O
The following theorem characterizes matrices A such that RAR™! = A, where

do, di, ..., dr—1 are not necessarily equal. It extends [11, Theorem 2], where R is
constant.



Theorem 2 If R is as in (6) and A € C"™"(J) then RAR™' = A if and only (12)
holds with R
Fy = PgAP; e C4¥de(g), 0<l<k—1. (13)

PROOF. From (6), RAR™! = A if and only if
PDP'APD P! = A or,equivalently, D(P"'AP)D™! = P714P. (14)

If we write P~1A P = [C,g ]f;io with Cp5 € (Cd’XdS(J), 0 <r,s <k —1, then the
second equality in (14) is equivalent to " *Crs = Crs, 0 < 1,5 < k — 1, which is
equivalent to C,g = 0ifr # 5,0 < r,s < k — 1. This is equivalent to (12) with
Fy = Cyy,50 APy = Py Fy,0 <{ <k —1,and (8) implies (13). 0O

Note that the proofs of Theorems 1 and 2 did not require (7), which does not come
into play until we consider the differential equations (1) and (2).

3 Solution of R-symmetric systems of linear differen-
tial equations

Recall that if A, X € C""(d), X’ = A(t)X, and X(to) is invertible for some #y € J,
then X (¢) is invertible for all # € 4 and every solution of (1) can be written as x (¢) =
X(t)c, where ¢ € C". In this case we say that X is a fundamental matrix for (1) and
x = Xc is the general solution of (1).

Now suppose A is R-symmetric; thus, from Theorem 2 (specifically, (12)) and (7),
A= PFP 'and P’ = PU. If wewritex = Pythenx’ = P'y+ Py = P(Uy+y’)
and Ax = PFy, so x’ = Ax if and only if y' = Gy where G = F — U. This last
condition is equivalent to

v, = Ge(t)ye with Gy = F—Uy e C¥*de(g), 0<l<k—1, (15)

and
Yo
»1
y= .
Yk—1
This implies the following theorem.

Theorem 3 If A is R-symmetric and Y = ]g;(l) Yy where Yo, Y1, ..., Yr_q are
Sfundamental matrices for the systems in (15), then

X=PY=[ PYo Piyr -+ Pe1Ye |

is a fundamental matrix for (1). Hence, if to € d and xo € C"™" then the solution of
the initial value problem x' = A(t)x, x(to) = Xo, is

k—1 k—1
x(t) =Y Pn)Ye ()Y (to)yor where xo =Y _ Py(to)yor.  (16)
£=0 £=0



The general solution of (1) is
k—1
x() =Y P)Ye(t)ey where ¢ eC¥, 0<€<k-—l.
{=0

Corollary 1 If A is R-symmetric then the general solution of x’ = A(t)x is x =
S ke Pregwitheg € CU 0 <€ <k—1,ifandonlyif Fy = Up, 0 < <k —1.

The following theorem is motivated by a theorem of Andrew [2] concerning the
eigenvectors of constant centrosymmetric matrices. We extended Andrew’s theorem to
constant R-symmetric matrices in [10, Theorem 7] for k = 2 and in [11, Theorem 13]
for k > 2.

Theorem 4 Suppose A, R € C""*(d) and R is a nontrivial k-involution. Let
84 =1{x eCP"(4) | x'(t) = A)x (), t € d}

and
k—1

er =[x e O [ ROX@) = ¢x(0), 1 € 4}

{=0
Then A is R-symmetric if and only if 84 has a basis in ER.
PROOF. Since RP; = ¢*P;, 0 < £ < k — 1, Theorem 3 (specifically, (16)) implies

necessity. For sufficiency, if 84 has a basis in &g then (1) has a fundamental matrix of
the form

k—1
X =PY where Y=(PY, with ¥, and ¥ ' e C{% (1), 0<e<k-1.
=0

Therefore APY = (PY) = P'Y + PY/,s0

A

(P’Y+PY)Y 'Pl=PP 4 pPYYHP!
P(P'PHYP 4+ P(YY P!
PU+YY Hhp ! = pFpP!

(see (7)), with
k—1

F=U+YY "' =Pw.+vy".
£=0
Hence A is R-symmetric, by Theorem 2 and (7). 0O

Theorem 5 Suppose A € C*"({) is R-symmetric, f € C"(J), and ty € J. Let Yy,

Y1, ..., Yr_1 be fundamental matrices for the systems in (15) and write
k—1 k—1
X0 = Z Pyyoe with yoq € C% and f= Z Pohy with hy € Cde ),
{=0 £=0



0 < ¥ < k — 1. Then the solution of

x'=A®)x + f(), x(to) = xo. (17)
is
k—1 t
20 = 3 Pove) (¥ wooe + [ ¥ e de).ay
(=0 1o

PROOF. Apply the method of variation of parameters to each of the independent sys-
tems yy = Ge(t)ye + he, ye(to) = yor, 0 <€ <k—1. [

In [11] we defined a constant vector x to be (R, £)-symmetric if R is a constant
nontrivial k-involution and Rx = ¢‘x. This extended a definition in [10] for k =
2. Andrew [2] originated this idea in connection with centrosymmetric matrices by
defining x to be symmetric (skew-symmetric) if Jx = x (Jx = —Xx), where J is the
flip matrix with ones on the secondary diagonal and zeros elsewhwere. Here we say
that a vector function x = x () € C"(J) is (R, £)-symmetric if R(t)x(t) = ¢*x (1),
t € 4. Any x € C"(J) can be written uniquely as x = Zlg;(l) Pyyg with yg € Ce(d),
or equivalently, as x = xo + X1 + -+ + xx—; where xy = Pyyy is (R, £)-symmetric.
We will call xg the (R, £)-symmetric component of x. Thus, (18) exhibits the solution
of (17) as the sum of its (R, £)-symmetric components, 0 < ¢ <k —1. 0O

Now Bdcher’s theorem implies the following result.

Theorem 6 If Yy is a fundamental matrix for the system y, = Gy(t)y; (see (15))
on [to, 00) and foo |Ge@)|| dt < oo for some £ € {0,1,...,k — 1}, then Y¢(c0) =
limy o0 Y¢(2) exists and is invertible. Therefore the (R, {)-symmetric component of
any solution of x’ = A(t)x can be written uniquely as x; = Pgyy, where yg(c0) =
limy o0 y¢(2) exists and is nonzero if yy(to) # 0. Moreover, if lim;_oo Py(t) exists
and has rank dy then xy(00) = lim;_, o X¢(t) exists and is nonzero if xy(ty) # O.

At the risk of making a sweeping statement, it seems reasonable to say that many
theorems concerning the asymptotic behavior of solutions of arbitrary linear systems
can be adapted in this way to (R, £)-symmetric systems.

4 R-symmetric systems of linear difference equations

In this section Z is the set of positive integers and C?(Z4) and CP*4(Z,) are re-
spectively the sets of complex p-vector functions on Z, and complex p x g matrix
functions on Z . (Again, “complex" can just as well be replaced by “real.") We briefly
consider linear systems of difference equations

Xee1 = +A)xe, t€Zy, x9=E, (19)



with {A, |t S Z+} C C™"(Z4+) We assume throughout that I + A; is invertible for
allt € Z4. Let

]P)t:[POt Py - Pk—l,t] With]P)t_lz ) ,

where

Py € CY0(Zy), Py € C™(Zy), and Py Py = Sgmla,. 0<.m <k—1, 1 € Zy.

Let
R, =P, DoP ' (see(9) and Py =P, (1+1U,), (20)
where
k—1
U =@PU; with Uy eCzZy). 0<L=<k-1,
£=0

and I + Uy is invertible for all t € Z. Finally, denote A = {A, |t € Z+} and R =
{R, | t e Z+}. We say that R is a nontrivial k-involution (again, equidimensional if
n=kdanddy =dy =--- = dp_1 = d) and that A is R-symmetric if R,A,Rt_1 =
At € /.
Theorem 7 Let ® be as in (3). If R is equidimensional with width d then

RAR = A, tely, (21)
if and only if

P, AP D* = [Ag—ri]N ;Lo with Aor, Arr, ...  Ak—1, € C4(Z).

In this case

k-1
A=Y Py Fy Py = PFP;! 22)
(=0
with
k-1
Fyy = Z;“”Am,, 0<l<k-—1, teZy.
m=0

PROOF. See the proof of Theorem 1. [
Dropping the assumption that R is equidimensional leaves the following theorem.

Theorem 8 Egn. (21) holds if and only (22) holds with
Fy = Py APy € CU¥07,), 0<tl<k—1, t€Zy.

PROOF. See the proof of Theorem 2. [



Theorem 9 Suppose A is R-symmetric and let

t—1
Ou =Py 1_[(1 +Uy) "I+ Fy)., t€Zy, Qu=1Ig., 0<L<k-1
i=1
Then
t—1
X =P [[d+U)'U+F) =] Qo Qu -+ Ok—1s |. 1 €Ly, Xo=1.
ji=1

is a fundamemental matrix for (19).

PROOF. Write X; = P;Y;. Since P;1; = P;(I + Uy) (see (20)) and I + A; =
P; (1 + F,)]P’,_1 (see (22)), Xi+1 = (I + A;)X; is equivalent to

Yoo = +U)"' (U +F)Y:, t€Zy,
or, equivalently,
Yeorr = +Up) '+ Fi)Ye, 0<C<k—1, t€Z;.

This implies the conclusion. O

As we saw earlier in connection with differential equations, it may be useful to
study the asymptotic behavior of the distinct (R, £)-symmetric components of (19).
The analog of Bocher’s states that if 7 + A; is invertible forall# € Z and Zi:é |A: ]l <
0o, then (19) has linear asymptotic equilibrium. This result can adapted to an R-
symmetric linear difference system as follows.

Theorem 10 If A is R-symmetric and

k—1
D IU +Ue)™ (I + Fo) = 1| < o0,
t=0

then the (R, £)-symmetric component of any solution of (19) can be written uniquely as
Xgr = Py ye where yg oo = lim; 00 Yo exists and is nonzero if yg o # 0. Moreover,
iflimy o0 Py; exists and has rank dy then xg o = limy_so0 Xg; exists and is nonzero if

xg,0 # 0.

It seems reasonable to expect that results like those in [8] and [9] can be extended
in this way for systems of the form (19).
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