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Abstract

Let C
n�n.I/ denote the set of continuous n � n matrices on an interval I. We

say that R 2 Cn�n.I/ is a nontrivial k-involution if R D P
�Lk�1

`D0 �`Id`

�
P �1

where � D e�2�i=k , d0Cd1 C� � �Cdk�1 D n, and P 0
D P

Lk�1
`D0 U` with U` 2

C
d`�d`.I/. We say that A 2 C

n�n.I/ is R-symmetric if R.t/A.t/R�1.t / D

A.t/, t 2 I, and we show that if A is R-symmetric then solving x0
D A.t/x or

x0 D A.t/x C f .t/ reduces to solving k independent d` � d` systems, 0 � ` �

k � 1. We consider the asymptotic behavior of the solutions in the case where

I D Œt0; 1/. Finally, we sketch analogous results for linear systems of difference

equations.
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1 Introduction

Throughout this paper I is an interval on the real line and Cp , Cp.I/, Cp�q , Cp�q.I/,

and C
p�q
1 .I/ are respectively the following sets: complex p-vectors, continuous com-

plex p-vector functions on I, complex p�q matrices, continuous complex p�q matrix

functions on I, and continuously differentiable complex p � q matrix functions on I.

(“Complex" can just as well be replaced by “real.") If ´ 2 Cp and B 2 Cp�p then k´k
and kBk are respectively any norm of ´ and the corresponding induced norm of B; i.e.,

kBk D max
˚
kB´k

ˇ̌
k´k D 1

	
.

�e-mail:wtrench@trinity.edu
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We consider nonautonomous systems of linear differential equations

x0 D A.t/x with A 2 C
n�n.I/ (1)

and

x0 D A.t/x C f .t/ with A 2 C
n�n.I/ and f 2 C

n.I/; (2)

where A has special structure that we will specify in Section 2. We will show that

the structure can be exploited to expedite solving these system and, if I D Œt0;1, to

study the asymptotic behavior of their solutions. To illustrate the second point, we

recall that (1) is said to have linear asymptotic equilibrium if every nontrivial solu-

tion of (1) approaches a nonzero limit as t ! 1 or, equivalently, for every c 2 Cn,

(1) has a unique solution x such that limt!1 x.t/ D c. The simplest condition for

linear asymptotic equilibrium of (1) (attributed by Wintner [13] to Bôcher) is thatR
1 kA.t/k dt < 1. (Conti [3, 4], Sansone and Conti [5], Wintner [13], the author

[6, 7], and others have weakened this condition, but in all cases there is ultimately a

requirement that
R

1 kB.t/k dt < 1 for some B 2 Cn�n.I/ derived from A.)

By way of motivation we first consider two examples. For the first we introduce

the notation � D e�2�i=k and

ˆ D
�

ˆ0 ˆ1 � � � ˆk�1

�
with ˆ` D 1p

k

2
6664

1

�`

:::

�.k�1/`

3
7775˝ Id ; (3)

0 � ` � k � 1, where k � 2 and d � 1.

Example 1 If A D ŒAs�r �k�1
r;sD0 is a variable block circulant with A0, A1, . . . , Ak�1 2

Cd�d .I/, then
R

1 kA.t/k dt < 1 if and only if
R

1 kAr.t/k dt < 1, 0 � r �
k � 1. Hence, applying Bôcher’s theorem directly to (1) yields no conclusion ifR

1 kAr.t/k dt D 1 for some r 2 f0; 1; : : : ; k � 1g. However, it is well known

(see, e.g., [12]) that

A D ˆ

 
k�1M

`D0

F`

!
ˆ� D

k�1X

`D0

ˆ`F`ˆ�

` ; (4)

where

F` D
k�1X

`D0

�`mAm 2 C
d�d .I/; 0 � ` � k � 1: (5)

(fF0; F1; : : : ; Fk�1g is the discrete Fourier transform of fA0; A1; : : : ; Ak�1g.) There-

fore every solution of (1) is of the form

x D
k�1X

`D0

ˆ`y` where y0

` D F`y`; 0 � ` � k � 1:
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Moreover, if I D Œt0; 1/,

S D
�

`
ˇ̌ Z 1

kF`.t/k dt < 1
�

¤ ;; and u` 2 C
d ; ` 2 S ;

then applying Bôcher’s theorem separately to y0

`
D F`.t/y` , ` 2 S , shows that x0 D

A.t/x has a unique solution such that

lim
t!1

x.t/ D
X

`2S

ˆ`u`:

As observed by Ablow and Brenner [1] for the case where d D 1, the decomposi-

tion (4) is possible because the block circulant A commutes with

R D Œır;s�1(mod k)�
k�1
r;sD0 D ˆ

 
k�1M

`D0

�`Id

!
ˆ�:

We explored this idea more generally in [11, 12].

Example 2 Suppose R 2 Cn�n, R ¤ ˙I , and R2 D I , so

R D
�

P Q
� � Ir 0

0 �Is

� " bP
bQ

#
;

where
bP P D Ir ; bQQ D Is ; bP Q D 0; and bQP D 0:

In [10] we defined a matrix A to be R-symmetric if it commutes with A and showed

that A is R-symmetric if and only if

A D
�

P Q
� � AP 0

0 AQ

� " bP
bQ

#
with AP 2 C

r�r and AQ 2 C
s�s :

Therefore, if A 2 Cn�n.I/ is R-symmetric for all t 2 I, then the solutions of (1) are

of the form x D P u C Qv where u0 D AP u and v0 D AQv. Moroever, Bôcher’s

theorem implies that if
R

1 kAP .t/k dt < 1 and u0 2 C
r then (1) has a unique

solution yP D P u such that limt!1 yP .t/ D P u0. Also, if
R

1 kAQ.t/k dt < 1
and v0 2 Cs then (1) has a unique solution yQ D Qv such that limt!1 yQ.t/ D Qv0.

In these two examples R is a constant matrix. Here we extend these ideas to include

the possibility that A in (1) commutes with a variable matrix function R which is k-

involutory (defined precisely in the next section) for all t . We will show how to solve

such systems efficiently and indicate how their asymptotic behavior can be analyzed

by appropriate application of theorems such as Bôcher’s.

In Section 4 we sketch an analogous approach to linear systems of difference equa-

tions with coefficient matrices that commute with appropriately defined variable k-

involutory matrix functions.
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2 Preliminaries

Henceforth n and k are integers such that 2 � k � n and d0, d1, . . . , dk�1 are positive

integers such that
Pk�1

`D0 d` D n. In [10, 11] we defined a nontrivial k-involution

R 2 C
n�n to be a constant matrix of the form

R D P DP �1 where D D
k�1M

`D0

�`Id`
; (6)

and showed that if A 2 C
n�n commutes with R then all computational problems as-

sociated with A reduce to the corresponding problems for k independent systems with

coefficient matrices in Cd`�d` , 0 � ` � k �1. Here we define a nontrivial k-involution

to be a matrix function R 2 Cn�n.I/ of the form (6), where P is a fundamental (i.e.,

invertible solution) matrix for the system

P 0 D P U with U D
k�1M

`D0

U` and U` 2 C
d`�d`.I/; 0 � ` � k � 1: (7)

As we will see, (7) is a technical assumption that seems to be crucial for the construc-

tion of a useful theory of R-symmetric differential systems. (Except for D and D0 as

in (6) and (9) below, a boldface symbol always denotes a direct sum of this form in

which the identifiers of the direct sum - U in this case - and the summands - U0, U1,

. . . , Uk�1 in this case - are related as they are here.) We say that R is equidimensional

with width d if n D kd and d0 D d1 D � � � D dk�1 D d . Note that Rk.t/ D I for all

t 2 I and Rm.t0/ ¤ I for any t0 2 I if m < k.

We define A 2 Cn�n.I/ to be R-symmetric if RAR�1 D A. If A is R-symmetric

we say that the systems (1) and (2) are R-symmetric. We show that solving an R-

symmetric system of linear differential equations reduces to solving k independent

systems with coefficient matrices in Cd`�d` .I/, 0 � ` � k � 1. We also consider

the asymptotic behavior of solutions of R-symmetric systems in the case where I D
Œt0; 1/. In Section 4 we sketch an analogous theory of nonautonomous R-symmetric

systems of difference equations.

We write

P D
�

P0 P1 � � � Pk�1

�
with P` 2 C

n�d`.I/; 0 � ` � k � 1;

and

P �1 D

2
6664

bP 0

bP 1

:::
bP k�1

3
7775 with bP ` 2 C

d`�n.I/; so bP `Pm D ı`mId`
; (8)

0 � `; m � k � 1. From (7),

P 0

` D P`U`; 0 � ` � k � 1:

4



Since R-symmetry is particularly transparent if R is equidimensional, we consider

this case separately. To this end, let E D Œır;s�1�k�1
r;sD0 ˝ Id , and B D ŒBrs�

k�1
r;sD0,

where Brs 2 Cd�d .I/, 0 � r; s � k � 1, and subscripts are to be reduced modulo k.

Then

EBE�1 D ŒBrC1;sC1�k�1
r;sD0 and Eˆ D ˆD0 where D0 D

k�1M

`D0

�`Id (9)

and ˆ is as in (3). Therefore

(a) E D ˆD0ˆ� and (b) EBE�1 D B if and only if B D ŒAs�r �k�1
r;sD0; (10)

with A0, A1, . . . , Ak�1 2 Cd�d .I/. (Conclusion (b) is a special case of [12, Theorem

1], an elementary extension of [1, Theorem 2.1].)

Theorem 1 If R is as in (6) and d0 D d1 D � � � D dk�1 D d then RAR�1 D A if and

only if

ˆP �1AP ˆ� D ŒAs�r �k�1
r;sD0 with A0; A1; : : : ; Ak�1 2 C

d�d .I/ (11)

and ˆ as in (3): In this case

A D P FP �1 D
k�1X

`D0

P`F`
bP ` (12)

with F0; F1; . . . ; Fk�1 as in (5):

PROOF. Since R D P D0P �1 and E D ˆD0ˆ�, we can write

R D P ˆ�.ˆD0ˆ�/ˆP �1 D P ˆ�EˆP �1:

Then

RAR�1 D P ˆ�EˆP �1AP ˆ�E�1ˆP �1;

so RAR�1 D A if and only if

EˆP �1AP ˆ�E�1 D ˆP �1AP ˆ�:

Therefore, (10)(b) implies (11). Since (5) is equivalent to

Am D 1

k

k�1X

`D0

F`��`m; 0 � m � k � 1;

we can write

ŒAs�r �k�1
r;sD0 D 1

k

"
k�1X

`D0

��`.s�r/F`

#k�1

r;sD0

D
k�1X

`D0

ˆ`F`ˆ�

` D ˆFˆ�;

so (11) implies that P �1AP D F, which implies (12).

The following theorem characterizes matrices A such that RAR�1 D A, where

d0, d1, . . . , dk�1 are not necessarily equal. It extends [11, Theorem 2], where R is

constant.
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Theorem 2 If R is as in (6) and A 2 C
n�n.I/ then RAR�1 D A if and only (12)

holds with

F` D bP `AP` 2 C
d`�d`.I/; 0 � ` � k � 1: (13)

PROOF. From (6), RAR�1 D A if and only if

P DP �1A P D�1P �1 D A or, equivalently, D.P �1A P /D�1 D P �1AP: (14)

If we write P �1A P D ŒCrs�
k�1
r;sD0 with Crs 2 Cdr �ds .I/, 0 � r; s � k � 1, then the

second equality in (14) is equivalent to �r�sCrs D Crs, 0 � r; s � k � 1, which is

equivalent to Crs D 0 if r ¤ s, 0 � r; s � k � 1. This is equivalent to (12) with

F` D C``, so AP` D P`F`, 0 � ` � k � 1, and (8) implies (13).

Note that the proofs of Theorems 1 and 2 did not require (7), which does not come

into play until we consider the differential equations (1) and (2).

3 Solution of R-symmetric systems of linear differen-

tial equations

Recall that if A, X 2 Cn�n.I/, X 0 D A.t/X , and X.t0/ is invertible for some t0 2 I,

then X.t/ is invertible for all t 2 I and every solution of (1) can be written as x.t/ D
X.t/c, where c 2 Cn. In this case we say that X is a fundamental matrix for (1) and

x D Xc is the general solution of (1).

Now suppose A is R-symmetric; thus, from Theorem 2 (specifically, (12)) and (7),

A D P FP �1 and P 0 D P U. If we write x D Py then x0 D P 0yCPy0 D P.UyCy0/

and Ax D P Fy, so x0 D Ax if and only if y0 D Gy where G D F � U. This last

condition is equivalent to

y0

` D G`.t/y` with G` D F` � U` 2 C
d`�d` .I/; 0 � ` � k � 1; (15)

and

y D

2
6664

y0

y1

:::

yk�1

3
7775 :

This implies the following theorem.

Theorem 3 If A is R-symmetric and Y D
Lk�1

`D0 Y` where Y0; Y1; . . . ; Yk�1 are

fundamental matrices for the systems in (15); then

X D P Y D
�

P0Y0 P1y1 � � � Pk�1Yk�1

�

is a fundamental matrix for (1): Hence; if t0 2 I and x0 2 Cn�n then the solution of

the initial value problem x0 D A.t/x; x.t0/ D x0; is

x.t/ D
k�1X

`D0

P`.t/Y`.t/Y �1
` .t0/y0` where x0 D

k�1X

`D0

P`.t0/y0`: (16)
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The general solution of (1) is

x.t/ D
k�1X

`D0

P`.t/Y`.t/c` where c` 2 C
d` ; 0 � ` � k � 1:

Corollary 1 If A is R-symmetric then the general solution of x0 D A.t/x is x DPk�1
`D0 P`c` with c` 2 Cd` ; 0 � ` � k � 1; if and only if F` D U`; 0 � ` � k � 1:

The following theorem is motivated by a theorem of Andrew [2] concerning the

eigenvectors of constant centrosymmetric matrices. We extended Andrew’s theorem to

constant R-symmetric matrices in [10, Theorem 7] for k D 2 and in [11, Theorem 13]

for k � 2.

Theorem 4 Suppose A; R 2 Cn�n.I/ and R is a nontrivial k-involution: Let

SA D
˚
x 2 C

n�n
1 .I/

ˇ̌
x0.t/ D A.t/x.t/; t 2 I

	

and

ER D
k�1[

`D0

n
x 2 C

n�n
1 .I/

ˇ̌
R.t/x.t/ D �`x.t/; t 2 I

o
:

Then A is R-symmetric if and only if SA has a basis in ER:

PROOF. Since RP` D �`P`, 0 � ` � k � 1, Theorem 3 (specifically, (16)) implies

necessity. For sufficiency, if SA has a basis in ER then (1) has a fundamental matrix of

the form

X D P Y where Y D
k�1M

`D0

Y` with Y` and Y �1
` 2 C

d`�d`

1 .I/; 0 � ` � k � 1:

Therefore AP Y D .P Y/0 D P 0Y C P Y0, so

A D .P 0Y C P Y0/Y�1P �1 D P 0P �1 C P.Y0Y�1/P �1

D P.P �1P 0/P �1 C P.Y0Y�1/P �1

D P.U C Y0Y�1/P �1 D P FP �1

(see (7)), with

F D U C Y0Y�1 D
k�1M

`D0

.U` C Y 0

`Y �1
` /:

Hence A is R-symmetric, by Theorem 2 and (7).

Theorem 5 Suppose A 2 Cn�n.I/ is R-symmetric; f 2 Cn.I/; and t0 2 I: Let Y0;

Y1; . . . ; Yk�1 be fundamental matrices for the systems in (15) and write

x0 D
k�1X

`D0

P`y0` with y0` 2 C
d` and f D

k�1X

`D0

P`h` with h` 2 C
d` .I/;
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0 � ` � k � 1: Then the solution of

x0 D A.t/x C f .t/; x.t0/ D x0; (17)

is

x.t/ D
k�1X

`D0

P`.t/Y`.t/

�
Y �1

` .t0/y0` C
Z t

t0

Y �1
` .�/h`.�/ d�

�
: (18)

PROOF. Apply the method of variation of parameters to each of the independent sys-

tems y0

`
D G`.t/y` C h`, y`.t0/ D y0`, 0 � ` � k � 1.

In [11] we defined a constant vector x to be .R; `/-symmetric if R is a constant

nontrivial k-involution and Rx D �`x. This extended a definition in [10] for k D
2. Andrew [2] originated this idea in connection with centrosymmetric matrices by

defining x to be symmetric (skew-symmetric) if J x D x (J x D �x), where J is the

flip matrix with ones on the secondary diagonal and zeros elsewhwere. Here we say

that a vector function x D x.t/ 2 Cn�n.I/ is .R; `/-symmetric if R.t/x.t/ D �`x.t/,

t 2 I. Any x 2 Cn.I/ can be written uniquely as x D
Pk�1

`D0 P`y` with y` 2 Cd` .I/,

or equivalently, as x D x0 C x1 C � � � C xk�1 where x` D P`y` is .R; `/-symmetric.

We will call x` the .R; `/-symmetric component of x. Thus, (18) exhibits the solution

of (17) as the sum of its .R; `/-symmetric components, 0 � ` � k � 1.

Now Bôcher’s theorem implies the following result.

Theorem 6 If Y` is a fundamental matrix for the system y0

`
D G`.t/y` .see (15)/

on Œt0; 1/ and
R

1 kG`.t/k dt < 1 for some ` 2 f0; 1; : : : ; k � 1g; then Y`.1/ D
limt!1 Y`.t/ exists and is invertible: Therefore the .R; `/-symmetric component of

any solution of x0 D A.t/x can be written uniquely as x` D P`y`; where y`.1/ D
limt!1 y`.t/ exists and is nonzero if y`.t0/ ¤ 0: Moreover; if limt!1 P`.t/ exists

and has rank d` then x`.1/ D limt!1 x`.t/ exists and is nonzero if x`.t0/ ¤ 0:

At the risk of making a sweeping statement, it seems reasonable to say that many

theorems concerning the asymptotic behavior of solutions of arbitrary linear systems

can be adapted in this way to .R; `/-symmetric systems.

4 R-symmetric systems of linear difference equations

In this section ZC is the set of positive integers and Cp.ZC/ and Cp�q.ZC/ are re-

spectively the sets of complex p-vector functions on ZC and complex p � q matrix

functions on ZC. (Again, “complex" can just as well be replaced by “real.") We briefly

consider linear systems of difference equations

xtC1 D .I C At /xt ; t 2 ZC; x0 D �; (19)
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with
˚
At

ˇ̌
t 2 ZC

	
� C

n�n.ZC/ We assume throughout that I C At is invertible for

all t 2 ZC. Let

Pt D
�

P0t P1t � � � Pk�1;t

�
with P

�1
t D

2
6664

bP 0t

bP 1t

:::
bP k�1;t

3
7775 ;

where

P`t 2 C
d`�n.ZC/; bP `t 2 C

n�d` .ZC/; and bP `t Pmt D ı`mId`
; 0 � `; m � k�1; t 2 ZC:

Let

Rt D Pt D0P
�1
t (see(9)/ and PtC1 D Pt .I C Ut/; (20)

where

Ut D
k�1M

`D0

U`t with U`t 2 C
d`�d`.ZC/; 0 � ` � k � 1;

and I C Ut is invertible for all t 2 ZC. Finally, denote A D
˚
At

ˇ̌
t 2 ZC

	
and R D˚

Rt

ˇ̌
t 2 ZC

	
. We say that R is a nontrivial k-involution (again, equidimensional if

n D kd and d0 D d1 D � � � D dk�1 D d ) and that A is R-symmetric if RtAt R
�1
t D

At , t 2 ZC.

Theorem 7 Let ˆ be as in (3): If R is equidimensional with width d then

Rt At R
�1
t D At ; t 2 ZC; (21)

if and only if

ˆP
�1
t AtPt ˆ

� D ŒAs�r;t �
k�1
r;sD0 with A0t ; A1t ; : : : ; Ak�1;t 2 C

d�d .ZC/:

In this case

At D
k�1X

`D0

P`t F`t
bP `t D Pt Ft P

�1
t (22)

with

F`t D
k�1X

mD0

�`mAmt ; 0 � ` � k � 1; t 2 ZC:

PROOF. See the proof of Theorem 1.

Dropping the assumption that R is equidimensional leaves the following theorem.

Theorem 8 Eqn. (21) holds if and only (22) holds with

F`t D bP `t At P`t 2 C
d`�d`.ZC/; 0 � ` � k � 1; t 2 ZC:

PROOF. See the proof of Theorem 2.
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Theorem 9 Suppose A is R-symmetric and let

Q`t D P`t

t�1Y

j D1

.I C U j̀ /�1.I C F j̀ /; t 2 ZC; Q`0 D Id`
; 0 � ` � k � 1:

Then

Xt D Pt

t�1Y

j D1

.ICUj /�1.ICFj / D
�

Q0t Q1t � � � Qk�1;t

�
; t 2 ZC; X0 D I;

is a fundamemental matrix for (19):

PROOF. Write Xt D Pt Yt . Since PtC1 D Pt .I C Ut/ (see (20)) and I C At D
Pt .I C Ft /P

�1
t (see (22)), XtC1 D .I C At /Xt is equivalent to

YtC1 D .I C Ut /
�1.I C Ft /Yt ; t 2 ZC;

or, equivalently,

Y`;tC1 D .I C U`t /
�1.I C F`t /Y`t ; 0 � ` � k � 1; t 2 ZC:

This implies the conclusion.

As we saw earlier in connection with differential equations, it may be useful to

study the asymptotic behavior of the distinct .R; `/-symmetric components of (19).

The analog of Bôcher’s states that if ICAt is invertible for all t 2 ZC and
Pk�1

tD0 kAt k <

1, then (19) has linear asymptotic equilibrium. This result can adapted to an R-

symmetric linear difference system as follows.

Theorem 10 If A is R-symmetric and

k�1X

tD0

k.I C U`t /
�1.I C F`t / � Ik < 1;

then the .R; `/-symmetric component of any solution of (19) can be written uniquely as

x`t D P`t y`t where y`;1 D limt!1 y`t exists and is nonzero if y`;0 ¤ 0: Moreover;

if limt!1 P`t exists and has rank d` then x`;1 D limt!1 x`t exists and is nonzero if

x`;0 ¤ 0.

It seems reasonable to expect that results like those in [8] and [9] can be extended

in this way for systems of the form (19).
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