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Abstract

We say that a matrix R € C"*” is k-involutory if its minimal poly-
nomial is 2* — 1 for some k > 2, so R*"! = R™! and the eigenvalues of
Rare 1, ¢, ¢%,..., ¢*71, where ¢ = e™/*, Let o, p € {0,1,...,k — 1}.
fReC™™ AeC™"™ S e C"" and R and S are k-involutory, we
say that A is (R, S, a, p)-symmetric if RAS™® = (*A. We show that an
(R, S, a, p)-symmetric matrix A can be usefully represented in terms of
matrices Fy € (Cca““Xd’f, 0 < /¢ < k-1, where ¢/ and d,; are respec-
tively the dimensions of the (% eigenspaces of R and S. This continues
a theme initiated in an earlier paper with the same title, in which we
assumed that a = 1. We say that a k-involution is equidimensional with
width d if all of its eigenspaces have dimension d. We show that if R and
S are equidimensional k-involutions with widths di and d2 respectively,
then (R, S, a, u)-symmetric matrices are closely related to generalized a-
circulants [(*"As—ar I:;io, where Ao, A1, ..., Ax_1 € CU*X%_ For this
case our results are new even if &« = 1. We also give an explicit formula
for the Moore-Penrose inverse of a unilevel block circulant [AS,M]I:;;O
for any a € {0,1, ...,k — 1}, generalizing a result previously obtained for
the case where ged(a, k) = 1.
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1 Introduction

Throughout this paper o > 0, k > 2, and y are integers, ¢ = >7/k,

Zi=1{0,1,... k—1},

and subscripts are to be reduced modulo k. We say that R € C™*™ is k-
involutory if its minimal polynomial is #* — 1 for some k > 2, so R¥~! = R~!
and the eigenvalues of R are 1, ¢, ..., ¢¥~1

If R e C™*™ and S € C"*™ are k-involutory we say that A € C™*" is
(R, S, a, p)-symmetric if RAS™® = (*A. This work is a continuation of [15],
where we studied matrices such that RAS™! = (# A, which we called (R, S, u1)-
symmetric. Sections 3-5 are extensions of results obtained in [15] for (R, S, u)-
symmetric matrices. However, Sections 6 and 8 are new even with a = 1, and
are also extensions of results obtained in [16]. In Section 7 we give an explicit
formula for the Moore-Penrose inverse of a block circulant [As,ar]f;io with Ao,
Ay, ..., Ay, € Ch x4 The formula is valid for any a € Zj and extends a
result in [16, Theorem 5] for the case where ged(a, k) = 1.

This paper is motivated by and continues a line of research undertaken by
many investigators; see, e.g., [2]-[4],[6], [7], [9] [10], [11, 13, 14, 18, 19], by no
means a complete list.

2 Preliminaries
Let R € C™*™ and S € C™*" be k-involutions. Let
Cg:dim{Z’RZZCEZ} and dg:dim{Z’SZZCEZ}, 0<¢<Ek-1.
Then there are matrices P, € C™*¢ and Q, € C"*% 0 < ¢ < k — 1, such that
RPy=('Pry SQe=('Qu, 0<t<k—1, (1)
PP =1, and QQ=1I,, 0<(<k-1 (2)

We note that (2) can be assumed without loss of generality, since the Gram-
Schmidt procedure allows us to choose an orthonormal basis for any eigenspace.
Let

P=[P Pi--- Poa], Q=[Qo Qi+ Qr1 |, (3)
A 3
pPl= ]?1 , and Q'= Q.l : (4)

Pi1 Qi1
with Py € C*™ and Q, € C¥*", 0 < ¢ < k — 1; thus,

ﬁEPm = 5EmIcg and @EQm = 5EmIdz; 0 < é; m < k—1. (5)
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Therefore
k-1 k—1
R=PDrP™' withDp = @C’ZI@ and S = QDgQ ' with Dg = @cffd,_;.
=0 =0

(6)
Since the eigenvalues of R are 1, ¢, ..., ¢¥71 the first equality in (2) implies
that P is unitary (i.e., P! = P* and therefore Pg Pf,1</{¢<k)if and only
if R is unitary. A sumlar comment applies to S and Q.
We also define

P,
o~ PaJ,»y,
Viea=[ Py Paty  Pog—1)y4p | and Vo= : . (7
Pa(k71)+ﬂ

If ged(e, k) = ¢ > 1 and p = k/q then the first p block columns of V,, , are
repeated ¢ times. In any case, 17# a =V o if R is unitary.

An explicit method for obtammg Py, Py, ..., Py, ﬁo, 161, ce ﬁk,l, Qo,
Q1, ..., Qr_1, and QO, Ql, ceey Qk 1, was given in [15]; however, matrices
denoted here by Pg, Qg, etc., are denoted by ﬁe*, @Z, etc., in [15].

We say that a k-involution R is equidimensional with width d if all of its
eigenspaces are d-dimensional. For example, if Ry € CF** is a k-involution
(necessarily of width 1), then R = Ry ® I; € CF¥**d ig an equidimensional
k-involution with width d. We show that if m = kdy, n = kdz, and R € C™*™
and S € C"*™ are equidimensional with widths d; and ds, then (R, S, o, u)-
symmetric block matrices with d; x da blocks are closely related to generalized
block circulants [C‘“”As,m]kfl where Ay, A1, ..., Ap_1 € Chxd2 A pre-

r,5=0"
cursor of this result is the observation of Ablow and Brenner [1] that if A,

R € CF** and R is a k- 1nv01ut10n then RAR™® = A if and only if A is similar
to an a-circulant [CLS,M]T a=0 € (Cka

We let Ckd1%4d2 denote the set of all block k x k matrices H = [HTS]];;iO
with H,; € Chx% 0<pr s<k—1.

3 Characterization of (R, S, «, j1)-symmetric ma-
trices

Theorem 1 A € C™*" is (R, S, a, u)-symmetric if and only if

A=PCQ™" with C=[C.]l L), where CpyeCo¥d, (8)
and
Crs=0 if rZas+p (mod k), 9)

i which case

Caerth - aer,uAQs CCQH“XdSa 0<s<k-1 (10)
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PROOF. We can write an arbitrary A € C™*™ as in (8) with C = P"1AQ, and
we can partition C' as in (8). Then (1), (3), and (6) imply that

RAS™ = (RP)C(Q™'S™®) = (PDr)C(D5*“Q™") = P(DRCDg*)Q™".

From this and (8), RAS™ = (*A if and only if DrCDg* = (*C, i.e., if and
only if
[Cucrs]k—l . [Crfascrs]kfl

r,s=0 r,5=0"

This is equivalent to (9). From (8), AQ = PC} i.e.,

Al Qo Q1 +++ Q-1 ]=[P P -+ Pu1]C.

Now (9) implies that AQ; = Par4uCartpe, 0 < € < k— 1. This implies (10),
since Py, Paeyp = 1 (see (2)). O

Cal+p

If ged(av, k) = 1 then the substitution £ — af + p (mod k) is a permutation
of Zj,. This implies the following corollary of Theorem 1.

Corollary 1 If ged(a, k) = 1 then any A € C™*™ can be written uniquely as
A= Zﬁ;é AW where AW s (R, S, o, p)-symmetric, 0 < p < k—1. Specifically,
if A is as in (8) then

(e

where
o _ 0 ifr £ as+p  (mod k),
s Cortp,s fr=as+p (modk).

Eqns. (8)—(10) imply the next theorem, which is a convenient reformulation
of Theorem 1.

Theorem 2 A matriz A € C™*" is (R, S, a, p)-symmetric if and only if

k-1 k-1
A=V,a (@ Fe) Q= Z PotnFiQu, (11)

=0 =0
i which case
Fy =P}, AQp € Cootinxde 0 < <k—1, (12)

where al + b is to be reduced modulo k. Moreover, if S is unitary (so Q is
unitary), then (11) becomes

k—1 k-1
A=V, a (@ Fe) Q" = Z PooynFeQy- (13)

£=0 £=0
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It may be reassuring to verify directly that A in (11) is in fact (R, S, o, p)-
symmetric. From (1) and (7), RV, o = (*V, oD% From (6), Q715! =
D'Q71, s0 Q7187 = Dg*Q~!. Therefore the first equality in (11) implies
that RAS™ = (*A. Equns. (4) and (7) imply the second equality.

Theorem 3 Suppose

ged(a,k)=q¢>1 and p=k/q. (14)
Let
Q=[Q Quip -+ Qg | €CrUletdemttdignn (15)
0<l<p-—-1,
Qe

de+doyp+--+d _ xn
c (C( erdetp £+(a—1)p) ,

@)
I

Qr41

QEJr(qfl)p

0 <{¢<p-—1.If we define

Qo
L@
Q = [ QO Ql e Qp,1 ] then Q = . . (16)
prl
Also, let
P,
o~ PaJ,»y,
Via = [ Py Parp - Pp-tatn ] v Ve = : ’ (17)
Pp-1)a+u
Fo=[F Fip - Fopgryp ], 0<0<p—1, (18)
and
p—1
F=EPF.. (19)
£=0

Then Q is invertible since its columns are simply a rearrangement of the columns

of @,

V#vavﬂva = CutCatptFC(p—1)atpu (20)
and (11) can be rewritten as
p—1

A= Por FiQr =V, o FQ. (21)
£=0
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PRrROOF. Note that although « does not appear explicitly on the right sides
of (15), (16), and (18), the matrices shown there are nevertheless uniquely
determined by «. (See (14).) Moreover, (12) and (14) imply that Fy, Fyyp, ...,
Fyy(g—1)p have the same row dimension, since

al+vp)+pu=acl+p (mod k)

for any integer v. Therefore Fy, ..., F,_; are well defined.

Since 0, «, ..., (p — 1)« are distinct, (5) implies (20). Since every m € Zj,
can be written uniquely as m =+ vp with 0 </ <p—-—1land 0 <v <qg-—1,
the second equality in (11) can be written as

p—1lg—1 p—1 q—1
A= Z Z Pa(EJrup)JﬁuFEJruprJrup = Z PaEJr,u Z FEJrUpQEJrUp; (22)
=0 v=0 =0 v=0

where the second equality is valid because pa = 0 (mod k). Therefore the first
equality in (21) is valid because
qg—1
FEQE:ZFE+VpQE+Upa Ogégp_l
v=0
Now (16), (17), and (19) imply the second equality in (21). O

Theorem 4 Suppose R and S are unitary, ged(a, k) = 1, af = 1 (mod k),
and A is (R, S, a, p)-symmetric. Then A* is (S, R, 8, —Bu)-symmetric.

PROOF. Since S is unitary, (13) holds. Therefore

k—1
A* =" QiF/ Py, (23)
=0

since R is unitary and therefore P is unitary. Since (03, k) = 1, every integer in
Zy, can written uniquely in the form G(¢ — u) with ¢ € Zj. Therefore we can
replace ¢ by 5(¢ — p) in (23) to obtain

k—1

A= Qo Fie-wFr
=0

since af =1 (mod k). Now Theorem 2 implies the conclusion. [

In the following theorem A € C"™*" B € C"*P, R € C"™*™ and S € C"*"
are the k-involutions in (6) and 7' € CP*P is the k-involution with spectral
decomposition

Xo
)?1 k—1

T=[Xo X1+ Xp1 |Dr| . |, where Dr=@PL,.

=0

~

Xi—1
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Theorem 5 Suppose A € C™*" is (R, S, a, u)-symmetric and B € C"*P s
(S, T, B, v)-symmetric, so

k—1 k—1
A= Z PooynFe@Qe and B = Z Qpo1vGe Xy, (24)
=0 =0

from Theorem 2. Then AB € C™*? is (R, T, af3, av + p)-symmetric. Moreover,
if ged(B, k) =1 then

k—1

AB=>" Popos(avm FoernGeXo. (25)
(=0

PROOF. It is given that (a) RAS™ = (*A and (b) SBT—" = ¢ B. Applying
(b) a times yields S*BT~*% = (*”B. This and (a) imply that RABT " =
CTHAB, so ABis (R, T, a3, av+p)-symmetric. If ged(3, k) = 1 then replacing
¢ by B¢+ v in the first equality in (24) merely rearranges the terms in the sum,

SO
k—1

A=Y Paptr(avm FoervQpeto- (26)
£=0
Since ged(8, k) = 1, QprrwQpmiv = demlas,,,, 0 < £,;m < k — 1. Therefore
(26) and the second equality in (24) imply (25). O

Theorem 6 Suppose R and S are unitary, A is (R, S, a, p)-symmetric, B is
(R, S, a,v)-symmetric, ged(a, k) = 1, and af = 1 (mod k). Then AB* is
(R, R, 1, u—v)-symmetric and B*A is (S, S, 1, B(n—v))-symmetric; specifically,
of

k—1 k—1
A= PoiyFiQ; and B = Paui,GiQ; (27)
£=0 £=0

as implied by Theorem 2, then

k—1

AB* =" Pryy o Fa-0) Gl Pr (28)
=0

and
k—1

B*A=" Quisu-0)Gi s FiQi- (29)
(=0

PROOF. From (27),

k—1 k-1 k—1
AB* = (Z Pag+#Fng> (Z QmG;Pa*eru) = Z PaEJruFEGzPa*SnLU'
m=0

=0 =0
(30)
Since ged (S, k) = 1, replacing ¢ by (¢ — v) in the last sum yields (28).
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Also from (27),

k—1 k—1
B*A= (Z QEGZPOL*E+U> (Z Paer,uFmQ:ﬂL)
=0 m=0

Replacing ¢ by £ + 5(p — v) in the first sum yields

k—1 k-1
B*A = (Z Qerﬁ(uV)Gerﬁ(uu)Pa*Hu) (Z Pam*“FmQr”> ’
m=0

£=0

which implies (29), since P

g Pamin = Otmleny,, 0 < Lm < k—1. O

Remark 1 If Rand S are unitary, A is (R, S, o, p)-symmetric, and B is (R, S, «, v)-
symmetric, then

RAB*R™' = (RAS™®)(S“B*R™') = (" A)((""B*) = (""" AB*.

Hence, AB* is (R, R, 1, u — v)-symmetric even if ged(a, k) # 1; moreover, (30)
is valid.

4 Generalized inverses and SVD

If A e C™*" then A~ isareflexive inverse of Aif AA~A=Aand A—AA~ = A~
[5, p. 51], and the Moore-Penrose inverse AT of A is the unique matrix that
satisfies the Penrose conditions

(AATY = AAT, (ATA)* = ATA, AATA=A, and ATAAT = AT

If A € C™ ™ and there is a matrix A% such that AA# A = A, A#* AA# = A%,
and AA# = A% A then A7 is called the group inverse of A [5, p.156]. A matrix
may fail to have a group inverse, but if one exists it is unique.

Theorem 7 (i) If A~ is a reflexive inverse of an (R, S, a, u)-symmetric ma-
triz A then B = (PS®*A~ R~ is a reflexive inverse of A. (ii) If A € C™*" is
(R, R, 1, u)-symmetric and has a group inverse A% then A% is (R, R,1,—pu)-
symmetric.

PROOF. (i) Since A = ("*RAS™,
AB=RAAR™', BA=S“A"AS™“,

SO
ABA = ("MRAAAS™ = ("PRAS™® = A

and
BAB = (FS*A"AA" R =(*S“A R~ ' = B.
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(ii) Tt is given that A = ("*RAR™!. Let B = (*RA¥*R™!. Then AB =
RAA#R™" and BA = RA* AR™'. Therefore AB = BA, since AA# = A# A.
Also,

ABA = (" MRAA*¥AR™' =("*RAR ' =4

and
BAB = (PRA#* AA*R™! = (PRA#* R~ = A%,

Hence B is a group inverse of A. Since A can have only one group inverse, it
follows that A% = B = (*RA# R™!, which is (R, R, 1, —p)-symmetric. 0

For convenience of notation, denote F = @];;01 Fy. Tt is straightforward to
verify that F and @];;01 F g satisfy the Penrose conditions, so Ff = ?;01 F g .

Theorem 8 Suppose that A is (R, S, «, p)-symmetric, so

k—1
A= V,u,aFQil = Z PaEJr,uFEQE; (31)
£=0

by Theorem 2. Suppose also that ged(a, k) =1 and af =1 (mod k). Let

k—1
B=QFV, 1 =3 QuF} Parss. (32)
=0

Then B is a reflexive inverse of A. Moreover, if R and S are unitary then
B=Af e,

k—1
AT = QFV:, = QiF|Pl,. (33)
£=0

Finally, AT is (S, R, 3, —Bu)-symmetric.
PROOF. From (2), (31), and (32),

AB =V, JFFV 1 =V, (FF)*V (34)
BA =QF'FQ ' =QF'F)*Q 1, (35)
ABA =V, ,FF'FQ™' =V, ,FQ ! = A, (36)
and
BAB = QF'FF'V | =QF'V ! = B. (37)

From (36) and (37), B is a reflexive inverse of A. If R and S are unitary then
Q™' = Q" and V1 = V7, so (34) and (35) imply that (AB)* = AB and
(BA)* = BA. Therefore A and B satisfy the Penrose conditions, so B = AT,

which implies (33). Finally, replacing ¢ by 5(£ — p) in (33) yields

k—1
_ T *
Al = Z Q- Fa— e
=0

so AT is (S, R, 3, —Bu)-symmetric by Theorem 2. [
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Theorem 9 If (14) holds then the matrix

p—1
B=0QFWia=>Y QFPur, (38)
=0

is a reflexive inverse of A. (See (21).) If in addition R and S are unitary, then
p—1
AT = QFVE L = QFIP.,. (39)
=0
Moreover, if we partition FZ (see (18)) as
Gy

Gt
F| = L o<e<p—1,

Gri(g-1)p

with Gy € CXCattn (< < k—1 (see (12)), then (38) and (39) can be written
as

k—1 k—1
B=2 QuGiPariy and A'=1" QiGiPy, (40)
£=0 £=0

respectively.

PROOF. From (20), (21), and (38),

AB =V oFF Vo = Voo FF) Dy, (41)
BA=QF ' FQ™' = Q(FF)*Q", (42)
ABA =V, o FFIFQ " =V, . 7O " = A, (43)

and R R
BAB = QF ' FF W, 0 = QF Vo = B. (44)
From (43) and (44), B is a reflexive inverse of A. If R and S are unitary then
Q' = Q" and V, 0 = Vi, so (41) and (42) imply that (AB)* = AB and

(BA)* = BA. Therefore A and B satisfy the Penrose conditions, so B = AT.
d
Theorem 2 and (43) imply the following corollary.

Corollary 2 If A is (R, S, a, i)-symmetric and R and S are unitary then (AT)*
is (R, S, a, p)-symmetric.

Theorem 10 Suppose ged(a, k) = q, p = k/q, A is (R, S, «, p)-symmetric and
Fo = QX ®; (see (18)) is a singular value decomposition of Fg, 0 < £ <p—1.
Let

Q= [ Py Poypfti -+ Pp-1yja+uflp-1 ]
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and
P=[ Qoo QI -+ Qpilp1 .
(See (15).) Then

A=Q (%B 2g> . (45)

£=0
Moreover, if R and S are unitary then Q and T' are unitary, so (45) is a singular
value decomposition of A, except that the singular values are not neccesarily
arranged in nonincreasing order.

5 Solution of Az = w and the least squares prob-
lem

In this section we assume that A is (R, S, a, u)-symmetric and can therefore be
written as in (11). If z € C" and w € C™ we write

z2=Qu= kZngue and w= Pv= kZngvg, (46)
=0 =0
with ug € C% and vy € C, 0 < ¢ < k — 1.
Theorem 11 If ged(a, k) = 1 then
(a) Az=w ifand onlyif (b) Four=vae4p, 0<L<k—-1. (47)

Moreover, if R is unitary then
k-1
1Az = w]* = Y | Foue = vaceal®, (48)
£=0

so the least squares problem for A reduces to k independent least squares prob-
lems for Fy, F1, ..., Fx_1.

PROOF. From (11) and (46),

k—1 k—1 k—1 k—1
Az —w = Z PoorpFoug — Z Py = Z PoorpFoue — Z PopypVarsp
=0 =0 =0 =0
k—1
= Z Paer,u(Ffuf - Uaer,u)a (49)

£=0

where Zlg;ol Py = Zlg;ol Pot4pVart, because ged(a, k) = 1, the substitution
s — al+ p (mod k) is a permutation of Zy. Therefore (47)(b) and (49) imply
(47)(a). Since V), (see (7)) is invertible (again, because ged(e, k) = 1), (47)(a)
and (49) imply (47)(b). Finally, if R is unitary then Py, Pam+y = Semlca,,
0<¢m<k-—1,so (49) implies (48). [

Theorems 2 and 11 imply the following theorem.
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Theorem 12 If A is (R, S, «, pu)-symmetric then A is invertible if and only if
ged(a, k) =1,

Catgp=de, 0<U<EkE—1, (50)
and Fy, F1, ..., Fx_1 are all invertible, in which case
k—1 k—1 R
o (@ )ik - S a R, o)
£=0 £=0
and the solution of Az = w is
k—1
2= QuF M varp- (52)
£=0

PROOF. From Theorem 2, A = V.o (D) Fr) Q1. If As invertible then V..o

is invertible, which is true if and only if ged(«, k) = 1. Hence, this is a necessary
condition for A to be invertible, so assume that it holds. From Theorem 11,
Az = w has a solution for every z if and only (47)(b) has a solution for every
{vo,v1,. .., vk_1}. Since F, € CCat+u*de this is true if and only if (50) holds
and Fy, Fi, ..., Fp_1 are all invertible, in which case (11) implies (51). Finally,
(46) and (51) imply (52). O

Remark 2 If R and S are unitary, and therefore () and V), , are unitary, then
(51) implies that

k—1
(A1) =Via (@(Fel)*> Q"
£=0
so (A71)* is (R, S, a, p)-symmetric, by Theorem 2.
Theorem 13 If A is (R, S, a, u)-symmetric, ged(a, k) = ¢, and p = k/q, then

. —1 . . .
Az = w has no solution unless w = Z;Z:o PooypyVatsy, n which case z is a

solution if and only z = Zletol Qrug, where

qg—1

Z FEJrupuEJrup = Val+p, 0 < 4 < p—= 1.
v=0

PROOF. Since our assumptions imply (22),

p—1 q—1
Az = § PaEJr,u § FEJrupuEJrup
=0 v=0

if z= 25;01 Qeug. This implies the conclusion. 0O
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6 Equidimensional block permutation matrices

We begin with two lemmas. It is straightforward to verify the first by direct
matrix multiplication, bearing in mind that subscripts are to be reduced mod-
ulo k.

Lemma 1 Ifw; and wy are permutations of Zy and H = [Hrs]fslo € Chidixdz
then

([5r wy l(s)]r s=0 ® Idl)H([(sr,w;l(s)]f;iO ® Id2)7a = [le(r)vwga (5)]];;i0 (53)
In particular, letting w1 (s) = wa(s) = s+ 1 (mod k) yields

([57«7571]];2;) ®Id1) ([Hrs]fgio) ([57“5 1]rs 0 ® Idz ¢ = [ T+1,s+a]§gi0' (54)

)
)"
Lemma 2 Let o be a permutation of Zy, and o(k) = 0. Let p be the unique
cyclic permutation of Zy, such that o(p"(k)) =7, 0<r <k —1. Then

a(p®(r)) =o(r)+a (mod k). (55)
PROOF. Since o(p"(k)) = r, p"(k) = o~ (r). Replacing r by o(r) yields
p° ) (k) = r. Now replacing r by p(r) yields
p7 (k) = p(r) = p* (07 (k) = p7F k),

which implies (55). O

In the rest of this paper o; and p;, ¢ = 1, 2, 3 are related as ¢ and p are
related in Lemma 2.

For future reference,

1
CE
1 <2E
- ., 0<(<k-1, 56
Je 7 | (56)
C(k;l)f
(I)g:fe@)fdl, \Ifg:fg®fd2, 0</(<Ek-1, (57)
=[P P -+ Pp1 |, and ¥=[ Ty Uy - Yy |. (58)
Let
E=1[6s1]i e, Ro=E®Ily, So=E®Is, To=E®Is,, (59)

Li = [57“,0;1(5)]];;;0 ®1lg;, and R;= [57“79;1(5)]];,2;0 ®lq, 1=1,2,3. (60)
From (54) with o = 0 and (56)—(58),
k—1
Ry® =®D; and S¥ =WD, with Di=@H¢ 1, i=1,2 (61)
£=0

SO
RO = ‘I’qu>* and SO = ‘I’DQ‘I’*
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Theorem 14 A matriz A € CF4*% s (Ry, Ry, o, p)-symmetric if and only if
A= [¢C""D Ay ()01 ()] rismo (62)
for some Ag, Ay, ..., Ap_y € Chxdz,

PRrOOF. For now we write A = [Brs]f;io. From (60) and (53) with w; = p; and
W2 = P2,

RlARga = [Bpl(r),pg‘(S)]];;iO =(rA

if and only if
Bpl(r),pg(s)ZC'uBrs; 0<r,s<k-—1. (63)

This holds if

Brs ="M AL (a0, 0<rs<k—1, (64)
since (55) implies that o1(p1(r)) = o1(r) + 1 (mod k) and
o2(p3 (5)) —ao1(p1(r)) = (02(s) +a) —a(o1(r) +1) = 0a(s) —aoi(r)  (mod k).
For the converse we will show that (63) implies (64) with

Agy(s) = B, s or, equivalently, A, =B 0</(<k-1. (65)

k1,05 (s)?

Replacing r by pi(x1) in (64) and noting from (55) that o1 (p} (k1)) = r shows
that (64) is equivalent to

BPI("”vl)ﬁ = C“TACQ(S),O”, 0 S r,Ss S k—1. (66)

We will prove this by finite induction on r. Eqn. (65) implies (66) for r = 0.
Suppose (66) holds for a given r. Replacing r by pj (k1) and s by p;** in (63)
yields

Bty = S Bor(na) oy (s)°

Therefore, from (55) and our induction assumption (66),

r+1 r+1
Byt (eys = CUTVAL (e ) mar = T Agy ) -ater)s

which completes the induction. 0O
Corollary 3 A matriz A € CF%4 x4z 45 (R, Ry, o, pu)-symmetric if and only if
A=1L ([C'MAsfar]f;iO) Lgl (67)

(sec (60)) with Ag, Ay, ..., Ay 1 € Chxds.

PROOF. From (60) and (67), applying (53) with w1 = 01, wy = 02, a = 1, and
H = [(" As_ar]l Ly yields (62). O
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Corollary 4 A matriz A € CF4*% s (Ry, Sy, a, p)-symmetric (see (59)) if
and only if
A= [C'MAsfar]];;iO (68)

for some Ag, A1, ..., Ap_y € Chxdz,
PROOF. Setting o1(r) = o2(r) = r+ 1 (mod k) in (62) yields
A= [C#(TJFI)A(lfa)Jrsfar]];;iO

for some Ag, Ay, ..., Ax_1 € C1*92 Redefining A (i.e., replacing CHFA(1—a)+m
with A,, yields (68). O

k—1

7 Moore-Penrose inversion of [A, ;-9

The following theorem is an extension of [15, Theorem 5], where we assumed
that ged(a, k) = 1.

Theorem 15 Suppose A = [As,m]kf1 € Chdixdz gnd

7r,5=0
k—1
Fr=> ("™Ap, 0<0<k-1L (69)
m=0

Suppose also that ged(a, k) = q and p=k/q. Let

Fo=[F Fup - Frpg-1p | (70)
and partition FZ as
Ge
Fl - Gefp C0<l<p-1,
Ger('tI*l)p

where Go, G1, ..., Gp_1 € C2*%  Then

k—1
1
AT = [B,_..F 7L h B, =~ G, 0<m<k-—1. 71
[ ]r,s—O where kgc 4 =m= (71)

PROOF. First, note that (69) is equivalent to

k—1

k—1
N CE, 0<m<k-1, so A=Y PuFQ;
=0 =0

A =

e
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where
1 I, 1@ Iy,
p 1 Cae(g)Idl q Q 1 Ce ®Id2
al = — = . al = . s
T Vk ; T Vk :
C(kfl)af ® Idl C(kfl)f ® Id2

0 <¢<k—1. From Theorem 9 (specifically, (40) with u = 0),
k—1

3

k—1 k—1
* 1 s—ar
Al = Z QG(Pr, = - Lz; (ts—eng,

£=0

7r,5=0
which implies (71). O

Remark 3 Theorem 15 is extended to multilevel circulants in [17], which was
submitted for publication after this paper was submitted.

Remark 4 The set F = {Fy, F1,..., Fi_1} is often called the discrete Fourier
transform (dft) of the set A= {Ao, A1,..., Ax_1}.

Remark 5 If ged(a, k) = 1 (so ¢ = 1 and p = k), then (70) reduces to F, =
Gy =F g . Hence, the second equality in (71) reduces to
k—1
Bpn=1> ¢"™Ff, 0<m<k-1,
¢

El

=0
as we showed in [16, Theorem 5].

Remark 6 Suppose A = [as,m]f;io € C***. Then (69) and (70) reduce to

k—1
fo=Y amC™ and fo=[fo ferp o Sy ], 0SL<p-1.
m=0
Since
e
1 f
fg:HfH2 o if £,£0 or £l=0 if f,=0,
3 :
7@+(q—1)p

it follows that

_ {75+Up/|fe|2 if ff 3& Oa
0

= 0<l<p—1, 0<v<g—1.
Jtvp it =0 - =P =v=4

Hence AT = [br,as]f;io where b, = %25;01 geCt™. This is a direct general-
ization of the result of Davis [8], who showed that that if A = [as,r]f;io then
AT = [b, 8 Lo, where by = £ 500 flL.ctm.

T7
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Corollary 5 If di = ds then A = [As,ar]f;io is invertible if and only if
ged(a, k) =1 and Fo, F1, ..., Fr_1 are all invertible, in which case

k—1
1
AT = [Broadiilo where Bp=2> ("F 0<m<k-1.
£=0

8 Arbitrary equidimensional k-involutions

For the rest of this paper R € C™*™ and S € C"*" are arbitrary equidimen-
sional k-involutions with widths d; and dy respectively. Since all equidimen-
sional k-involutions of a given order have the same spectrum, we can write

R=XRyX ! and S=YSY! (72)
(see (59)) for suitable X € C™*™ and Y € C™*"™.
Theorem 16 A matriz A € Ckaxd2 js (R S, o, pu)-symmetric if and only if

A= X ([("As—ari l) Y1 (73)

r,5=0
for some Ag, A1, ..., Ap_y € Chxdz,
PROOF. From (72), A is (R, S, a, p)-symmetric if and only if
(XRoX HA(YS;*Y ) = ¢4,
which is equivalent to
Ro(XTAY)S; ™ = ¢M(XAY).
This is equivalent to (73), by Corollary 4. O

Remark 7 We can rewrite (73) as A = XD{CY~! with C = [A,_a, ] L

and D; as in (61). It is straightforward to verify that B = YOTD; X! is a
reflexive inverse of A, and that B = AT if R and S are unitary.

Remark 8 Eqn. (73) must reduce to (67) when R = R; and S = S;. To verify
this explicitly, we note that from (53) with w; = 01, wa = 092, @ = 1, and
Hrs = 5rs;

-1
([5T7a;1(5)]];7;i0) ([57075,1]];;;)) ([57«70;1(5)]];;i0) = [5Ui(7”)70'i(5)*1]]7f,;i0

= [57“,;);1 (s)]];,;iO’

where the last equality is valid because (55) with o = —1 implies that o;(r) =
0;(s)—1 ifand only if r = p; *(s). Therefore, from (59) and (60), Ry = L1 RoL; "
and Ry = LoSoLy*. Hence, if R = Ry and S = Ry then X = L; and Y = Ly
in (73), which is consistent with (67).
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Remark 9 The conclusion of Theorem 5 can made more explicit if R, S are as
in (72) and T = ZTpZ~ 1. (See (59).) If A € Ckd1x42 is (R, S, o, p)-symmetric
and B € Ckd2*ds js (S, T 3, v)-symmetric, then Theorem 16 implies that

A=X ([C#TAsfar]kil ) Y71 and B=Y ([CUTBsfﬁr]kil ) 271

7r,5=0 7r,5=0
for some Ag, A1, ..., Ag—1 € CH*% and By, By, ..., By_1 € C%*d_ Therefore
AB = X ([0 Ay )E520) (177 By 510) 21, (74)

On the other hand, Theorem 5 implies that AB is (R, T, a3, ap + v)-symmetric,
so Theorem 16 implies that

AB=X ([C(““"”Cs,am]k*l )Z*l

7r,5=0

for suitable Cy, Cy, ..., Cr_1 € C4*9  Computing the first row (r = 0) of the
product between X and Z~! in (74) yields
k—1
Cm=Y C""ABn_p, 0<m<k-1.
=0

This extends [16, Theorem 2], which in turn extended [1, Theorem 3.1]. Note
that the assumption that ged(8, k) = 1, which we imposed to obtain (25), is no
longer required.

Remark 10 Letting X = Ina,, Y = Indy, Z = Ing,, and p = v = 0, we see
from Remark 9 that if A = [As,ar]f;io and B = [Bs—ﬁr]f;io with a8 = 1
(mod k), then

k—1
AB=[Cs ity with Cp=> ABm g 0<m<k—1.
£=0

This generalizes a well known result; namely, the product of 1-circulants is a
1-circulant.

Remark 11 The conclusions of Theorem 6 can also be made more explicit if
R and S are as in (72) and unitary. If A € Ck41x2 is (R S, a, u)-symmetric
and B € Ckd1xd2 js (R, S, o, v)-symmetric, then Theorem 16 implies that

A= X ([¢"As—arlf20) Y and B =X ([¢""Bs_ar|F L) Y™ (75)

7r,5=0 7r,5=0

Therefore
AB* - X ([C#TA57OLT]k71 ) ([CfusB*

7r,5=0 r—as

On the other hand, Theorem 6 and Remark 1 imply that AB* is (R, R, 1, u—v)-
symmetric. Hence, Theorem 16 implies that

]kfl ) X* (76)

7r,5=0

AB* = X ([C(,ufu)r057r]kfl )X*

7r,5=0
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with Co, C1, ..., Cr_1 € Cdxdr, Computing the first row of the product
between X and X* in (76) yields
k—1
Con =C7"™ Y AB} ,, 0<m<k—1.
£=0

As noted in Remark 1, we did not need to assume that ged(c, k) = 1 in this
argument.
From (75),
B*A =Y ([CfusB*

T—QSs

1o 20) ([CF As—ar] 3 ke) Y. (77)

7r,5=0 7r,5=0
Now suppose ged(a, k) =1 and a8 =1 (mod k). Then Theorem 6 implies that
B*Ais (5,1, B(pn — v))-symmetric. Hence, Theorem 16 implies that

B*A—Y ([Cﬁ(,ufu)rD57T]kfl ) y*

7r,5=0

with Dy, D1, ..., Dy_q € Cxd2, Computing the first row of the product
between Y and Y* in (77) yields
k—1
D= B Ay s, 0<m<k-—1.
£=0

Replacing ¢ by —g¢ simplifies this to
k—1
D= ¢ IBi Ay, 0<m<k—1L
=0
This extends [16, Corollary 2], which in turn extended [12, Corollary 1].

9 Acknowledgement

I thank Professor Irwin S. Pressman for comments that led to improvements of
this paper.

References

[1] C. M. Ablow, J. L. Brenner, Roots and canonical forms for circulant ma-
trices, Trans. Amer. Math. Soc. 107 (1963) 360-376.

[2] A. L. Andrew, Eigenvectors of certain matrices, Linear Algebra Appl. 7
(1973) 151-162.

[3] A. L. Andrew, Solution of equations involving centrosymmetric matrices,
Technometrics 15 (1973) 405-407.



Matrices with k-involutory symmetries 20

[4] A.L. Andrew, Centrosymmetric matrices, SIAM Review 40 (1998) 697-698.

[5] A. Ben-Israel, T. N. E. Greville, Generalized Inverses (Second Edition),
Springer (2003).

[6] H.-C. Chen, A. Sameh, A matrix decomposition method for orthotropic
elasticity problems, STAM J. Matrix Anal. Appl. 10 (1989), 39-64.

[7] H.-C. Chen, Circulative matrices of degree 6, SIAM J. Matrix Anal. Appl.
13 (1992) 1172-1188.

[8] P.J. Davis, Cyclic transformations of polygons and the generalized inverse,
Canad. J. Math. 29 (1977) 756-770.

[9] I. J. Good, The inverse of a centrosymmetric matrix, Technometrics 12
(1970) 925-928.

[10] G.L.Li, Z. H. Feng, Mirrorsymmetric matrices, their basic properties, and
an application on odd/even decomposition of symmetric multiconductor
transmission lines, STAM J. Matrix Anal. Appl. 24 (2002) 78-90.

[11] 1. S. Pressman, Matrices with multiple symmetry properties: applications
of centrohermitian and perhermitian matrices, Linear Algebra Appl. 284
(1998) 239-258.

[12] W. T. Stallings, T. L. Boullion, The pseudoinverse of an r-circulant matrix,
Proc. Amer. Math. Soc. 34 (1972) 385-388.

[13] D. Tao, M. Yasuda, A spectral characterization of generalized real symmet-
ric centrosymmetric and generalized real symmetric skew-centrosymmetric

matrices, STAM J. Matrix Anal. Appl. 23 (2002) 885-895.

[14] W. F. Trench, Characterization and properties of matrices with generalized
symmetry or skew symmetry, Linear Algebra Appl. 377 (2004) 207-218.

[15] W. F. Trench, Characterization and properties of matrices with k-
involutory symmetries, Linear Algebra Appl. 429, Issues 8-9 (2008) 2278-
2290.

[16] W. F. Trench, Properties of unilevel block circulants, Linear Algebra Appl.
430 (2009) 20122025.

[17] W.F.Trench, Properties of multilevel block circulants, Linear Algebra Appl.
431 (2009) 1833-1847.

[18] M. Yasuda, A Spectral Characterization of Hermitian Centrosymmetric and
Hermitian Skew-Centrosymmetric K-Matrices; SIAM Journal on Matrix
Analysis and Applications, Volume 25, No. 3 (2003) pp 601-605.

[19] J. R. Weaver, Centrosymmetric (cross-symmetric) matrices, their basic
properties, eigenvalues, eigenvectors, American Mathematical Monthly 92
(1985) 711-717.



