
Characterization and properties of matrices with

k-involutory symmetries II

William F. Trench∗

Trinity University, San Antonio, Texas 78212-7200, USA

Mailing address: 659 Hopkinton Road, Hopkinton, NH 03229 USA

Linear Algebra and Its Applications, 432 (2010), 2782-2797

Abstract

We say that a matrix R ∈ C
n×n is k-involutory if its minimal poly-

nomial is xk − 1 for some k ≥ 2, so Rk−1 = R−1 and the eigenvalues of
R are 1, ζ, ζ2,. . . , ζk−1, where ζ = e2πi/k. Let α, µ ∈ {0, 1, . . . , k − 1}.
If R ∈ C

m×m, A ∈ C
m×n, S ∈ C

n×n and R and S are k-involutory, we
say that A is (R, S, α,µ)-symmetric if RAS−α = ζµA. We show that an
(R, S, α, µ)-symmetric matrix A can be usefully represented in terms of
matrices F` ∈ C

cα`+µ×d` , 0 ≤ ` ≤ k − 1, where c` and d` are respec-
tively the dimensions of the ζ`- eigenspaces of R and S. This continues
a theme initiated in an earlier paper with the same title, in which we
assumed that α = 1. We say that a k-involution is equidimensional with
width d if all of its eigenspaces have dimension d. We show that if R and
S are equidimensional k-involutions with widths d1 and d2 respectively,
then (R, S, α, µ)-symmetric matrices are closely related to generalized α-
circulants [ζµrAs−αr]

k−1

r,s=0
, where A0, A1, . . . , Ak−1 ∈ C

d1×d2 . For this
case our results are new even if α = 1. We also give an explicit formula
for the Moore-Penrose inverse of a unilevel block circulant [As−αr]

k−1

r,s=0

for any α ∈ {0, 1, . . . , k − 1}, generalizing a result previously obtained for
the case where gcd(α, k) = 1.
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1 Introduction

Throughout this paper α > 0, k ≥ 2, and µ are integers, ζ = e2πi/k,

Zk = {0, 1, . . . , k − 1},

and subscripts are to be reduced modulo k. We say that R ∈ Cm×m is k-
involutory if its minimal polynomial is xk − 1 for some k ≥ 2, so Rk−1 = R−1

and the eigenvalues of R are 1, ζ, . . . , ζk−1.
If R ∈ Cm×m and S ∈ Cn×n are k-involutory we say that A ∈ Cm×n is

(R, S, α, µ)-symmetric if RAS−α = ζµA. This work is a continuation of [15],
where we studied matrices such that RAS−1 = ζµA, which we called (R, S, µ)-
symmetric. Sections 3–5 are extensions of results obtained in [15] for (R, S, µ)-
symmetric matrices. However, Sections 6 and 8 are new even with α = 1, and
are also extensions of results obtained in [16]. In Section 7 we give an explicit
formula for the Moore-Penrose inverse of a block circulant [As−αr]

k−1
r,s=0 with A0,

A1, . . . , Ak−1 ∈ Cd1×d2 . The formula is valid for any α ∈ Zk and extends a
result in [16, Theorem 5] for the case where gcd(α, k) = 1.

This paper is motivated by and continues a line of research undertaken by
many investigators; see, e.g., [2]–[4],[6], [7], [9] [10], [11, 13, 14, 18, 19], by no
means a complete list.

2 Preliminaries

Let R ∈ Cm×m and S ∈ Cn×n be k-involutions. Let

c` = dim
{
z
∣∣Rz = ζ`z

}
and d` = dim

{
z
∣∣Sz = ζ`z

}
, 0 ≤ ` ≤ k − 1.

Then there are matrices P` ∈ Cm×c` and Q` ∈ Cn×d` , 0 ≤ ` ≤ k − 1, such that

RP` = ζ`P`, SQ` = ζ`Q`, 0 ≤ ` ≤ k − 1, (1)

P ∗
` P` = Ic`

, and Q∗
`Q` = Id`

, 0 ≤ ` ≤ k − 1. (2)

We note that (2) can be assumed without loss of generality, since the Gram-
Schmidt procedure allows us to choose an orthonormal basis for any eigenspace.

Let

P =
[

P0 P1 · · · Pk−1

]
, Q =

[
Q0 Q1 · · · Qk−1

]
, (3)

P−1 =




P̂0

P̂1

...

P̂k−1


 , and Q−1 =




Q̂0

Q̂1

...

Q̂k−1


 , (4)

with P̂` ∈ C
c`×m and Q̂` ∈ C

d`×n, 0 ≤ ` ≤ k − 1; thus,

P̂`Pm = δ`mIc`
and Q̂`Qm = δ`mId`

, 0 ≤ `, m ≤ k − 1. (5)
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Therefore

R = PDRP−1 with DR =

k−1⊕

`=0

ζ`Ic`
and S = QDSQ−1 with DS =

k−1⊕

`=0

ζ`Id`
.

(6)
Since the eigenvalues of R are 1, ζ, . . . , ζk−1, the first equality in (2) implies

that P is unitary (i.e., P−1 = P ∗ and therefore P̂` = P ∗
` , 1 ≤ ` ≤ k) if and only

if R is unitary. A similar comment applies to S and Q.
We also define

Vµ,α =
[

Pµ Pα+µ · · · Pα(k−1)+µ

]
and V̂µ,α =




P̂µ

P̂α+µ

...

P̂α(k−1)+µ


 . (7)

If gcd(α, k) = q > 1 and p = k/q then the first p block columns of Vµ,α are

repeated q times. In any case, V̂µ,α = V ∗
µ,α if R is unitary.

An explicit method for obtaining P0, P1, . . . , Pk−1, P̂0, P̂1, . . . , P̂k−1, Q0,

Q1, . . . , Qk−1, and Q̂0, Q̂1, . . . , Q̂k−1, was given in [15]; however, matrices

denoted here by P̂`, Q̂`, etc., are denoted by P̂ ∗
` , Q̂∗

` , etc., in [15].
We say that a k-involution R is equidimensional with width d if all of its

eigenspaces are d-dimensional. For example, if R0 ∈ Ck×k is a k-involution
(necessarily of width 1), then R = R0 ⊗ Id ∈ Ckd×kd is an equidimensional
k-involution with width d. We show that if m = kd1, n = kd2, and R ∈ Cm×m

and S ∈ Cn×n are equidimensional with widths d1 and d2, then (R, S, α, µ)-
symmetric block matrices with d1 × d2 blocks are closely related to generalized
block circulants [ζµrAs−αr]

k−1
r,s=0, where A0, A1, . . . , Ak−1 ∈ C

d1×d2 . A pre-
cursor of this result is the observation of Ablow and Brenner [1] that if A,
R ∈ Ck×k and R is a k-involution, then RAR−α = A if and only if A is similar
to an α-circulant [as−αr]

k−1
r,s=0 ∈ Ck×k.

We let Ck:d1×d2 denote the set of all block k × k matrices H = [Hrs]
k−1
r,s=0

with Hrs ∈ Cd1×d2 , 0 ≤ r, s ≤ k − 1.

3 Characterization of (R,S, α, µ)-symmetric ma-

trices

Theorem 1 A ∈ Cm×n is (R, S, α, µ)-symmetric if and only if

A = PCQ−1 with C = [Crs]
k−1
r,s=0 , where Crs ∈ C

cr×ds , (8)

and

Crs = 0 if r 6≡ αs + µ (mod k), (9)

in which case

Cαs+µ,s = P ∗
αs+µAQs ∈ C

cαs+µ×ds , 0 ≤ s ≤ k − 1. (10)
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Proof. We can write an arbitrary A ∈ C
m×n as in (8) with C = P−1AQ, and

we can partition C as in (8). Then (1), (3), and (6) imply that

RAS−α = (RP )C(Q−1S−α) = (PDR)C(D−α
S Q−1) = P (DRCD−α

S )Q−1.

From this and (8), RAS−α = ζµA if and only if DRCD−α
S = ζµC, i.e., if and

only if
[ζµCrs]

k−1
r,s=0 = [ζr−αsCrs]

k−1
r,s=0.

This is equivalent to (9). From (8), AQ = PC; i.e.,

A
[

Q0 Q1 · · · Qk−1

]
=
[

P0 P1 · · · Pk−1

]
C.

Now (9) implies that AQ` = Pα`+µCα`+µ,`, 0 ≤ ` ≤ k − 1. This implies (10),
since P ∗

α`+µPα`+µ = Icα`+µ
(see (2)).

If gcd(α, k) = 1 then the substitution ` → α` + µ (mod k) is a permutation
of Zk. This implies the following corollary of Theorem 1.

Corollary 1 If gcd(α, k) = 1 then any A ∈ Cm×n can be written uniquely as

A =
∑k−1

µ=0 A(µ), where A(µ) is (R, S, α, µ)-symmetric, 0 ≤ µ ≤ k−1. Specifically,
if A is as in (8) then

A(µ) = P

([
C(µ)

rs

]k−1

r,s=0

)
Q−1

where

C(µ)
rs =

{
0 if r 6≡ αs + µ (mod k),

Cαr+µ,s if r ≡ αs + µ (mod k).

Eqns. (8)–(10) imply the next theorem, which is a convenient reformulation
of Theorem 1.

Theorem 2 A matrix A ∈ Cm×n is (R, S, α, µ)-symmetric if and only if

A = Vµ,α

(
k−1⊕

`=0

F`

)
Q−1 =

k−1∑

`=0

Pα`+µF`Q̂`, (11)

in which case

F` = P ∗
α`+µAQ` ∈ C

cα`+µ×d` , 0 ≤ ` ≤ k − 1, (12)

where α` + µ is to be reduced modulo k. Moreover, if S is unitary (so Q is

unitary), then (11) becomes

A = Vµ,α

(
k−1⊕

`=0

F`

)
Q∗ =

k−1∑

`=0

Pα`+µF`Q
∗
` . (13)
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It may be reassuring to verify directly that A in (11) is in fact (R, S, α, µ)-
symmetric. From (1) and (7), RVµ,α = ζµVµ,αDα

R. From (6), Q−1S−1 =
D−1

S Q−1, so Q−1S−α = D−α
S Q−1. Therefore the first equality in (11) implies

that RAS−α = ζµA. Eqns. (4) and (7) imply the second equality.

Theorem 3 Suppose

gcd(α, k) = q > 1 and p = k/q. (14)

Let

Q` =
[

Q` Q`+p · · · Q`+(q−1)p

]
∈ C

n×(d`+d`+p+···+d`+(q−1)p) (15)

0 ≤ ` ≤ p − 1,

Q̂` =




Q̂`

Q̂`+1

...

Q̂`+(q−1)p


 ∈ C

(d`+d`+p+···+d`+(q−1)p)×n,

0 ≤ ` ≤ p − 1. If we define

Q =
[

Q0 Q1 . . . Qp−1

]
then Q−1 =




Q̂0

Q̂1

...

Q̂p−1


 . (16)

Also, let

Vµ,α =
[

Pµ Pα+µ · · · P(p−1)α+µ

]
, V̂µ,α =




P̂µ

P̂α+µ

...

P̂(p−1)α+µ


 , (17)

F` =
[

F` F`+p · · · F`+(q−1)p

]
, 0 ≤ ` ≤ p − 1, (18)

and

F =

p−1⊕

`=0

F`. (19)

Then Q is invertible since its columns are simply a rearrangement of the columns

of Q,
V̂µ,αVµ,α = Icµ+cα+µ+···+c(p−1)α+µ

(20)

and (11) can be rewritten as

A =

p−1∑

`=0

Pα`+µF`Q̂` = Vµ,αFQ−1. (21)
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Proof. Note that although α does not appear explicitly on the right sides
of (15), (16), and (18), the matrices shown there are nevertheless uniquely
determined by α. (See (14).) Moreover, (12) and (14) imply that F`, F`+p, . . . ,
F`+(q−1)p have the same row dimension, since

α(` + νp) + µ ≡ α` + µ (mod k)

for any integer ν . Therefore F0, . . . , Fp−1 are well defined.
Since 0, α, . . . , (p − 1)α are distinct, (5) implies (20). Since every m ∈ Zk

can be written uniquely as m = ` + νp with 0 ≤ ` ≤ p − 1 and 0 ≤ ν ≤ q − 1,
the second equality in (11) can be written as

A =

p−1∑

`=0

q−1∑

ν=0

Pα(`+νp)+µF`+νpQ̂`+νp =

p−1∑

`=0

Pα`+µ

q−1∑

ν=0

F`+νpQ̂`+νp, (22)

where the second equality is valid because pα ≡ 0 (mod k). Therefore the first
equality in (21) is valid because

F`Q̂` =

q−1∑

ν=0

F`+νpQ̂`+νp, 0 ≤ ` ≤ p − 1.

Now (16), (17), and (19) imply the second equality in (21).

Theorem 4 Suppose R and S are unitary, gcd(α, k) = 1, αβ ≡ 1 (mod k),
and A is (R, S, α, µ)-symmetric. Then A∗ is (S, R, β,−βµ)-symmetric.

Proof. Since S is unitary, (13) holds. Therefore

A∗ =

k−1∑

`=0

Q`F
∗
` P ∗

α`+µ (23)

since R is unitary and therefore P is unitary. Since (β, k) = 1, every integer in
Zk can written uniquely in the form β(` − µ) with ` ∈ Zk. Therefore we can
replace ` by β(` − µ) in (23) to obtain

A∗ =

k−1∑

`=0

Qβ(`−µ)F
∗
β(`−µ)P

∗
` ,

since αβ ≡ 1 (mod k). Now Theorem 2 implies the conclusion.
In the following theorem A ∈ Cm×n, B ∈ Cn×p, R ∈ Cm×m and S ∈ Cn×n

are the k-involutions in (6) and T ∈ Cp×p is the k-involution with spectral
decomposition

T =
[

X0 X1 · · · Xk−1

]
DT




X̂0

X̂1

...

X̂k−1


 , where DT =

k−1⊕

`=0

ζ`Ie`
.
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Theorem 5 Suppose A ∈ C
m×n is (R, S, α, µ)-symmetric and B ∈ C

n×p is

(S, T, β, ν)-symmetric, so

A =

k−1∑

`=0

Pα`+µF`Q̂` and B =

k−1∑

`=0

Qβ`+νG`X̂`, (24)

from Theorem 2. Then AB ∈ Cm×p is (R, T, αβ, αν + µ)-symmetric. Moreover,
if gcd(β, k) = 1 then

AB =

k−1∑

`=0

Pαβ`+(αν+µ)Fβ`+νG`X̂`. (25)

Proof. It is given that (a) RAS−α = ζµA and (b) SBT−β = ζνB. Applying
(b) α times yields SαBT−αβ = ζανB. This and (a) imply that RABT−αβ =
ζαν+µAB, so AB is (R, T, αβ, αν+µ)-symmetric. If gcd(β, k) = 1 then replacing
` by β` + ν in the first equality in (24) merely rearranges the terms in the sum,
so

A =

k−1∑

`=0

Pαβ`+(αν+µ)Fβ`+νQ̂β`+ν . (26)

Since gcd(β, k) = 1, Q̂β`+νQβm+ν = δ`mIdβ`+ν
, 0 ≤ `, m ≤ k − 1. Therefore

(26) and the second equality in (24) imply (25).

Theorem 6 Suppose R and S are unitary, A is (R, S, α, µ)-symmetric, B is

(R, S, α, ν)-symmetric, gcd(α, k) = 1, and αβ ≡ 1 (mod k). Then AB∗ is

(R, R, 1, µ−ν)-symmetric and B∗A is (S, S, 1, β(µ−ν))-symmetric; specifically,
if

A =

k−1∑

`=0

Pα`+µF`Q
∗
` and B =

k−1∑

`=0

Pα`+νG`Q
∗
` (27)

as implied by Theorem 2, then

AB∗ =
k−1∑

`=0

P`+µ−νFβ(`−ν)G
∗
β(`−ν)P

∗
` (28)

and

B∗A =

k−1∑

`=0

Q`+β(µ−ν)G
∗
`+β(µ−ν)F`Q

∗
` . (29)

Proof. From (27),

AB∗ =

(
k−1∑

`=0

Pα`+µF`Q
∗
`

)(
k−1∑

m=0

QmG∗
mP ∗

αm+ν

)
=

k−1∑

`=0

Pα`+µF`G
∗
`P

∗
αs+ν.

(30)
Since gcd(β, k) = 1, replacing ` by β(` − ν) in the last sum yields (28).
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Also from (27),

B∗A =

(
k−1∑

`=0

Q`G
∗
`P

∗
α`+ν

)(
k−1∑

m=0

Pαm+µFmQ∗
m

)

Replacing ` by ` + β(µ − ν) in the first sum yields

B∗A =

(
k−1∑

`=0

Q`+β(µ−ν)G
∗
`+β(µ−ν)P

∗
α`+µ

)(
k−1∑

m=0

Pαm+µFmQ∗
m

)
,

which implies (29), since P ∗
α`+µPαm+µ = δ`mIcα`+µ

, 0 ≤ `, m ≤ k − 1.

Remark 1 If R and S are unitary, A is (R, S, α, µ)-symmetric, and B is (R, S, α, ν)-
symmetric, then

RAB∗R−1 = (RAS−α)(SαB∗R−1) = (ζµA)(ζ−νB∗) = ζµ−νAB∗.

Hence, AB∗ is (R, R, 1, µ− ν)-symmetric even if gcd(α, k) 6= 1; moreover, (30)
is valid.

4 Generalized inverses and SVD

If A ∈ Cm×n then A− is a reflexive inverse of A if AA−A = A and A−AA− = A−

[5, p. 51], and the Moore-Penrose inverse A† of A is the unique matrix that
satisfies the Penrose conditions

(AA†)∗ = AA†, (A†A)∗ = A†A, AA†A = A, and A†AA† = A†.

If A ∈ Cn×n and there is a matrix A# such that AA#A = A, A#AA# = A#,
and AA# = A#A then A# is called the group inverse of A [5, p.156]. A matrix
may fail to have a group inverse, but if one exists it is unique.

Theorem 7 (i) If A− is a reflexive inverse of an (R, S, α, µ)-symmetric ma-

trix A then B = ζµSαA−R−1 is a reflexive inverse of A. (ii) If A ∈ Cn×n is

(R, R, 1, µ)-symmetric and has a group inverse A#, then A# is (R, R, 1,−µ)-
symmetric.

Proof. (i) Since A = ζ−µRAS−α,

AB = RAA−R−1, BA = SαA−AS−α,

so
ABA = ζ−µRAA−AS−α = ζ−µRAS−α = A

and
BAB = ζµSαA−AA−R−1 = ζµSαA−R−1 = B.
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(ii) It is given that A = ζ−µRAR−1. Let B = ζµRA#R−1. Then AB =
RAA#R−1 and BA = RA#AR−1. Therefore AB = BA, since AA# = A#A.
Also,

ABA = ζ−µRAA#AR−1 = ζ−µRAR−1 = A

and
BAB = ζµRA#AA#R−1 = ζµRA#R−1 = A#.

Hence B is a group inverse of A. Since A can have only one group inverse, it
follows that A# = B = ζµRA#R−1, which is (R, R, 1,−µ)-symmetric.

For convenience of notation, denote F =
⊕k−1

`=0 F`. It is straightforward to

verify that F and
⊕k−1

`=0 F †
` satisfy the Penrose conditions, so F† =

⊕k−1
`=0 F †

` .

Theorem 8 Suppose that A is (R, S, α, µ)-symmetric, so

A = Vµ,αFQ−1 =

k−1∑

`=0

Pα`+µF`Q̂`, (31)

by Theorem 2. Suppose also that gcd(α, k) = 1 and αβ ≡ 1 (mod k). Let

B = QF†V −1
µ,α =

k−1∑

`=0

Q`F
†
` P̂α`+µ. (32)

Then B is a reflexive inverse of A. Moreover, if R and S are unitary then

B = A†, i.e.,

A† = QF†V ∗
µ,α =

k−1∑

`=0

Q`F
†
`P

∗
α`+µ. (33)

Finally, A† is (S, R, β,−βµ)-symmetric.

Proof. From (2), (31), and (32),

AB = Vµ,αFF†V −1
µ,α, = Vµ,α(FF†)∗V −1

µ,α, (34)

BA = QF†FQ−1 = Q(F†F)∗Q−1, (35)

ABA = Vµ,αFF†FQ−1 = Vµ,αFQ−1 = A, (36)

and
BAB = QF†FF†V −1

µ,α = QF†V −1
µ,α = B. (37)

From (36) and (37), B is a reflexive inverse of A. If R and S are unitary then
Q−1 = Q∗ and V −1

µ,α = V ∗
µ,α, so (34) and (35) imply that (AB)∗ = AB and

(BA)∗ = BA. Therefore A and B satisfy the Penrose conditions, so B = A†,
which implies (33). Finally, replacing ` by β(` − µ) in (33) yields

A† =

k−1∑

`=0

Qβ(`−µ)F
†

β(`−µ)P
∗
`

so A† is (S, R, β,−βµ)-symmetric by Theorem 2.
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Theorem 9 If (14) holds then the matrix

B = QF†V̂µ,α =

p−1∑

`=0

Q`F
†
` P̂α`+µ (38)

is a reflexive inverse of A. (See (21).) If in addition R and S are unitary, then

A† = QF†V∗
µ,α =

p−1∑

`=0

Q`F
†
`P

∗
α`+µ. (39)

Moreover, if we partition F†
` (see (18)) as

F†
` =




G`

G`+p

...

G`+(q−1)p


 , 0 ≤ ` ≤ p − 1,

with G` ∈ Cd`×cα`+µ , 0 ≤ ` ≤ k−1 (see (12)), then (38) and (39) can be written

as

B =

k−1∑

`=0

Q`G`P̂α`+µ and A† =

k−1∑

`=0

Q`G`P
∗
α`+µ (40)

respectively.

Proof. From (20), (21), and (38),

AB = Vµ,αFF†V̂µ,α = Vµ,α(FF†)∗V̂µ,α, (41)

BA = QF†FQ−1 = Q(F†F)∗Q−1, (42)

ABA = Vµ,αFF†FQ−1 = Vµ,αFQ−1 = A, (43)

and
BAB = QF†FF†V̂µ,α = QF†V̂µ,α = B. (44)

From (43) and (44), B is a reflexive inverse of A. If R and S are unitary then

Q−1 = Q∗ and V̂µ,α = V∗
µ,α, so (41) and (42) imply that (AB)∗ = AB and

(BA)∗ = BA. Therefore A and B satisfy the Penrose conditions, so B = A†.

Theorem 2 and (43) imply the following corollary.

Corollary 2 If A is (R, S, α, µ)-symmetric and R and S are unitary then (A†)∗

is (R, S, α, µ)-symmetric.

Theorem 10 Suppose gcd(α, k) = q, p = k/q, A is (R, S, α, µ)-symmetric and

F` = Ω`Σ`Φ
∗
` (see (18)) is a singular value decomposition of F`, 0 ≤ ` ≤ p− 1.

Let

Ω =
[

PµΩ0 Pα+µΩ1 · · · P(p−1)α+µΩp−1

]
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and

Γ =
[

Q0Γ0 Q1Γ1 · · · Qp−1Γp−1

]
.

(See (15).) Then

A = Ω

(
p−1⊕

`=0

Σ`

)
Γ−1. (45)

Moreover, if R and S are unitary then Ω and Γ are unitary, so (45) is a singular

value decomposition of A, except that the singular values are not neccesarily

arranged in nonincreasing order.

5 Solution of Az = w and the least squares prob-

lem

In this section we assume that A is (R, S, α, µ)-symmetric and can therefore be
written as in (11). If z ∈ Cn and w ∈ Cm we write

z = Qu =

k−1∑

`=0

Q`u` and w = Pv =

k−1∑

`=0

P`v`, (46)

with u` ∈ Cd` and v` ∈ Cc` , 0 ≤ ` ≤ k − 1.

Theorem 11 If gcd(α, k) = 1 then

(a) Az = w if and only if (b) F`u` = vα`+µ, 0 ≤ ` ≤ k − 1. (47)

Moreover, if R is unitary then

‖Az − w‖2 =
k−1∑

`=0

‖F`u` − vα`+µ‖2, (48)

so the least squares problem for A reduces to k independent least squares prob-

lems for F0, F1, . . . , Fk−1.

Proof. From (11) and (46),

Az − w =

k−1∑

`=0

Pα`+µF`u` −
k−1∑

`=0

P`v` =

k−1∑

`=0

Pα`+µF`u` −
k−1∑

`=0

Pα`+µvα`+µ

=

k−1∑

`=0

Pα`+µ(F`u` − vα`+µ), (49)

where
∑k−1

`=0 P`v` =
∑k−1

`=0 Pα`+µvα`+µ because gcd(α, k) = 1, the substitution
s → α` + µ (mod k) is a permutation of Zk. Therefore (47)(b) and (49) imply
(47)(a). Since Vµ,α (see (7)) is invertible (again, because gcd(α, k) = 1), (47)(a)
and (49) imply (47)(b). Finally, if R is unitary then P ∗

α`+µPαm+µ = δ`mIcα`+µ
,

0 ≤ `, m ≤ k − 1, so (49) implies (48).
Theorems 2 and 11 imply the following theorem.



Matrices with k-involutory symmetries 12

Theorem 12 If A is (R, S, α, µ)-symmetric then A is invertible if and only if

gcd(α, k) = 1,
cα`+µ = d`, 0 ≤ ` ≤ k − 1, (50)

and F0, F1, . . . , Fk−1 are all invertible, in which case

A−1 = Q

(
k−1⊕

`=0

F−1
`

)
V −1

µ,α =
k−1∑

`=0

Q`F
−1
` P̂α`+µ (51)

and the solution of Az = w is

z =

k−1∑

`=0

Q`F
−1
` vα`+µ. (52)

Proof. From Theorem 2, A = Vµ,α

(⊕k−1
`=0 F`

)
Q−1. If A is invertible then Vµ,α

is invertible, which is true if and only if gcd(α, k) = 1. Hence, this is a necessary
condition for A to be invertible, so assume that it holds. From Theorem 11,
Az = w has a solution for every z if and only (47)(b) has a solution for every
{v0, v1, . . . , vk−1}. Since F` ∈ Ccα`+µ×d` , this is true if and only if (50) holds
and F0, F1, . . . , Fk−1 are all invertible, in which case (11) implies (51). Finally,
(46) and (51) imply (52).

Remark 2 If R and S are unitary, and therefore Q and Vµ,α are unitary, then
(51) implies that

(A−1)∗ = Vµ,α

(
k−1⊕

`=0

(F−1
` )∗

)
Q∗,

so (A−1)∗ is (R, S, α, µ)-symmetric, by Theorem 2.

Theorem 13 If A is (R, S, α, µ)-symmetric, gcd(α, k) = q, and p = k/q, then

Az = w has no solution unless w =
∑p−1

`=0 Pα`+µvα`+µ, in which case z is a

solution if and only z =
∑k−1

`=0 Q`u`, where

q−1∑

ν=0

F`+νpu`+νp = vα`+µ, 0 ≤ ` ≤ p − 1.

Proof. Since our assumptions imply (22),

Az =

p−1∑

`=0

Pα`+µ

q−1∑

ν=0

F`+νpu`+νp

if z =
∑k−1

`=0 Q`u`. This implies the conclusion.
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6 Equidimensional block permutation matrices

We begin with two lemmas. It is straightforward to verify the first by direct
matrix multiplication, bearing in mind that subscripts are to be reduced mod-
ulo k.

Lemma 1 If ω1 and ω2 are permutations of Zk and H = [Hrs]
k−1
r,s=0 ∈ Ck:d1×d2 ,

then

([δr,ω−1
1 (s)]

k−1
r,s=0 ⊗ Id1)H([δr,ω−1

2 (s)]
k−1
r,s=0 ⊗ Id2)

−α = [Hω1(r),ωα
2
(s)]

k−1
r,s=0. (53)

In particular, letting ω1(s) = ω2(s) = s + 1 (mod k) yields

([δr,s−1]
k−1
r,s=0 ⊗ Id1 )

(
[Hrs]

k−1
r,s=0

)
([δr,s−1]

k−1
r,s=0 ⊗ Id2 )

−α = [Hr+1,s+α]k−1
r,s=0. (54)

Lemma 2 Let σ be a permutation of Zk and σ(κ) = 0. Let ρ be the unique

cyclic permutation of Zk such that σ(ρr(κ)) = r, 0 ≤ r ≤ k − 1. Then

σ(ρα(r)) ≡ σ(r) + α (mod k). (55)

Proof. Since σ(ρr(κ)) = r, ρr(κ) = σ−1(r). Replacing r by σ(r) yields
ρσ(r)(κ) = r. Now replacing r by ρα(r) yields

ρσ(ρα(r))(κ) = ρα(r) = ρα(ρσ(r)(κ)) = ρσ(r)+α(κ),

which implies (55).
In the rest of this paper σi and ρi, i = 1, 2, 3 are related as σ and ρ are

related in Lemma 2.
For future reference,

f` =
1√
k




1
ζ`

ζ2`

...

ζ(k−1)`




, 0 ≤ ` ≤ k − 1, (56)

Φ` = f` ⊗ Id1 , Ψ` = f` ⊗ Id2 , 0 ≤ ` ≤ k − 1, (57)

Φ =
[

Φ0 Φ1 · · · Φk−1

]
, and Ψ =

[
Ψ0 Ψ1 · · · Ψk−1

]
. (58)

Let

E = [δr,s−1]
k−1
r,s=0, R0 = E ⊗ Id1 , S0 = E ⊗ Id2 , T0 = E ⊗ Id3 , (59)

Li = [δr,σ−1
i

(s)]
k−1
r,s=0 ⊗ Idi

, and Ri = [δr,ρ−1
i

(s)]
k−1
r,s=0 ⊗ Idi

i = 1, 2, 3. (60)

From (54) with α = 0 and (56)–(58),

R0Φ = ΦD1 and S0Ψ = ΨD2 with Di =
k−1⊕

`=0

ζ`Idi
, i = 1, 2, (61)

so
R0 = ΦD1Φ

∗ and S0 = ΨD2Ψ
∗.
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Theorem 14 A matrix A ∈ C
k:d1×d2 is (R1, R2, α, µ)-symmetric if and only if

A = [ζµσ1(r)Aσ2(s)−ασ1(r)]
k−1
r,s=0 (62)

for some A0, A1, . . . , Ak−1 ∈ Cd1×d2 .

Proof. For now we write A = [Brs]
k−1
r,s=0. From (60) and (53) with ω1 = ρ1 and

ω2 = ρ2,
R1AR−α

2 = [Bρ1(r),ρα
2
(s)]

k−1
r,s=0 = ζµA

if and only if
Bρ1(r),ρα

2 (s) = ζµBrs, 0 ≤ r, s ≤ k − 1. (63)

This holds if

Brs = ζµσ1(r)Aσ2(s)−ασ1(r), 0 ≤ r, s ≤ k − 1, (64)

since (55) implies that σ1(ρ1(r)) ≡ σ1(r) + 1 (mod k) and

σ2(ρ
α
2 (s))−ασ1(ρ1(r)) ≡ (σ2(s)+α)−α(σ1(r)+1) ≡ σ2(s)−ασ1(r) (mod k).

For the converse we will show that (63) implies (64) with

Aσ2(s) = Bκ1 ,s or, equivalently, A` = Bκ1,σ−1
2 (s), 0 ≤ ` ≤ k − 1. (65)

Replacing r by ρr
1(κ1) in (64) and noting from (55) that σ1(ρ

r
1(κ1)) = r shows

that (64) is equivalent to

Bρr
1
(κ1),s = ζµrAσ2(s)−αr, 0 ≤ r, s ≤ k − 1. (66)

We will prove this by finite induction on r. Eqn. (65) implies (66) for r = 0.
Suppose (66) holds for a given r. Replacing r by ρr

1(κ1) and s by ρ−αs
2 in (63)

yields
Bρr+1

1 (κ1),s = ζµBρr
1(κ1),ρ−α

2 (s).

Therefore, from (55) and our induction assumption (66),

Bρr+1
1 (κ1),s = ζµ(r+1)Aσ2(ρ−α

2 (s))−αr = ζµ(r+1)Aσ2(s)−α(r+1),

which completes the induction.

Corollary 3 A matrix A ∈ Ck:d1×d2 is (R1, R2, α, µ)-symmetric if and only if

A = L1

(
[ζµrAs−αr]

k−1
r,s=0

)
L−1

2 (67)

(see (60)) with A0, A1, . . . , Ak−1 ∈ Cd1×d2 .

Proof. From (60) and (67), applying (53) with ω1 = σ1, ω2 = σ2, α = 1, and
H = [ζµrAs−αr]

k−1
r,s=0 yields (62).
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Corollary 4 A matrix A ∈ C
k:d1×d2 is (R0, S0, α, µ)-symmetric (see (59)) if

and only if

A = [ζµrAs−αr]
k−1
r,s=0 (68)

for some A0, A1, . . . , Ak−1 ∈ Cd1×d2 .

Proof. Setting σ1(r) = σ2(r) = r + 1 (mod k) in (62) yields

A = [ζµ(r+1)A(1−α)+s−αr]
k−1
r,s=0

for some A0, A1, . . . , Ak−1 ∈ Cd1×d2 . Redefining A (i.e., replacing ζµA(1−α)+m

with Am yields (68).

7 Moore-Penrose inversion of [As−αr]
k−1
r,s=0

The following theorem is an extension of [15, Theorem 5], where we assumed
that gcd(α, k) = 1.

Theorem 15 Suppose A = [As−αr]
k−1
r,s=0 ∈ Ck:d1×d2 and

F` =

k−1∑

m=0

ζ`mAm, 0 ≤ ` ≤ k − 1. (69)

Suppose also that gcd(α, k) = q and p = k/q. Let

F` =
[

F` F`+p · · · F`+(q−1)p

]
(70)

and partition F†
` as

F†
` =




G`

G`+p

...

G`+(q−1)p


 , 0 ≤ ` ≤ p − 1,

where G0, G1, . . . , Gk−1 ∈ Cd2×d1 . Then

A† = [Br−αs]
k−1
r,s=0 where Bm =

1

k

k−1∑

`=0

ζ`mG`, 0 ≤ m ≤ k − 1. (71)

Proof. First, note that (69) is equivalent to

Am =
1

k

k−1∑

`=0

ζ−`mF`, 0 ≤ m ≤ k − 1, so A =

k−1∑

`=0

Pα`F`Q
∗
`
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where

Pα` =
1√
k




1 ⊗ Id1

ζα` ⊗ Id1

...
ζ(k−1)α` ⊗ Id1


 and Q` =

1√
k




1 ⊗ Id2

ζ` ⊗ Id2

...
ζ(k−1)` ⊗ Id2


 ,

0 ≤ ` ≤ k − 1. From Theorem 9 (specifically, (40) with µ = 0),

A† =
k−1∑

`=0

Q`G`P
∗
α` =

1

k

[
k−1∑

`=0

ζ`(s−αr)G`

]k−1

r,s=0

,

which implies (71).

Remark 3 Theorem 15 is extended to multilevel circulants in [17], which was
submitted for publication after this paper was submitted.

Remark 4 The set F = {F0, F1, . . . , Fk−1} is often called the discrete Fourier
transform (dft) of the set A = {A0, A1, . . . , Ak−1}.

Remark 5 If gcd(α, k) = 1 (so q = 1 and p = k), then (70) reduces to F` =

G` = F †
` . Hence, the second equality in (71) reduces to

Bm =
1

k

k−1∑

`=0

ζ`mF †
` , 0 ≤ m ≤ k − 1,

as we showed in [16, Theorem 5].

Remark 6 Suppose A = [as−αr]
k−1
r,s=0 ∈ Ck×k. Then (69) and (70) reduce to

f` =

k−1∑

m=0

amζ`m and f` =
[

f` f`+p . . . f`+(q−1)p

]
, 0 ≤ ` ≤ p − 1.

Since

f †` =
1

‖f`‖2




f `

f `+p
...

f`+(q−1)p


 if f` 6= 0 or f †` = 0 if f` = 0,

it follows that

g`+νp =

{
f `+νp/|f`|2 if f` 6= 0,

0 if f` = 0,
0 ≤ ` ≤ p − 1, 0 ≤ ν ≤ q − 1.

Hence A† = [br−αs]
k−1
r,s=0 where bm = 1

k

∑k−1
`=0 g`ζ

`m. This is a direct general-

ization of the result of Davis [8], who showed that that if A = [as−r]
k−1
r,s=0 then

A† = [br−s]
k−1
r,s=0, where b` = 1

k

∑k−1
m=0 f†

mζ`m.
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Corollary 5 If d1 = d2 then A = [As−αr]
k−1
r,s=0 is invertible if and only if

gcd(α, k) = 1 and F0, F1, . . . , Fk−1 are all invertible, in which case

A−1 = [Br−αs]
k−1
r,s=0 where Bm =

1

k

k−1∑

`=0

ζ`mF−1
` , 0 ≤ m ≤ k − 1.

8 Arbitrary equidimensional k-involutions

For the rest of this paper R ∈ Cm×m and S ∈ Cn×n are arbitrary equidimen-
sional k-involutions with widths d1 and d2 respectively. Since all equidimen-
sional k-involutions of a given order have the same spectrum, we can write

R = XR0X
−1 and S = Y S0Y

−1 (72)

(see (59)) for suitable X ∈ Cm×m and Y ∈ Cn×n.

Theorem 16 A matrix A ∈ Ck:d1×d2 is (R, S, α, µ)-symmetric if and only if

A = X
(
[ζµrAs−αr]

k−1
r,s=0

)
Y −1 (73)

for some A0, A1, . . . , Ak−1 ∈ Cd1×d2 .

Proof. From (72), A is (R, S, α, µ)-symmetric if and only if

(XR0X
−1)A(Y S−α

0 Y −1) = ζµA,

which is equivalent to

R0(X
−1AY )S−α

0 = ζµ(X−1AY ).

This is equivalent to (73), by Corollary 4.

Remark 7 We can rewrite (73) as A = XDµ
1 CY −1 with C = [As−αr]

k−1
r,s=0

and D1 as in (61). It is straightforward to verify that B = Y C†D−µ
1 X−1 is a

reflexive inverse of A, and that B = A† if R and S are unitary.

Remark 8 Eqn. (73) must reduce to (67) when R = R1 and S = S1 . To verify
this explicitly, we note that from (53) with ω1 = σ1, ω2 = σ2, α = 1, and
Hrs = δrs,

(
[δr,σ−1

i
(s)]

k−1
r,s=0

) (
[δr,s−1]

k−1
r,s=0

) (
[δr,σ−1

i
(s)]

k−1
r,s=0

)−1

= [δσi(r),σi(s)−1]
k−1
r,s=0

= [δr,ρ−1
i

(s)]
k−1
r,s=0,

where the last equality is valid because (55) with α = −1 implies that σi(r) =
σi(s)−1 if and only if r = ρ−1

i (s). Therefore, from (59) and (60), R1 = L1R0L
−1
1

and R2 = L2S0L
−1
2 . Hence, if R = R1 and S = R2 then X = L1 and Y = L2

in (73), which is consistent with (67).
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Remark 9 The conclusion of Theorem 5 can made more explicit if R, S are as
in (72) and T = ZT0Z

−1. (See (59).) If A ∈ Ck:d1×d2 is (R, S, α, µ)-symmetric
and B ∈ Ck:d2×d3 is (S, T, β, ν)-symmetric, then Theorem 16 implies that

A = X
(
[ζµrAs−αr]

k−1
r,s=0

)
Y −1 and B = Y

(
[ζνrBs−βr ]

k−1
r,s=0

)
Z−1

for some A0, A1, . . . , Ak−1 ∈ Cd1×d2 and B0 , B1, . . . , Bk−1 ∈ Cd2×d3 . Therefore

AB = X
(
[ζµrAs−αr]

k−1
r,s=0

) (
[ζνrBs−βr ]

k−1
r,s=0

)
Z−1. (74)

On the other hand, Theorem 5 implies that AB is (R, T, αβ, αµ+ν)-symmetric,
so Theorem 16 implies that

AB = X
(
[ζ(αµ+ν)rCs−αβr]

k−1
r,s=0

)
Z−1

for suitable C0, C1, . . . , Ck−1 ∈ Cd1×d3 . Computing the first row (r = 0) of the
product between X and Z−1 in (74) yields

Cm =

k−1∑

`=0

ζν`A`Bm−β`, 0 ≤ m ≤ k − 1.

This extends [16, Theorem 2], which in turn extended [1, Theorem 3.1]. Note
that the assumption that gcd(β, k) = 1, which we imposed to obtain (25), is no
longer required.

Remark 10 Letting X = Ind1 , Y = Ind2 , Z = Ind3 , and µ = ν = 0, we see
from Remark 9 that if A = [As−αr]

k−1
r,s=0 and B = [Bs−βr]

k−1
r,s=0 with αβ ≡ 1

(mod k), then

AB = [Cs−r]
k−1
r,s=0 with Cm =

k−1∑

`=0

A`Bm−β` 0 ≤ m ≤ k − 1.

This generalizes a well known result; namely, the product of 1-circulants is a
1-circulant.

Remark 11 The conclusions of Theorem 6 can also be made more explicit if
R and S are as in (72) and unitary. If A ∈ Ck:d1×d2 is (R, S, α, µ)-symmetric
and B ∈ Ck:d1×d2 is (R, S, α, ν)-symmetric, then Theorem 16 implies that

A = X
(
[ζµrAs−αr]

k−1
r,s=0

)
Y ∗ and B = X

(
[ζνrBs−αr]

k−1
r,s=0

)
Y ∗. (75)

Therefore
AB∗ = X

(
[ζµrAs−αr]

k−1
r,s=0

) (
[ζ−νsB∗

r−αs]
k−1
r,s=0

)
X∗ (76)

On the other hand, Theorem 6 and Remark 1 imply that AB∗ is (R, R, 1, µ−ν)-
symmetric. Hence, Theorem 16 implies that

AB∗ = X
(
[ζ(µ−ν)rCs−r]

k−1
r,s=0

)
X∗
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with C0, C1, . . . , Ck−1 ∈ C
d1×d1 . Computing the first row of the product

between X and X∗ in (76) yields

Cm = ζ−νm
k−1∑

`=0

A`B
∗
`−αm, 0 ≤ m ≤ k − 1.

As noted in Remark 1, we did not need to assume that gcd(α, k) = 1 in this
argument.

From (75),

B∗A = Y
(
[ζ−νsB∗

r−αs]
k−1
r,s=0

) (
[ζµrAs−αr]

k−1
r,s=0

)
Y ∗. (77)

Now suppose gcd(α, k) = 1 and αβ ≡ 1 (mod k). Then Theorem 6 implies that
B∗A is (S, 1, β(µ − ν))-symmetric. Hence, Theorem 16 implies that

B∗A = Y
(
[ζβ(µ−ν)rDs−r ]

k−1
r,s=0

)
Y ∗

with D0, D1, . . . , Dk−1 ∈ Cd2×d2 . Computing the first row of the product
between Y and Y ∗ in (77) yields

Dm =

k−1∑

`=0

ζ`(µ−ν)B∗
−α`Am−α`, 0 ≤ m ≤ k − 1.

Replacing ` by −β` simplifies this to

Dm =

k−1∑

`=0

ζ−β`(µ−ν)B∗
` Am+`, 0 ≤ m ≤ k − 1.

This extends [16, Corollary 2], which in turn extended [12, Corollary 1].
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