Characterization and properties of matrices with k-involutory symmetries II

William F. Trench*
Trinity University, San Antonio, Texas 78212-7200, USA
Mailing address: 659 Hopkinton Road, Hopkinton, NH 03229 USA

Linear Algebra and Its Applications, 432 (2010), 2782-2797

Abstract

We say that a matrix $R \in \mathbb{C}^{n \times n}$ is k-involutory if its minimal polynomial is $x^{k}-1$ for some $k \geq 2$, so $R^{k-1}=R^{-1}$ and the eigenvalues of R are $1, \zeta, \zeta^{2}, \ldots, \zeta^{k-1}$, where $\zeta=e^{2 \pi i / k}$. Let $\alpha, \mu \in\{0,1, \ldots, k-1\}$. If $R \in \mathbb{C}^{m \times m}, A \in \mathbb{C}^{m \times n}, S \in \mathbb{C}^{n \times n}$ and R and S are k-involutory, we say that A is (R, S, α, μ)-symmetric if $R A S^{-\alpha}=\zeta^{\mu} A$. We show that an (R, S, α, μ)-symmetric matrix A can be usefully represented in terms of matrices $F_{\ell} \in \mathbb{C}^{c_{\alpha \ell+\mu} \times d_{\ell}}, 0 \leq \ell \leq k-1$, where c_{ℓ} and d_{ℓ} are respectively the dimensions of the ζ^{ℓ} - eigenspaces of R and S. This continues a theme initiated in an earlier paper with the same title, in which we assumed that $\alpha=1$. We say that a k-involution is equidimensional with width d if all of its eigenspaces have dimension d. We show that if R and S are equidimensional k-involutions with widths d_{1} and d_{2} respectively, then (R, S, α, μ)-symmetric matrices are closely related to generalized α circulants $\left[\zeta^{\mu r} A_{s-\alpha r}\right]_{r, s=0}^{k-1}$, where $A_{0}, A_{1}, \ldots, A_{k-1} \in \mathbb{C}^{d_{1} \times d_{2}}$. For this case our results are new even if $\alpha=1$. We also give an explicit formula for the Moore-Penrose inverse of a unilevel block circulant $\left[A_{s-\alpha r}\right]_{r, s=0}^{k-1}$ for any $\alpha \in\{0,1, \ldots, k-1\}$, generalizing a result previously obtained for the case where $\operatorname{gcd}(\alpha, k)=1$.

MSC: 15A09; 15A15; 15A18; 15A99

Keywords: Circulant; Block circulant; Cocirculant; Discrete Fourier transform; Moore-Penrose Inverse; Eigenvalue problem

[^0]
1 Introduction

Throughout this paper $\alpha>0, k \geq 2$, and μ are integers, $\zeta=e^{2 \pi i / k}$,

$$
\mathbb{Z}_{k}=\{0,1, \ldots, k-1\}
$$

and subscripts are to be reduced modulo k. We say that $R \in \mathbb{C}^{m \times m}$ is k involutory if its minimal polynomial is $x^{k}-1$ for some $k \geq 2$, so $R^{k-1}=R^{-1}$ and the eigenvalues of R are $1, \zeta, \ldots, \zeta^{k-1}$.

If $R \in \mathbb{C}^{m \times m}$ and $S \in \mathbb{C}^{n \times n}$ are k-involutory we say that $A \in \mathbb{C}^{m \times n}$ is (R, S, α, μ)-symmetric if $R A S^{-\alpha}=\zeta^{\mu} A$. This work is a continuation of [15], where we studied matrices such that $R A S^{-1}=\zeta^{\mu} A$, which we called (R, S, μ) symmetric. Sections $3-5$ are extensions of results obtained in [15] for (R, S, μ) symmetric matrices. However, Sections 6 and 8 are new even with $\alpha=1$, and are also extensions of results obtained in [16]. In Section 7 we give an explicit formula for the Moore-Penrose inverse of a block circulant $\left[A_{s-\alpha r}\right]_{r, s=0}^{k-1}$ with A_{0}, $A_{1}, \ldots, A_{k-1} \in \mathbb{C}^{d_{1} \times d_{2}}$. The formula is valid for any $\alpha \in \mathbb{Z}_{k}$ and extends a result in [16, Theorem 5] for the case where $\operatorname{gcd}(\alpha, k)=1$.

This paper is motivated by and continues a line of research undertaken by many investigators; see, e.g., $[2]-[4],[6],[7],[9][10],[11,13,14,18,19]$, by no means a complete list.

2 Preliminaries

Let $R \in \mathbb{C}^{m \times m}$ and $S \in \mathbb{C}^{n \times n}$ be k-involutions. Let

$$
c_{\ell}=\operatorname{dim}\left\{z \mid R z=\zeta^{\ell} z\right\} \quad \text { and } \quad d_{\ell}=\operatorname{dim}\left\{z \mid S z=\zeta^{\ell} z\right\}, \quad 0 \leq \ell \leq k-1
$$

Then there are matrices $P_{\ell} \in \mathbb{C}^{m \times c_{\ell}}$ and $Q_{\ell} \in \mathbb{C}^{n \times d_{\ell}}, 0 \leq \ell \leq k-1$, such that

$$
\begin{gather*}
R P_{\ell}=\zeta^{\ell} P_{\ell}, \quad S Q_{\ell}=\zeta^{\ell} Q_{\ell}, \quad 0 \leq \ell \leq k-1 \tag{1}\\
P_{\ell}^{*} P_{\ell}=I_{c_{\ell}}, \quad \text { and } \quad Q_{\ell}^{*} Q_{\ell}=I_{d_{\ell}}, \quad 0 \leq \ell \leq k-1 \tag{2}
\end{gather*}
$$

We note that (2) can be assumed without loss of generality, since the GramSchmidt procedure allows us to choose an orthonormal basis for any eigenspace.

Let

$$
\begin{gather*}
P=\left[\begin{array}{lll}
P_{0} & P_{1} \cdots & P_{k-1}
\end{array}\right], \quad Q=\left[\begin{array}{ccc}
Q_{0} & Q_{1} \cdots & Q_{k-1}
\end{array}\right], \tag{3}\\
P^{-1}=\left[\begin{array}{c}
\widehat{P}_{0} \\
\widehat{P}_{1} \\
\vdots \\
\widehat{P}_{k-1}
\end{array}\right], \quad \text { and } \quad Q^{-1}=\left[\begin{array}{c}
\widehat{Q}_{0} \\
\widehat{Q}_{1} \\
\vdots \\
\widehat{Q}_{k-1}
\end{array}\right] \tag{4}
\end{gather*}
$$

with $\widehat{P}_{\ell} \in \mathbb{C}^{c_{\ell} \times m}$ and $\widehat{Q}_{\ell} \in \mathbb{C}^{d_{\ell} \times n}, 0 \leq \ell \leq k-1$; thus,

$$
\begin{equation*}
\widehat{P}_{\ell} P_{m}=\delta_{\ell m} I_{c_{\ell}} \quad \text { and } \quad \widehat{Q}_{\ell} Q_{m}=\delta_{\ell m} I_{d_{\ell}}, \quad 0 \leq \ell, m \leq k-1 \tag{5}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
R=P D_{R} P^{-1} \text { with } D_{R}=\bigoplus_{\ell=0}^{k-1} \zeta^{\ell} I_{c_{\ell}} \text { and } S=Q D_{S} Q^{-1} \text { with } D_{S}=\bigoplus_{\ell=0}^{k-1} \zeta^{\ell} I_{d_{\ell}} \tag{6}
\end{equation*}
$$

Since the eigenvalues of R are $1, \zeta, \ldots, \zeta^{k-1}$, the first equality in (2) implies that P is unitary (i.e., $P^{-1}=P^{*}$ and therefore $\widehat{P_{\ell}}=P_{\ell}^{*}, 1 \leq \ell \leq k$) if and only if R is unitary. A similar comment applies to S and Q.

We also define

$$
V_{\mu, \alpha}=\left[\begin{array}{llll}
P_{\mu} & P_{\alpha+\mu} & \cdots & P_{\alpha(k-1)+\mu}
\end{array}\right] \quad \text { and } \quad \widehat{V}_{\mu, \alpha}=\left[\begin{array}{c}
\widehat{P}_{\mu} \tag{7}\\
\widehat{P}_{\alpha+\mu} \\
\vdots \\
\widehat{P}_{\alpha(k-1)+\mu}
\end{array}\right]
$$

If $\operatorname{gcd}(\alpha, k)=q>1$ and $p=k / q$ then the first p block columns of $V_{\mu, \alpha}$ are repeated q times. In any case, $\widehat{V}_{\mu, \alpha}=V_{\mu, \alpha}^{*}$ if R is unitary.

An explicit method for obtaining $P_{0}, P_{1}, \ldots, P_{k-1}, \widehat{P}_{0}, \widehat{P}_{1}, \ldots, \widehat{P}_{k-1}, Q_{0}$, Q_{1}, \ldots, Q_{k-1}, and $\widehat{Q}_{0}, \widehat{Q}_{1}, \ldots, \widehat{Q}_{k-1}$, was given in [15]; however, matrices denoted here by $\widehat{P}_{\ell}, \widehat{Q}_{\ell}$, etc., are denoted by $\widehat{P}_{\ell}^{*}, \widehat{Q}_{\ell}^{*}$, etc., in [15].

We say that a k-involution R is equidimensional with width d if all of its eigenspaces are d-dimensional. For example, if $R_{0} \in \mathbb{C}^{k \times k}$ is a k-involution (necessarily of width 1), then $R=R_{0} \otimes I_{d} \in \mathbb{C}^{k d \times k d}$ is an equidimensional k-involution with width d. We show that if $m=k d_{1}, n=k d_{2}$, and $R \in \mathbb{C}^{m \times m}$ and $S \in \mathbb{C}^{n \times n}$ are equidimensional with widths d_{1} and d_{2}, then (R, S, α, μ) symmetric block matrices with $d_{1} \times d_{2}$ blocks are closely related to generalized block circulants $\left[\zeta^{\mu r} A_{s-\alpha r}\right]_{r, s=0}^{k-1}$, where $A_{0}, A_{1}, \ldots, A_{k-1} \in \mathbb{C}^{d_{1} \times d_{2}}$. A precursor of this result is the observation of Ablow and Brenner [1] that if A, $R \in \mathbb{C}^{k \times k}$ and R is a k-involution, then $R A R^{-\alpha}=A$ if and only if A is similar to an α-circulant $\left[a_{s-\alpha r}\right]_{r, s=0}^{k-1} \in \mathbb{C}^{k \times k}$.

We let $\mathbb{C}^{k: d_{1} \times d_{2}}$ denote the set of all block $k \times k$ matrices $H=\left[H_{r s}\right]_{r, s=0}^{k-1}$ with $H_{r s} \in \mathbb{C}^{d_{1} \times d_{2}}, 0 \leq r, s \leq k-1$.

3 Characterization of (R, S, α, μ)-symmetric matrices

Theorem $1 A \in \mathbb{C}^{m \times n}$ is (R, S, α, μ)-symmetric if and only if

$$
\begin{equation*}
A=P C Q^{-1} \quad \text { with } \quad C=\left[C_{r s}\right]_{r, s=0}^{k-1}, \quad \text { where } \quad C_{r s} \in \mathbb{C}^{c_{r} \times d_{s}} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{r s}=0 \quad \text { if } \quad r \not \equiv \alpha s+\mu \quad(\bmod k) \tag{9}
\end{equation*}
$$

in which case

$$
\begin{equation*}
C_{\alpha s+\mu, s}=P_{\alpha s+\mu}^{*} A Q_{s} \in \mathbb{C}^{c_{\alpha s+\mu} \times d_{s}}, \quad 0 \leq s \leq k-1 \tag{10}
\end{equation*}
$$

Proof. We can write an arbitrary $A \in \mathbb{C}^{m \times n}$ as in (8) with $C=P^{-1} A Q$, and we can partition C as in (8). Then (1), (3), and (6) imply that

$$
R A S^{-\alpha}=(R P) C\left(Q^{-1} S^{-\alpha}\right)=\left(P D_{R}\right) C\left(D_{S}^{-\alpha} Q^{-1}\right)=P\left(D_{R} C D_{S}^{-\alpha}\right) Q^{-1}
$$

From this and (8), $R A S^{-\alpha}=\zeta^{\mu} A$ if and only if $D_{R} C D_{S}^{-\alpha}=\zeta^{\mu} C$, i.e., if and only if

$$
\left[\zeta^{\mu} C_{r s}\right]_{r, s=0}^{k-1}=\left[\zeta^{r-\alpha s} C_{r s}\right]_{r, s=0}^{k-1}
$$

This is equivalent to (9). From (8), $A Q=P C$; i.e.,

$$
A\left[\begin{array}{llll}
Q_{0} & Q_{1} & \cdots & Q_{k-1}
\end{array}\right]=\left[\begin{array}{llll}
P_{0} & P_{1} & \cdots & P_{k-1}
\end{array}\right] C .
$$

Now (9) implies that $A Q_{\ell}=P_{\alpha \ell+\mu} C_{\alpha \ell+\mu, \ell}, 0 \leq \ell \leq k-1$. This implies (10), since $P_{\alpha \ell+\mu}^{*} P_{\alpha \ell+\mu}=I_{c_{\alpha \ell+\mu}}$ (see (2)).

If $\operatorname{gcd}(\alpha, k)=1$ then the substitution $\ell \rightarrow \alpha \ell+\mu(\bmod k)$ is a permutation of \mathbb{Z}_{k}. This implies the following corollary of Theorem 1.

Corollary 1 If $\operatorname{gcd}(\alpha, k)=1$ then any $A \in \mathbb{C}^{m \times n}$ can be written uniquely as $A=\sum_{\mu=0}^{k-1} A^{(\mu)}$, where $A^{(\mu)}$ is (R, S, α, μ)-symmetric, $0 \leq \mu \leq k-1$. Specifically, if A is as in (8) then

$$
A^{(\mu)}=P\left(\left[C_{r s}^{(\mu)}\right]_{r, s=0}^{k-1}\right) Q^{-1}
$$

where

$$
C_{r s}^{(\mu)}= \begin{cases}0 & \text { if } r \not \equiv \alpha s+\mu \quad(\bmod k) \\ C_{\alpha r+\mu, s} & \text { if } r \equiv \alpha s+\mu \quad(\bmod k)\end{cases}
$$

Eqns. (8)-(10) imply the next theorem, which is a convenient reformulation of Theorem 1.

Theorem $2 A$ matrix $A \in C^{m \times n}$ is (R, S, α, μ)-symmetric if and only if

$$
\begin{equation*}
A=V_{\mu, \alpha}\left(\bigoplus_{\ell=0}^{k-1} F_{\ell}\right) Q^{-1}=\sum_{\ell=0}^{k-1} P_{\alpha \ell+\mu} F_{\ell} \widehat{Q}_{\ell} \tag{11}
\end{equation*}
$$

in which case

$$
\begin{equation*}
F_{\ell}=P_{\alpha \ell+\mu}^{*} A Q_{\ell} \in \mathbb{C}^{c_{\alpha \ell+\mu} \times d_{\ell}}, \quad 0 \leq \ell \leq k-1 \tag{12}
\end{equation*}
$$

where $\alpha \ell+\mu$ is to be reduced modulo k. Moreover, if S is unitary (so Q is unitary), then (11) becomes

$$
\begin{equation*}
A=V_{\mu, \alpha}\left(\bigoplus_{\ell=0}^{k-1} F_{\ell}\right) Q^{*}=\sum_{\ell=0}^{k-1} P_{\alpha \ell+\mu} F_{\ell} Q_{\ell}^{*} \tag{13}
\end{equation*}
$$

It may be reassuring to verify directly that A in (11) is in fact (R, S, α, μ) symmetric. From (1) and (7), $R V_{\mu, \alpha}=\zeta^{\mu} V_{\mu, \alpha} D_{R}^{\alpha}$. From (6), $Q^{-1} S^{-1}=$ $D_{S}^{-1} Q^{-1}$, so $Q^{-1} S^{-\alpha}=D_{S}^{-\alpha} Q^{-1}$. Therefore the first equality in (11) implies that $R A S^{-\alpha}=\zeta^{\mu} A$. Eqns. (4) and (7) imply the second equality.

Theorem 3 Suppose

$$
\begin{equation*}
\operatorname{gcd}(\alpha, k)=q>1 \quad \text { and } \quad p=k / q . \tag{14}
\end{equation*}
$$

Let

$$
\mathbf{Q}_{\ell}=\left[\begin{array}{llll}
Q_{\ell} & Q_{\ell+p} & \cdots & Q_{\ell+(q-1) p} \tag{15}
\end{array}\right] \in \mathbb{C}^{n \times\left(d_{\ell}+d_{\ell+p}+\cdots+d_{\ell+(q-1) p)}\right.}
$$

$0 \leq \ell \leq p-1$,

$$
\widehat{\mathbf{Q}}_{\ell}=\left[\begin{array}{c}
\widehat{Q}_{\ell} \\
\widehat{Q}_{\ell+1} \\
\vdots \\
\widehat{Q}_{\ell+(q-1) p}
\end{array}\right] \in \mathbb{C}^{\left(d_{\ell}+d_{\ell+p}+\cdots+d_{\ell+(q-1) p)} \times n\right.}
$$

$0 \leq \ell \leq p-1$. If we define

$$
\mathcal{Q}=\left[\begin{array}{llll}
\mathbf{Q}_{0} & \mathbf{Q}_{1} & \ldots & \mathbf{Q}_{p-1}
\end{array}\right] \quad \text { then } \quad \mathcal{Q}^{-1}=\left[\begin{array}{c}
\widehat{\mathbf{Q}}_{0} \tag{16}\\
\widehat{\mathbf{Q}}_{1} \\
\vdots \\
\widehat{\mathbf{Q}}_{p-1}
\end{array}\right]
$$

Also, let

$$
\begin{gather*}
\mathcal{V}_{\mu, \alpha}=\left[\begin{array}{llll}
P_{\mu} & P_{\alpha+\mu} & \cdots & P_{(p-1) \alpha+\mu}
\end{array}\right], \quad \widehat{\mathcal{V}}_{\mu, \alpha}=\left[\begin{array}{c}
\widehat{P}_{\mu} \\
\widehat{P}_{\alpha+\mu} \\
\vdots \\
\widehat{P}_{(p-1) \alpha+\mu}
\end{array}\right] \tag{17}\\
\mathbf{F}_{\ell}=\left[\begin{array}{llll}
F_{\ell} & F_{\ell+p} & \cdots & F_{\ell+(q-1) p}
\end{array}\right], \quad 0 \leq \ell \leq p-1 \tag{18}
\end{gather*}
$$

and

$$
\begin{equation*}
\mathcal{F}=\bigoplus_{\ell=0}^{p-1} \mathbf{F}_{\ell} \tag{19}
\end{equation*}
$$

Then \mathcal{Q} is invertible since its columns are simply a rearrangement of the columns of Q,

$$
\begin{equation*}
\widehat{\mathcal{V}}_{\mu, \alpha} \mathcal{V}_{\mu, \alpha}=I_{c_{\mu}+c_{\alpha+\mu}+\cdots+c_{(p-1) \alpha+\mu}} \tag{20}
\end{equation*}
$$

and (11) can be rewritten as

$$
\begin{equation*}
A=\sum_{\ell=0}^{p-1} P_{\alpha \ell+\mu} \mathbf{F}_{\ell} \widehat{\mathbf{Q}}_{\ell}=\mathcal{V}_{\mu, \alpha} \mathcal{F} \mathcal{Q}^{-1} \tag{21}
\end{equation*}
$$

Proof. Note that although α does not appear explicitly on the right sides of (15), (16), and (18), the matrices shown there are nevertheless uniquely determined by α. (See (14).) Moreover, (12) and (14) imply that $F_{\ell}, F_{\ell+p}, \ldots$, $F_{\ell+(q-1) p}$ have the same row dimension, since

$$
\alpha(\ell+\nu p)+\mu \equiv \alpha \ell+\mu \quad(\bmod k)
$$

for any integer ν. Therefore $\mathbf{F}_{0}, \ldots, \mathbf{F}_{p-1}$ are well defined.
Since $0, \alpha, \ldots,(p-1) \alpha$ are distinct, (5) implies (20). Since every $m \in \mathbb{Z}_{k}$ can be written uniquely as $m=\ell+\nu p$ with $0 \leq \ell \leq p-1$ and $0 \leq \nu \leq q-1$, the second equality in (11) can be written as

$$
\begin{equation*}
A=\sum_{\ell=0}^{p-1} \sum_{\nu=0}^{q-1} P_{\alpha(\ell+\nu p)+\mu} F_{\ell+\nu p} \widehat{Q}_{\ell+\nu p}=\sum_{\ell=0}^{p-1} P_{\alpha \ell+\mu} \sum_{\nu=0}^{q-1} F_{\ell+\nu p} \widehat{Q}_{\ell+\nu p} \tag{22}
\end{equation*}
$$

where the second equality is valid because $p \alpha \equiv 0(\bmod k)$. Therefore the first equality in (21) is valid because

$$
\mathbf{F}_{\ell} \widehat{\mathbf{Q}}_{\ell}=\sum_{\nu=0}^{q-1} F_{\ell+\nu p} \widehat{Q}_{\ell+\nu p}, \quad 0 \leq \ell \leq p-1
$$

Now (16), (17), and (19) imply the second equality in (21).
Theorem 4 Suppose R and S are unitary, $\operatorname{gcd}(\alpha, k)=1, \alpha \beta \equiv 1(\bmod k)$, and A is (R, S, α, μ)-symmetric. Then A^{*} is $(S, R, \beta,-\beta \mu)$-symmetric.

Proof. Since S is unitary, (13) holds. Therefore

$$
\begin{equation*}
A^{*}=\sum_{\ell=0}^{k-1} Q_{\ell} F_{\ell}^{*} P_{\alpha \ell+\mu}^{*} \tag{23}
\end{equation*}
$$

since R is unitary and therefore P is unitary. Since $(\beta, k)=1$, every integer in \mathbb{Z}_{k} can written uniquely in the form $\beta(\ell-\mu)$ with $\ell \in \mathbb{Z}_{k}$. Therefore we can replace ℓ by $\beta(\ell-\mu)$ in (23) to obtain

$$
A^{*}=\sum_{\ell=0}^{k-1} Q_{\beta(\ell-\mu)} F_{\beta(\ell-\mu)}^{*} P_{\ell}^{*}
$$

since $\alpha \beta \equiv 1(\bmod k)$. Now Theorem 2 implies the conclusion. $\quad \square$
In the following theorem $A \in \mathbb{C}^{m \times n}, B \in \mathbb{C}^{n \times p}, R \in \mathbb{C}^{m \times m}$ and $S \in \mathbb{C}^{n \times n}$ are the k-involutions in (6) and $T \in \mathbb{C}^{p \times p}$ is the k-involution with spectral decomposition

$$
T=\left[\begin{array}{lll}
X_{0} & X_{1} \cdots & X_{k-1}
\end{array}\right] D_{T}\left[\begin{array}{c}
\widehat{X}_{0} \\
\widehat{X}_{1} \\
\vdots \\
\widehat{X}_{k-1}
\end{array}\right], \quad \text { where } \quad D_{T}=\bigoplus_{\ell=0}^{k-1} \zeta^{\ell} I_{e_{\ell}}
$$

Theorem 5 Suppose $A \in \mathbb{C}^{m \times n}$ is (R, S, α, μ)-symmetric and $B \in \mathbb{C}^{n \times p}$ is (S, T, $\beta, \nu)$-symmetric, so

$$
\begin{equation*}
A=\sum_{\ell=0}^{k-1} P_{\alpha \ell+\mu} F_{\ell} \widehat{Q}_{\ell} \quad \text { and } \quad B=\sum_{\ell=0}^{k-1} Q_{\beta \ell+\nu} G_{\ell} \widehat{X}_{\ell} \tag{24}
\end{equation*}
$$

from Theorem 2. Then $A B \in \mathbb{C}^{m \times p}$ is $(R, T, \alpha \beta, \alpha \nu+\mu)$-symmetric. Moreover, if $\operatorname{gcd}(\beta, k)=1$ then

$$
\begin{equation*}
A B=\sum_{\ell=0}^{k-1} P_{\alpha \beta \ell+(\alpha \nu+\mu)} F_{\beta \ell+\nu} G_{\ell} \widehat{X}_{\ell} \tag{25}
\end{equation*}
$$

Proof. It is given that (a) $R A S^{-\alpha}=\zeta^{\mu} A$ and (b) $S B T^{-\beta}=\zeta^{\nu} B$. Applying (b) α times yields $S^{\alpha} B T^{-\alpha \beta}=\zeta^{\alpha \nu} B$. This and (a) imply that $R A B T^{-\alpha \beta}=$ $\zeta^{\alpha \nu+\mu} A B$, so $A B$ is $(R, T, \alpha \beta, \alpha \nu+\mu)$-symmetric. If $\operatorname{gcd}(\beta, k)=1$ then replacing ℓ by $\beta \ell+\nu$ in the first equality in (24) merely rearranges the terms in the sum, so

$$
\begin{equation*}
A=\sum_{\ell=0}^{k-1} P_{\alpha \beta \ell+(\alpha \nu+\mu)} F_{\beta \ell+\nu} \widehat{Q}_{\beta \ell+\nu} \tag{26}
\end{equation*}
$$

Since $\operatorname{gcd}(\beta, k)=1, \widehat{Q}_{\beta \ell+\nu} Q_{\beta m+\nu}=\delta_{\ell m} I_{d_{\beta \ell+\nu}}, 0 \leq \ell, m \leq k-1$. Therefore (26) and the second equality in (24) imply (25).

Theorem 6 Suppose R and S are unitary, A is (R, S, α, μ)-symmetric, B is (R, S, α, ν)-symmetric, $\operatorname{gcd}(\alpha, k)=1$, and $\alpha \beta \equiv 1(\bmod k)$. Then $A B^{*}$ is $(R, R, 1, \mu-\nu)$-symmetric and $B^{*} A$ is $(S, S, 1, \beta(\mu-\nu))$-symmetric; specifically, if

$$
\begin{equation*}
A=\sum_{\ell=0}^{k-1} P_{\alpha \ell+\mu} F_{\ell} Q_{\ell}^{*} \quad \text { and } \quad B=\sum_{\ell=0}^{k-1} P_{\alpha \ell+\nu} G_{\ell} Q_{\ell}^{*} \tag{27}
\end{equation*}
$$

as implied by Theorem 2, then

$$
\begin{equation*}
A B^{*}=\sum_{\ell=0}^{k-1} P_{\ell+\mu-\nu} F_{\beta(\ell-\nu)} G_{\beta(\ell-\nu)}^{*} P_{\ell}^{*} \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
B^{*} A=\sum_{\ell=0}^{k-1} Q_{\ell+\beta(\mu-\nu)} G_{\ell+\beta(\mu-\nu)}^{*} F_{\ell} Q_{\ell}^{*} \tag{29}
\end{equation*}
$$

Proof. From (27),

$$
\begin{equation*}
A B^{*}=\left(\sum_{\ell=0}^{k-1} P_{\alpha \ell+\mu} F_{\ell} Q_{\ell}^{*}\right)\left(\sum_{m=0}^{k-1} Q_{m} G_{m}^{*} P_{\alpha m+\nu}^{*}\right)=\sum_{\ell=0}^{k-1} P_{\alpha \ell+\mu} F_{\ell} G_{\ell}^{*} P_{\alpha s+\nu}^{*} \tag{30}
\end{equation*}
$$

Since $\operatorname{gcd}(\beta, k)=1$, replacing ℓ by $\beta(\ell-\nu)$ in the last sum yields (28).

Also from (27),

$$
B^{*} A=\left(\sum_{\ell=0}^{k-1} Q_{\ell} G_{\ell}^{*} P_{\alpha \ell+\nu}^{*}\right)\left(\sum_{m=0}^{k-1} P_{\alpha m+\mu} F_{m} Q_{m}^{*}\right)
$$

Replacing ℓ by $\ell+\beta(\mu-\nu)$ in the first sum yields

$$
B^{*} A=\left(\sum_{\ell=0}^{k-1} Q_{\ell+\beta(\mu-\nu)} G_{\ell+\beta(\mu-\nu)}^{*} P_{\alpha \ell+\mu}^{*}\right)\left(\sum_{m=0}^{k-1} P_{\alpha m+\mu} F_{m} Q_{m}^{*}\right)
$$

which implies (29), since $P_{\alpha \ell+\mu}^{*} P_{\alpha m+\mu}=\delta_{\ell m} I_{c_{\alpha \ell+\mu}}, 0 \leq \ell, m \leq k-1$. \quad]
Remark 1 If R and S are unitary, A is (R, S, α, μ)-symmetric, and B is (R, S, α, ν) symmetric, then

$$
R A B^{*} R^{-1}=\left(R A S^{-\alpha}\right)\left(S^{\alpha} B^{*} R^{-1}\right)=\left(\zeta^{\mu} A\right)\left(\zeta^{-\nu} B^{*}\right)=\zeta^{\mu-\nu} A B^{*}
$$

Hence, $A B^{*}$ is $(R, R, 1, \mu-\nu)$-symmetric even if $\operatorname{gcd}(\alpha, k) \neq 1 ;$ moreover, (30) is valid.

4 Generalized inverses and SVD

If $A \in \mathbb{C}^{m \times n}$ then A^{-}is a reflexive inverse of A if $A A^{-} A=A$ and $A^{-} A A^{-}=A^{-}$ [5, p. 51], and the Moore-Penrose inverse A^{\dagger} of A is the unique matrix that satisfies the Penrose conditions

$$
\left(A A^{\dagger}\right)^{*}=A A^{\dagger}, \quad\left(A^{\dagger} A\right)^{*}=A^{\dagger} A, \quad A A^{\dagger} A=A, \quad \text { and } \quad A^{\dagger} A A^{\dagger}=A^{\dagger}
$$

If $A \in \mathbb{C}^{n \times n}$ and there is a matrix $A^{\#}$ such that $A A^{\#} A=A, A^{\#} A A^{\#}=A^{\#}$, and $A A^{\#}=A^{\#} A$ then $A^{\#}$ is called the group inverse of $A[5, \mathrm{p} .156]$. A matrix may fail to have a group inverse, but if one exists it is unique.

Theorem 7 (i) If A^{-}is a reflexive inverse of an (R, S, α, μ)-symmetric matrix A then $B=\zeta^{\mu} S^{\alpha} A^{-} R^{-1}$ is a reflexive inverse of A. (ii) If $A \in \mathbb{C}^{n \times n}$ is $(R, R, 1, \mu)$-symmetric and has a group inverse $A^{\#}$, then $A^{\#}$ is $(R, R, 1,-\mu)$ symmetric.

Proof. (i) Since $A=\zeta^{-\mu} R A S^{-\alpha}$,

$$
A B=R A A^{-} R^{-1}, \quad B A=S^{\alpha} A^{-} A S^{-\alpha}
$$

so

$$
A B A=\zeta^{-\mu} R A A^{-} A S^{-\alpha}=\zeta^{-\mu} R A S^{-\alpha}=A
$$

and

$$
B A B=\zeta^{\mu} S^{\alpha} A^{-} A A^{-} R^{-1}=\zeta^{\mu} S^{\alpha} A^{-} R^{-1}=B
$$

(ii) It is given that $A=\zeta^{-\mu} R A R^{-1}$. Let $B=\zeta^{\mu} R A^{\#} R^{-1}$. Then $A B=$ $R A A^{\#} R^{-1}$ and $B A=R A^{\#} A R^{-1}$. Therefore $A B=B A$, since $A A^{\#}=A^{\#} A$. Also,

$$
A B A=\zeta^{-\mu} R A A^{\#} A R^{-1}=\zeta^{-\mu} R A R^{-1}=A
$$

and

$$
B A B=\zeta^{\mu} R A^{\#} A A^{\#} R^{-1}=\zeta^{\mu} R A^{\#} R^{-1}=A^{\#}
$$

Hence B is a group inverse of A. Since A can have only one group inverse, it follows that $A^{\#}=B=\zeta^{\mu} R A^{\#} R^{-1}$, which is $(R, R, 1,-\mu)$-symmetric.

For convenience of notation, denote $\mathbf{F}=\bigoplus_{\ell=0}^{k-1} F_{\ell}$. It is straightforward to verify that \mathbf{F} and $\bigoplus_{\ell=0}^{k-1} F_{\ell}^{\dagger}$ satisfy the Penrose conditions, so $\mathbf{F}^{\dagger}=\bigoplus_{\ell=0}^{k-1} F_{\ell}^{\dagger}$.

Theorem 8 Suppose that A is (R, S, α, μ)-symmetric, so

$$
\begin{equation*}
A=V_{\mu, \alpha} \mathbf{F} Q^{-1}=\sum_{\ell=0}^{k-1} P_{\alpha \ell+\mu} F_{\ell} \widehat{Q}_{\ell} \tag{31}
\end{equation*}
$$

by Theorem 2. Suppose also that $\operatorname{gcd}(\alpha, k)=1$ and $\alpha \beta \equiv 1(\bmod k)$. Let

$$
\begin{equation*}
B=Q \mathbf{F}^{\dagger} V_{\mu, \alpha}^{-1}=\sum_{\ell=0}^{k-1} Q_{\ell} F_{\ell}^{\dagger} \widehat{P}_{\alpha \ell+\mu} \tag{32}
\end{equation*}
$$

Then B is a reflexive inverse of A. Moreover, if R and S are unitary then $B=A^{\dagger}$, i.e.,

$$
\begin{equation*}
A^{\dagger}=Q \mathbf{F}^{\dagger} V_{\mu, \alpha}^{*}=\sum_{\ell=0}^{k-1} Q_{\ell} \mathbf{F}_{\ell}^{\dagger} P_{\alpha \ell+\mu}^{*} \tag{33}
\end{equation*}
$$

Finally, A^{\dagger} is $(S, R, \beta,-\beta \mu)$-symmetric.
Proof. From (2), (31), and (32),

$$
\begin{gather*}
A B=V_{\mu, \alpha} \mathbf{F F}^{\dagger} V_{\mu, \alpha}^{-1},=V_{\mu, \alpha}\left(\mathbf{F} \mathbf{F}^{\dagger}\right)^{*} V_{\mu, \alpha}^{-1} \tag{34}\\
B A=Q \mathbf{F}^{\dagger} \mathbf{F} Q^{-1}=Q\left(\mathbf{F}^{\dagger} \mathbf{F}\right)^{*} Q^{-1} \tag{35}\\
A B A=V_{\mu, \alpha} \mathbf{F F}^{\dagger} \mathbf{F} Q^{-1}=V_{\mu, \alpha} \mathbf{F} Q^{-1}=A \tag{36}
\end{gather*}
$$

and

$$
\begin{equation*}
B A B=Q \mathbf{F}^{\dagger} \mathbf{F} \mathbf{F}^{\dagger} V_{\mu, \alpha}^{-1}=Q \mathbf{F}^{\dagger} V_{\mu, \alpha}^{-1}=B \tag{37}
\end{equation*}
$$

From (36) and (37), B is a reflexive inverse of A. If R and S are unitary then $Q^{-1}=Q^{*}$ and $V_{\mu, \alpha}^{-1}=V_{\mu, \alpha}^{*}$, so (34) and (35) imply that $(A B)^{*}=A B$ and $(B A)^{*}=B A$. Therefore A and B satisfy the Penrose conditions, so $B=A^{\dagger}$, which implies (33). Finally, replacing ℓ by $\beta(\ell-\mu)$ in (33) yields

$$
A^{\dagger}=\sum_{\ell=0}^{k-1} Q_{\beta(\ell-\mu)} F_{\beta(\ell-\mu)}^{\dagger} P_{\ell}^{*}
$$

so A^{\dagger} is $(S, R, \beta,-\beta \mu)$-symmetric by Theorem 2 .

Theorem 9 If (14) holds then the matrix

$$
\begin{equation*}
B=\mathcal{Q} \mathcal{F}^{\dagger} \widehat{\mathcal{V}}_{\mu, \alpha}=\sum_{\ell=0}^{p-1} \mathbf{Q}_{\ell} \mathbf{F}_{\ell}^{\dagger} \widehat{P}_{\alpha \ell+\mu} \tag{38}
\end{equation*}
$$

is a reflexive inverse of A. (See (21).) If in addition R and S are unitary, then

$$
\begin{equation*}
A^{\dagger}=\mathcal{Q} \mathcal{F}^{\dagger} \mathcal{V}_{\mu, \alpha}^{*}=\sum_{\ell=0}^{p-1} \mathbf{Q}_{\ell} \mathbf{F}_{\ell}^{\dagger} P_{\alpha \ell+\mu}^{*} \tag{39}
\end{equation*}
$$

Moreover, if we partition $\mathbf{F}_{\ell}^{\dagger}$ (see (18)) as

$$
\mathbf{F}_{\ell}^{\dagger}=\left[\begin{array}{c}
G_{\ell} \\
G_{\ell+p} \\
\vdots \\
G_{\ell+(q-1) p}
\end{array}\right], \quad 0 \leq \ell \leq p-1
$$

with $G_{\ell} \in \mathbb{C}^{d_{\ell} \times c_{\alpha \ell+\mu}}, 0 \leq \ell \leq k-1$ (see (12)), then (38) and (39) can be written as

$$
\begin{equation*}
B=\sum_{\ell=0}^{k-1} Q_{\ell} G_{\ell} \widehat{P}_{\alpha \ell+\mu} \quad \text { and } \quad A^{\dagger}=\sum_{\ell=0}^{k-1} Q_{\ell} G_{\ell} P_{\alpha \ell+\mu}^{*} \tag{40}
\end{equation*}
$$

respectively.
Proof. From (20), (21), and (38),

$$
\begin{gather*}
A B=\mathcal{V}_{\mu, \alpha} \mathcal{F} \mathcal{F}^{\dagger} \widehat{\mathcal{V}}_{\mu, \alpha}=\mathcal{V}_{\mu, \alpha}\left(\mathcal{F} \mathcal{F}^{\dagger}\right)^{*} \widehat{\mathcal{V}}_{\mu, \alpha} \tag{41}\\
B A=\mathcal{Q} \mathcal{F}^{\dagger} \mathcal{F} \mathcal{Q}^{-1}=\mathcal{Q}\left(\mathcal{F}^{\dagger} \mathcal{F}\right)^{*} \mathcal{Q}^{-1} \tag{42}\\
A B A=\mathcal{V}_{\mu, \alpha} \mathcal{F} \mathcal{F}^{\dagger} \mathcal{F} \mathcal{Q}^{-1}=\mathcal{V}_{\mu, \alpha} \mathcal{F} \mathcal{Q}^{-1}=A \tag{43}
\end{gather*}
$$

and

$$
\begin{equation*}
B A B=\mathcal{Q} \mathcal{F}^{\dagger} \mathcal{F} \mathcal{F}^{\dagger} \widehat{\mathcal{V}}_{\mu, \alpha}=\mathcal{Q} \mathcal{F}^{\dagger} \widehat{\mathcal{V}}_{\mu, \alpha}=B \tag{44}
\end{equation*}
$$

From (43) and (44), B is a reflexive inverse of A. If R and S are unitary then $\mathcal{Q}^{-1}=\mathcal{Q}^{*}$ and $\widehat{\mathcal{V}}_{\mu, \alpha}=\mathcal{V}_{\mu, \alpha}^{*}$, so (41) and (42) imply that $(A B)^{*}=A B$ and $(B A)^{*}=B A$. Therefore A and B satisfy the Penrose conditions, so $B=A^{\dagger}$. \square

Theorem 2 and (43) imply the following corollary.
Corollary 2 If A is (R, S, α, μ)-symmetric and R and S are unitary then $\left(A^{\dagger}\right)^{*}$ is (R, S, α, μ)-symmetric.

Theorem 10 Suppose $\operatorname{gcd}(\alpha, k)=q, p=k / q, A$ is (R, S, α, μ)-symmetric and $\mathbf{F}_{\ell}=\Omega_{\ell} \Sigma_{\ell} \Phi_{\ell}^{*}\left(\right.$ see (18)) is a singular value decomposition of $\mathbf{F}_{\ell}, 0 \leq \ell \leq p-1$. Let

$$
\Omega=\left[\begin{array}{llll}
P_{\mu} \Omega_{0} & P_{\alpha+\mu} \Omega_{1} & \cdots & P_{(p-1) \alpha+\mu} \Omega_{p-1}
\end{array}\right]
$$

and

$$
\Gamma=\left[\begin{array}{llll}
\mathbf{Q}_{0} \Gamma_{0} & \mathbf{Q}_{1} \Gamma_{1} & \cdots & \mathbf{Q}_{p-1} \Gamma_{p-1}
\end{array}\right]
$$

(See (15).) Then

$$
\begin{equation*}
A=\Omega\left(\bigoplus_{\ell=0}^{p-1} \Sigma_{\ell}\right) \Gamma^{-1} \tag{45}
\end{equation*}
$$

Moreover, if R and S are unitary then Ω and Γ are unitary, so (45) is a singular value decomposition of A, except that the singular values are not neccesarily arranged in nonincreasing order.

5 Solution of $A z=w$ and the least squares problem

In this section we assume that A is (R, S, α, μ)-symmetric and can therefore be written as in (11). If $z \in \mathbb{C}^{n}$ and $w \in \mathbb{C}^{m}$ we write

$$
\begin{equation*}
z=Q u=\sum_{\ell=0}^{k-1} Q_{\ell} u_{\ell} \quad \text { and } \quad w=P v=\sum_{\ell=0}^{k-1} P_{\ell} v_{\ell} \tag{46}
\end{equation*}
$$

with $u_{\ell} \in \mathbb{C}^{d_{\ell}}$ and $v_{\ell} \in \mathbb{C}^{c_{\ell}}, 0 \leq \ell \leq k-1$.
Theorem 11 If $\operatorname{gcd}(\alpha, k)=1$ then
(a) $A z=w \quad$ if and only if (b) $\quad F_{\ell} u_{\ell}=v_{\alpha \ell+\mu}, \quad 0 \leq \ell \leq k-1$.

Moreover, if R is unitary then

$$
\begin{equation*}
\|A z-w\|^{2}=\sum_{\ell=0}^{k-1}\left\|F_{\ell} u_{\ell}-v_{\alpha \ell+\mu}\right\|^{2} \tag{48}
\end{equation*}
$$

so the least squares problem for A reduces to k independent least squares problems for $F_{0}, F_{1}, \ldots, F_{k-1}$.

Proof. From (11) and (46),

$$
\begin{align*}
A z-w & =\sum_{\ell=0}^{k-1} P_{\alpha \ell+\mu} F_{\ell} u_{\ell}-\sum_{\ell=0}^{k-1} P_{\ell} v_{\ell}=\sum_{\ell=0}^{k-1} P_{\alpha \ell+\mu} F_{\ell} u_{\ell}-\sum_{\ell=0}^{k-1} P_{\alpha \ell+\mu} v_{\alpha \ell+\mu} \\
& =\sum_{\ell=0}^{k-1} P_{\alpha \ell+\mu}\left(F_{\ell} u_{\ell}-v_{\alpha \ell+\mu}\right) \tag{49}
\end{align*}
$$

where $\sum_{\ell=0}^{k-1} P_{\ell} v_{\ell}=\sum_{\ell=0}^{k-1} P_{\alpha \ell+\mu} v_{\alpha \ell+\mu}$ because $\operatorname{gcd}(\alpha, k)=1$, the substitution $s \rightarrow \alpha \ell+\mu(\bmod k)$ is a permutation of \mathbb{Z}_{k}. Therefore (47)(b) and (49) imply (47)(a). Since $V_{\mu, \alpha}($ see (7)) is invertible (again, because $\operatorname{gcd}(\alpha, k)=1),(47)(\mathrm{a})$ and (49) imply (47)(b). Finally, if R is unitary then $P_{\alpha \ell+\mu}^{*} P_{\alpha m+\mu}=\delta_{\ell m} I_{c_{\alpha \ell+\mu}}$, $0 \leq \ell, m \leq k-1$, so (49) implies (48).

Theorems 2 and 11 imply the following theorem.

Theorem 12 If A is (R, S, α, μ)-symmetric then A is invertible if and only if $\operatorname{gcd}(\alpha, k)=1$,

$$
\begin{equation*}
c_{\alpha \ell+\mu}=d_{\ell}, \quad 0 \leq \ell \leq k-1, \tag{50}
\end{equation*}
$$

and $F_{0}, F_{1}, \ldots, F_{k-1}$ are all invertible, in which case

$$
\begin{equation*}
A^{-1}=Q\left(\bigoplus_{\ell=0}^{k-1} F_{\ell}^{-1}\right) V_{\mu, \alpha}^{-1}=\sum_{\ell=0}^{k-1} Q_{\ell} F_{\ell}^{-1} \widehat{P}_{\alpha \ell+\mu} \tag{51}
\end{equation*}
$$

and the solution of $A z=w$ is

$$
\begin{equation*}
z=\sum_{\ell=0}^{k-1} Q_{\ell} F_{\ell}^{-1} v_{\alpha \ell+\mu} \tag{52}
\end{equation*}
$$

Proof. From Theorem 2, $A=V_{\mu, \alpha}\left(\bigoplus_{\ell=0}^{k-1} F_{\ell}\right) Q^{-1}$. If A is invertible then $V_{\mu, \alpha}$ is invertible, which is true if and only if $\operatorname{gcd}(\alpha, k)=1$. Hence, this is a necessary condition for A to be invertible, so assume that it holds. From Theorem 11, $A z=w$ has a solution for every z if and only (47)(b) has a solution for every $\left\{v_{0}, v_{1}, \ldots, v_{k-1}\right\}$. Since $F_{\ell} \in \mathbb{C}^{c_{\alpha \ell+\mu} \times d_{\ell}}$, this is true if and only if (50) holds and $F_{0}, F_{1}, \ldots, F_{k-1}$ are all invertible, in which case (11) implies (51). Finally, (46) and (51) imply (52).

Remark 2 If R and S are unitary, and therefore Q and $V_{\mu, \alpha}$ are unitary, then (51) implies that

$$
\left(A^{-1}\right)^{*}=V_{\mu, \alpha}\left(\bigoplus_{\ell=0}^{k-1}\left(F_{\ell}^{-1}\right)^{*}\right) Q^{*}
$$

so $\left(A^{-1}\right)^{*}$ is (R, S, α, μ)-symmetric, by Theorem 2 .
Theorem 13 If A is (R, S, α, μ)-symmetric, $\operatorname{gcd}(\alpha, k)=q$, and $p=k / q$, then $A z=w$ has no solution unless $w=\sum_{\ell=0}^{p-1} P_{\alpha \ell+\mu} v_{\alpha \ell+\mu}$, in which case z is a solution if and only $z=\sum_{\ell=0}^{k-1} Q_{\ell} u_{\ell}$, where

$$
\sum_{\nu=0}^{q-1} F_{\ell+\nu p} u_{\ell+\nu p}=v_{\alpha \ell+\mu}, \quad 0 \leq \ell \leq p-1
$$

Proof. Since our assumptions imply (22),

$$
A z=\sum_{\ell=0}^{p-1} P_{\alpha \ell+\mu} \sum_{\nu=0}^{q-1} F_{\ell+\nu p} u_{\ell+\nu p}
$$

if $z=\sum_{\ell=0}^{k-1} Q_{\ell} u_{\ell}$. This implies the conclusion.

6 Equidimensional block permutation matrices

We begin with two lemmas. It is straightforward to verify the first by direct matrix multiplication, bearing in mind that subscripts are to be reduced modulo k.

Lemma 1 If ω_{1} and ω_{2} are permutations of \mathbb{Z}_{k} and $H=\left[H_{r s}\right]_{r, s=0}^{k-1} \in \mathbb{C}^{k: d_{1} \times d_{2}}$, then

$$
\begin{equation*}
\left(\left[\delta_{r, \omega_{1}^{-1}(s)}\right]_{r, s=0}^{k-1} \otimes I_{d_{1}}\right) H\left(\left[\delta_{r, \omega_{2}^{-1}(s)}\right]_{r, s=0}^{k-1} \otimes I_{d_{2}}\right)^{-\alpha}=\left[H_{\omega_{1}(r), \omega_{2}^{\alpha}(s)}\right]_{r, s=0}^{k-1} \tag{53}
\end{equation*}
$$

In particular, letting $\omega_{1}(s)=\omega_{2}(s)=s+1(\bmod k)$ yields

$$
\begin{equation*}
\left(\left[\delta_{r, s-1}\right]_{r, s=0}^{k-1} \otimes I_{d_{1}}\right)\left(\left[H_{r s}\right]_{r, s=0}^{k-1}\right)\left(\left[\delta_{r, s-1}\right]_{r, s=0}^{k-1} \otimes I_{d_{2}}\right)^{-\alpha}=\left[H_{r+1, s+\alpha}\right]_{r, s=0}^{k-1} \tag{54}
\end{equation*}
$$

Lemma 2 Let σ be a permutation of \mathbb{Z}_{k} and $\sigma(\kappa)=0$. Let ρ be the unique cyclic permutation of \mathbb{Z}_{k} such that $\sigma\left(\rho^{r}(\kappa)\right)=r, 0 \leq r \leq k-1$. Then

$$
\begin{equation*}
\sigma\left(\rho^{\alpha}(r)\right) \equiv \sigma(r)+\alpha \quad(\bmod k) \tag{55}
\end{equation*}
$$

Proof. Since $\sigma\left(\rho^{r}(\kappa)\right)=r, \rho^{r}(\kappa)=\sigma^{-1}(r)$. Replacing r by $\sigma(r)$ yields $\rho^{\sigma(r)}(\kappa)=r$. Now replacing r by $\rho^{\alpha}(r)$ yields

$$
\rho^{\sigma\left(\rho^{\alpha}(r)\right)}(\kappa)=\rho^{\alpha}(r)=\rho^{\alpha}\left(\rho^{\sigma(r)}(\kappa)\right)=\rho^{\sigma(r)+\alpha}(\kappa)
$$

which implies (55).
In the rest of this paper σ_{i} and $\rho_{i}, i=1,2,3$ are related as σ and ρ are related in Lemma 2.

For future reference,

$$
\begin{gather*}
f_{\ell}=\frac{1}{\sqrt{k}}\left[\begin{array}{c}
1 \\
\zeta^{\ell} \\
\zeta^{2 \ell} \\
\vdots \\
\zeta^{(k-1) \ell}
\end{array}\right], \quad 0 \leq \ell \leq k-1, \tag{56}\\
\Phi_{\ell}=f_{\ell} \otimes I_{d_{1}}, \quad \Psi_{\ell}=f_{\ell} \otimes I_{d_{2}}, \quad 0 \leq \ell \leq k-1, \tag{57}\\
\mathbf{\Phi}=\left[\begin{array}{llll}
\Phi_{0} & \Phi_{1} & \cdots & \Phi_{k-1}
\end{array}\right], \quad \text { and } \boldsymbol{\Psi}=\left[\begin{array}{llll}
\Psi_{0} & \Psi_{1} & \cdots & \Psi_{k-1}
\end{array}\right] . \tag{58}
\end{gather*}
$$

Let

$$
\begin{gather*}
E=\left[\delta_{r, s-1}\right]_{r, s=0}^{k-1}, \quad R_{0}=E \otimes I_{d_{1}}, \quad S_{0}=E \otimes I_{d_{2}}, \quad T_{0}=E \otimes I_{d_{3}}, \tag{59}\\
L_{i}=\left[\delta_{r, \sigma_{i}^{-1}(s)}\right]_{r, s=0}^{k-1} \otimes I_{d_{i}}, \quad \text { and } \quad R_{i}=\left[\delta_{r, \rho_{i}^{-1}(s)}\right]_{r, s=0}^{k-1} \otimes I_{d_{i}} \quad i=1,2,3 . \tag{60}
\end{gather*}
$$

From (54) with $\alpha=0$ and (56)-(58),

$$
\begin{equation*}
R_{0} \boldsymbol{\Phi}=\boldsymbol{\Phi} D_{1} \quad \text { and } \quad S_{0} \boldsymbol{\Psi}=\boldsymbol{\Psi} D_{2} \quad \text { with } \quad D_{i}=\bigoplus_{\ell=0}^{k-1} \zeta^{\ell} I_{d_{i}}, \quad i=1,2 \tag{61}
\end{equation*}
$$

so

$$
R_{0}=\boldsymbol{\Phi} D_{1} \boldsymbol{\Phi}^{*} \quad \text { and } \quad S_{0}=\boldsymbol{\Psi} D_{2} \boldsymbol{\Psi}^{*}
$$

Theorem $14 A$ matrix $A \in \mathbb{C}^{k: d_{1} \times d_{2}}$ is $\left(R_{1}, R_{2}, \alpha, \mu\right)$-symmetric if and only if

$$
\begin{equation*}
A=\left[\zeta^{\mu \sigma_{1}(r)} A_{\sigma_{2}(s)-\alpha \sigma_{1}(r)}\right]_{r, s=0}^{k-1} \tag{62}
\end{equation*}
$$

for some $A_{0}, A_{1}, \ldots, A_{k-1} \in \mathbb{C}^{d_{1} \times d_{2}}$.
Proof. For now we write $A=\left[B_{r s}\right]_{r, s=0}^{k-1}$. From (60) and (53) with $\omega_{1}=\rho_{1}$ and $\omega_{2}=\rho_{2}$,

$$
R_{1} A R_{2}^{-\alpha}=\left[B_{\rho_{1}(r), \rho_{2}^{\alpha}(s)}\right]_{r, s=0}^{k-1}=\zeta^{\mu} A
$$

if and only if

$$
\begin{equation*}
B_{\rho_{1}(r), \rho_{2}^{\alpha}(s)}=\zeta^{\mu} B_{r s}, \quad 0 \leq r, s \leq k-1 \tag{63}
\end{equation*}
$$

This holds if

$$
\begin{equation*}
B_{r s}=\zeta^{\mu \sigma_{1}(r)} A_{\sigma_{2}(s)-\alpha \sigma_{1}(r)}, \quad 0 \leq r, s \leq k-1 \tag{64}
\end{equation*}
$$

since (55) implies that $\sigma_{1}\left(\rho_{1}(r)\right) \equiv \sigma_{1}(r)+1(\bmod k)$ and
$\sigma_{2}\left(\rho_{2}^{\alpha}(s)\right)-\alpha \sigma_{1}\left(\rho_{1}(r)\right) \equiv\left(\sigma_{2}(s)+\alpha\right)-\alpha\left(\sigma_{1}(r)+1\right) \equiv \sigma_{2}(s)-\alpha \sigma_{1}(r) \quad(\bmod k)$.
For the converse we will show that (63) implies (64) with

$$
\begin{equation*}
A_{\sigma_{2}(s)}=B_{\kappa_{1}, s} \quad \text { or, equivalently, } \quad A_{\ell}=B_{\kappa_{1}, \sigma_{2}^{-1}(s)}, \quad 0 \leq \ell \leq k-1 \tag{65}
\end{equation*}
$$

Replacing r by $\rho_{1}^{r}\left(\kappa_{1}\right)$ in (64) and noting from (55) that $\sigma_{1}\left(\rho_{1}^{r}\left(\kappa_{1}\right)\right)=r$ shows that (64) is equivalent to

$$
\begin{equation*}
B_{\rho_{1}^{r}\left(\kappa_{1}\right), s}=\zeta^{\mu r} A_{\sigma_{2}(s)-\alpha r}, \quad 0 \leq r, s \leq k-1 \tag{66}
\end{equation*}
$$

We will prove this by finite induction on r. Eqn. (65) implies (66) for $r=0$. Suppose (66) holds for a given r. Replacing r by $\rho_{1}^{r}\left(\kappa_{1}\right)$ and s by $\rho_{2}^{-\alpha s}$ in (63) yields

$$
B_{\rho_{1}^{r+1}\left(\kappa_{1}\right), s}=\zeta^{\mu} B_{\rho_{1}^{r}\left(\kappa_{1}\right), \rho_{2}^{-\alpha}(s)}
$$

Therefore, from (55) and our induction assumption (66),

$$
B_{\rho_{1}^{r+1}\left(\kappa_{1}\right), s}=\zeta^{\mu(r+1)} A_{\sigma_{2}\left(\rho_{2}^{-\alpha}(s)\right)-\alpha r}=\zeta^{\mu(r+1)} A_{\sigma_{2}(s)-\alpha(r+1)}
$$

which completes the induction.
Corollary 3 matrix $A \in \mathbb{C}^{k: d_{1} \times d_{2}}$ is $\left(R_{1}, R_{2}, \alpha, \mu\right)$-symmetric if and only if

$$
\begin{equation*}
A=L_{1}\left(\left[\zeta^{\mu r} A_{s-\alpha r}\right]_{r, s=0}^{k-1}\right) L_{2}^{-1} \tag{67}
\end{equation*}
$$

(see (60)) with $A_{0}, A_{1}, \ldots, A_{k-1} \in \mathbb{C}^{d_{1} \times d_{2}}$.
Proof. From (60) and (67), applying (53) with $\omega_{1}=\sigma_{1}, \omega_{2}=\sigma_{2}, \alpha=1$, and $H=\left[\zeta^{\mu r} A_{s-\alpha r}\right]_{r, s=0}^{k-1}$ yields (62).

Corollary $4 A$ matrix $A \in \mathbb{C}^{k: d_{1} \times d_{2}}$ is $\left(R_{0}, S_{0}, \alpha, \mu\right)$-symmetric (see (59)) if and only if

$$
\begin{equation*}
A=\left[\zeta^{\mu r} A_{s-\alpha r}\right]_{r, s=0}^{k-1} \tag{68}
\end{equation*}
$$

for some $A_{0}, A_{1}, \ldots, A_{k-1} \in \mathbb{C}^{d_{1} \times d_{2}}$.
Proof. Setting $\sigma_{1}(r)=\sigma_{2}(r)=r+1(\bmod k)$ in (62) yields

$$
A=\left[\zeta^{\mu(r+1)} A_{(1-\alpha)+s-\alpha r}\right]_{r, s=0}^{k-1}
$$

for some $A_{0}, A_{1}, \ldots, A_{k-1} \in \mathbb{C}^{d_{1} \times d_{2}}$. Redefining A (i.e., replacing $\zeta^{\mu} A_{(1-\alpha)+m}$ with A_{m} yields (68).

7 Moore-Penrose inversion of $\left[A_{s-\alpha r}\right]_{r, s=0}^{k-1}$

The following theorem is an extension of [15, Theorem 5], where we assumed that $\operatorname{gcd}(\alpha, k)=1$.

Theorem 15 Suppose $A=\left[A_{s-\alpha r}\right]_{r, s=0}^{k-1} \in \mathbb{C}^{k: d_{1} \times d_{2}}$ and

$$
\begin{equation*}
F_{\ell}=\sum_{m=0}^{k-1} \zeta^{\ell m} A_{m}, \quad 0 \leq \ell \leq k-1 \tag{69}
\end{equation*}
$$

Suppose also that $\operatorname{gcd}(\alpha, k)=q$ and $p=k / q$. Let

$$
\mathbf{F}_{\ell}=\left[\begin{array}{llll}
F_{\ell} & F_{\ell+p} & \cdots & F_{\ell+(q-1) p} \tag{70}
\end{array}\right]
$$

and partition $\mathbf{F}_{\ell}^{\dagger}$ as

$$
\mathbf{F}_{\ell}^{\dagger}=\left[\begin{array}{c}
G_{\ell} \\
G_{\ell+p} \\
\vdots \\
G_{\ell+(q-1) p}
\end{array}\right], \quad 0 \leq \ell \leq p-1
$$

where $G_{0}, G_{1}, \ldots, G_{k-1} \in \mathbb{C}^{d_{2} \times d_{1}}$. Then

$$
\begin{equation*}
A^{\dagger}=\left[B_{r-\alpha s}\right]_{r, s=0}^{k-1} \quad \text { where } \quad B_{m}=\frac{1}{k} \sum_{\ell=0}^{k-1} \zeta^{\ell m} G_{\ell}, \quad 0 \leq m \leq k-1 \tag{71}
\end{equation*}
$$

Proof. First, note that (69) is equivalent to

$$
A_{m}=\frac{1}{k} \sum_{\ell=0}^{k-1} \zeta^{-\ell m} F_{\ell}, \quad 0 \leq m \leq k-1, \quad \text { so } \quad A=\sum_{\ell=0}^{k-1} P_{\alpha \ell} F_{\ell} Q_{\ell}^{*}
$$

where

$$
P_{\alpha \ell}=\frac{1}{\sqrt{k}}\left[\begin{array}{c}
1 \otimes I_{d_{1}} \\
\zeta^{\alpha \ell} \otimes I_{d_{1}} \\
\vdots \\
\zeta^{(k-1) \alpha \ell} \otimes I_{d_{1}}
\end{array}\right] \quad \text { and } \quad Q_{\ell}=\frac{1}{\sqrt{k}}\left[\begin{array}{c}
1 \otimes I_{d_{2}} \\
\zeta^{\ell} \otimes I_{d_{2}} \\
\vdots \\
\zeta^{(k-1) \ell} \otimes I_{d_{2}}
\end{array}\right]
$$

$0 \leq \ell \leq k-1$. From Theorem 9 (specifically, (40) with $\mu=0$),

$$
A^{\dagger}=\sum_{\ell=0}^{k-1} Q_{\ell} G_{\ell} P_{\alpha \ell}^{*}=\frac{1}{k}\left[\sum_{\ell=0}^{k-1} \zeta^{\ell(s-\alpha r)} G_{\ell}\right]_{r, s=0}^{k-1}
$$

which implies (71).
Remark 3 Theorem 15 is extended to multilevel circulants in [17], which was submitted for publication after this paper was submitted.

Remark 4 The set $\mathcal{F}=\left\{F_{0}, F_{1}, \ldots, F_{k-1}\right\}$ is often called the discrete Fourier transform (dft) of the set $\mathcal{A}=\left\{A_{0}, A_{1}, \ldots, A_{k-1}\right\}$.

Remark 5 If $\operatorname{gcd}(\alpha, k)=1$ (so $q=1$ and $p=k$), then (70) reduces to $\mathbf{F}_{\ell}=$ $G_{\ell}=F_{\ell}^{\dagger}$. Hence, the second equality in (71) reduces to

$$
B_{m}=\frac{1}{k} \sum_{\ell=0}^{k-1} \zeta^{\ell m} F_{\ell}^{\dagger}, \quad 0 \leq m \leq k-1
$$

as we showed in [16, Theorem 5].
Remark 6 Suppose $A=\left[a_{s-\alpha r}\right]_{r, s=0}^{k-1} \in \mathbb{C}^{k \times k}$. Then (69) and (70) reduce to

$$
f_{\ell}=\sum_{m=0}^{k-1} a_{m} \zeta^{\ell m} \text { and } \quad \mathbf{f}_{\ell}=\left[\begin{array}{llll}
f_{\ell} & f_{\ell+p} & \cdots & f_{\ell+(q-1) p}
\end{array}\right], \quad 0 \leq \ell \leq p-1
$$

Since

$$
\mathbf{f}_{\ell}^{\dagger}=\frac{1}{\left\|\mathbf{f}_{\ell}\right\|^{2}}\left[\begin{array}{c}
\bar{f}_{\ell} \\
\bar{f}_{\ell+p} \\
\vdots \\
\bar{f}_{\ell+(q-1) p}
\end{array}\right] \quad \text { if } \quad \mathbf{f}_{\ell} \neq 0 \quad \text { or } \quad \mathbf{f}_{\ell}^{\dagger}=0 \quad \text { if } \quad \mathbf{f}_{\ell}=0
$$

it follows that

$$
g_{\ell+\nu p}=\left\{\begin{array}{ll}
\bar{f}_{\ell+\nu p} /\left|\mathbf{f}_{\ell}\right|^{2} & \text { if } \quad \mathbf{f}_{\ell} \neq 0, \\
0 & \text { if } \quad \mathbf{f}_{\ell}=0,
\end{array} \quad 0 \leq \ell \leq p-1, \quad 0 \leq \nu \leq q-1\right.
$$

Hence $A^{\dagger}=\left[b_{r-\alpha s}\right]_{r, s=0}^{k-1}$ where $b_{m}=\frac{1}{k} \sum_{\ell=0}^{k-1} g_{\ell} \zeta^{\ell m}$. This is a direct generalization of the result of Davis [8], who showed that that if $A=\left[a_{s-r}\right]_{r, s=0}^{k-1}$ then $A^{\dagger}=\left[b_{r-s}\right]_{r, s=0}^{k-1}$, where $b_{\ell}=\frac{1}{k} \sum_{m=0}^{k-1} f_{m}^{\dagger} \zeta^{\ell m}$.

Corollary 5 If $d_{1}=d_{2}$ then $A=\left[A_{s-\alpha r}\right]_{r, s=0}^{k-1}$ is invertible if and only if $\operatorname{gcd}(\alpha, k)=1$ and $F_{0}, F_{1}, \ldots, F_{k-1}$ are all invertible, in which case

$$
A^{-1}=\left[B_{r-\alpha s}\right]_{r, s=0}^{k-1} \quad \text { where } \quad B_{m}=\frac{1}{k} \sum_{\ell=0}^{k-1} \zeta^{\ell m} F_{\ell}^{-1}, \quad 0 \leq m \leq k-1
$$

8 Arbitrary equidimensional k-involutions

For the rest of this paper $R \in \mathbb{C}^{m \times m}$ and $S \in \mathbb{C}^{n \times n}$ are arbitrary equidimensional k-involutions with widths d_{1} and d_{2} respectively. Since all equidimensional k-involutions of a given order have the same spectrum, we can write

$$
\begin{equation*}
R=X R_{0} X^{-1} \quad \text { and } \quad S=Y S_{0} Y^{-1} \tag{72}
\end{equation*}
$$

(see (59)) for suitable $X \in \mathbb{C}^{m \times m}$ and $Y \in \mathbb{C}^{n \times n}$.
Theorem 16 A matrix $A \in \mathbb{C}^{k: d_{1} \times d_{2}}$ is (R, S, α, μ)-symmetric if and only if

$$
\begin{equation*}
A=X\left(\left[\zeta^{\mu r} A_{s-\alpha r}\right]_{r, s=0}^{k-1}\right) Y^{-1} \tag{73}
\end{equation*}
$$

for some $A_{0}, A_{1}, \ldots, A_{k-1} \in \mathbb{C}^{d_{1} \times d_{2}}$.
Proof. From (72), A is (R, S, α, μ)-symmetric if and only if

$$
\left(X R_{0} X^{-1}\right) A\left(Y S_{0}^{-\alpha} Y^{-1}\right)=\zeta^{\mu} A
$$

which is equivalent to

$$
R_{0}\left(X^{-1} A Y\right) S_{0}^{-\alpha}=\zeta^{\mu}\left(X^{-1} A Y\right)
$$

This is equivalent to (73), by Corollary $4 . \quad$
Remark 7 We can rewrite (73) as $A=X D_{1}^{\mu} C Y^{-1}$ with $C=\left[A_{s-\alpha r}\right]_{r, s=0}^{k-1}$ and D_{1} as in (61). It is straightforward to verify that $B=Y C^{\dagger} D_{1}^{-\mu} X^{-1}$ is a reflexive inverse of A, and that $B=A^{\dagger}$ if R and S are unitary.

Remark 8 Eqn. (73) must reduce to (67) when $R=R_{1}$ and $S=S_{1}$. To verify this explicitly, we note that from (53) with $\omega_{1}=\sigma_{1}, \omega_{2}=\sigma_{2}, \alpha=1$, and $H_{r s}=\delta_{r s}$,

$$
\begin{aligned}
\left(\left[\delta_{r, \sigma_{i}^{-1}(s)}\right]_{r, s=0}^{k-1}\right)\left(\left[\delta_{r, s-1}\right]_{r, s=0}^{k-1}\right)\left(\left[\delta_{r, \sigma_{i}^{-1}(s)}\right]_{r, s=0}^{k-1}\right)^{-1} & =\left[\delta_{\sigma_{i}(r), \sigma_{i}(s)-1}\right]_{r, s=0}^{k-1} \\
& =\left[\delta_{r, \rho_{i}^{-1}(s)}\right]_{r, s=0}^{k-1}
\end{aligned}
$$

where the last equality is valid because (55) with $\alpha=-1$ implies that $\sigma_{i}(r)=$ $\sigma_{i}(s)-1$ if and only if $r=\rho_{i}^{-1}(s)$. Therefore, from (59) and (60), $R_{1}=L_{1} R_{0} L_{1}^{-1}$ and $R_{2}=L_{2} S_{0} L_{2}^{-1}$. Hence, if $R=R_{1}$ and $S=R_{2}$ then $X=L_{1}$ and $Y=L_{2}$ in (73), which is consistent with (67).

Remark 9 The conclusion of Theorem 5 can made more explicit if R, S are as in (72) and $T=Z T_{0} Z^{-1}$. (See (59).) If $A \in \mathbb{C}^{k: d_{1} \times d_{2}}$ is (R, S, α, μ)-symmetric and $B \in \mathbb{C}^{k: d_{2} \times d_{3}}$ is (S, T, β, ν)-symmetric, then Theorem 16 implies that

$$
A=X\left(\left[\zeta^{\mu r} A_{s-\alpha r}\right]_{r, s=0}^{k-1}\right) Y^{-1} \quad \text { and } \quad B=Y\left(\left[\zeta^{\nu r} B_{s-\beta r}\right]_{r, s=0}^{k-1}\right) Z^{-1}
$$

for some $A_{0}, A_{1}, \ldots, A_{k-1} \in \mathbb{C}^{d_{1} \times d_{2}}$ and $B_{0}, B_{1}, \ldots, B_{k-1} \in \mathbb{C}^{d_{2} \times d_{3}}$. Therefore

$$
\begin{equation*}
A B=X\left(\left[\zeta^{\mu r} A_{s-\alpha r}\right]_{r, s=0}^{k-1}\right)\left(\left[\zeta^{\nu r} B_{s-\beta r}\right]_{r, s=0}^{k-1}\right) Z^{-1} \tag{74}
\end{equation*}
$$

On the other hand, Theorem 5 implies that $A B$ is $(R, T, \alpha \beta, \alpha \mu+\nu)$-symmetric, so Theorem 16 implies that

$$
A B=X\left(\left[\zeta^{(\alpha \mu+\nu) r} C_{s-\alpha \beta r}\right]_{r, s=0}^{k-1}\right) Z^{-1}
$$

for suitable $C_{0}, C_{1}, \ldots, C_{k-1} \in \mathbb{C}^{d_{1} \times d_{3}}$. Computing the first row $(r=0)$ of the product between X and Z^{-1} in (74) yields

$$
C_{m}=\sum_{\ell=0}^{k-1} \zeta^{\nu \ell} A_{\ell} B_{m-\beta \ell}, \quad 0 \leq m \leq k-1
$$

This extends [16, Theorem 2], which in turn extended [1, Theorem 3.1]. Note that the assumption that $\operatorname{gcd}(\beta, k)=1$, which we imposed to obtain (25), is no longer required.

Remark 10 Letting $X=I_{n d_{1}}, Y=I_{n d_{2}}, Z=I_{n d_{3}}$, and $\mu=\nu=0$, we see from Remark 9 that if $A=\left[A_{s-\alpha r}\right]_{r, s=0}^{k-1}$ and $B=\left[B_{s-\beta r}\right]_{r, s=0}^{k-1}$ with $\alpha \beta \equiv 1$ $(\bmod k)$, then

$$
A B=\left[C_{s-r}\right]_{r, s=0}^{k-1} \quad \text { with } \quad C_{m}=\sum_{\ell=0}^{k-1} A_{\ell} B_{m-\beta \ell} \quad 0 \leq m \leq k-1
$$

This generalizes a well known result; namely, the product of 1-circulants is a 1-circulant.

Remark 11 The conclusions of Theorem 6 can also be made more explicit if R and S are as in (72) and unitary. If $A \in \mathbb{C}^{k: d_{1} \times d_{2}}$ is (R, S, α, μ)-symmetric and $B \in \mathbb{C}^{k: d_{1} \times d_{2}}$ is (R, S, α, ν)-symmetric, then Theorem 16 implies that

$$
\begin{equation*}
A=X\left(\left[\zeta^{\mu r} A_{s-\alpha r}\right]_{r, s=0}^{k-1}\right) Y^{*} \quad \text { and } \quad B=X\left(\left[\zeta^{\nu r} B_{s-\alpha r}\right]_{r, s=0}^{k-1}\right) Y^{*} \tag{75}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
A B^{*}=X\left(\left[\zeta^{\mu r} A_{s-\alpha r}\right]_{r, s=0}^{k-1}\right)\left(\left[\zeta^{-\nu s} B_{r-\alpha s}^{*}\right]_{r, s=0}^{k-1}\right) X^{*} \tag{76}
\end{equation*}
$$

On the other hand, Theorem 6 and Remark 1 imply that $A B^{*}$ is $(R, R, 1, \mu-\nu)$ symmetric. Hence, Theorem 16 implies that

$$
A B^{*}=X\left(\left[\zeta^{(\mu-\nu) r} C_{s-r}\right]_{r, s=0}^{k-1}\right) X^{*}
$$

with $C_{0}, C_{1}, \ldots, C_{k-1} \in \mathbb{C}^{d_{1} \times d_{1}}$. Computing the first row of the product between X and X^{*} in (76) yields

$$
C_{m}=\zeta^{-\nu m} \sum_{\ell=0}^{k-1} A_{\ell} B_{\ell-\alpha m}^{*}, \quad 0 \leq m \leq k-1
$$

As noted in Remark 1, we did not need to assume that $\operatorname{gcd}(\alpha, k)=1$ in this argument.

From (75),

$$
\begin{equation*}
B^{*} A=Y\left(\left[\zeta^{-\nu s} B_{r-\alpha s}^{*}\right]_{r, s=0}^{k-1}\right)\left(\left[\zeta^{\mu r} A_{s-\alpha r}\right]_{r, s=0}^{k-1}\right) Y^{*} \tag{77}
\end{equation*}
$$

Now suppose $\operatorname{gcd}(\alpha, k)=1$ and $\alpha \beta \equiv 1(\bmod k)$. Then Theorem 6 implies that $B^{*} A$ is $(S, 1, \beta(\mu-\nu))$-symmetric. Hence, Theorem 16 implies that

$$
B^{*} A=Y\left(\left[\zeta^{\beta(\mu-\nu) r} D_{s-r}\right]_{r, s=0}^{k-1}\right) Y^{*}
$$

with $D_{0}, D_{1}, \ldots, D_{k-1} \in \mathbb{C}^{d_{2} \times d_{2}}$. Computing the first row of the product between Y and Y^{*} in (77) yields

$$
D_{m}=\sum_{\ell=0}^{k-1} \zeta^{\ell(\mu-\nu)} B_{-\alpha \ell}^{*} A_{m-\alpha \ell}, \quad 0 \leq m \leq k-1
$$

Replacing ℓ by $-\beta \ell$ simplifies this to

$$
D_{m}=\sum_{\ell=0}^{k-1} \zeta^{-\beta \ell(\mu-\nu)} B_{\ell}^{*} A_{m+\ell}, \quad 0 \leq m \leq k-1
$$

This extends [16, Corollary 2], which in turn extended [12, Corollary 1].

9 Acknowledgement

I thank Professor Irwin S. Pressman for comments that led to improvements of this paper.

References

[1] C. M. Ablow, J. L. Brenner, Roots and canonical forms for circulant matrices, Trans. Amer. Math. Soc. 107 (1963) 360-376.
[2] A. L. Andrew, Eigenvectors of certain matrices, Linear Algebra Appl. 7 (1973) 151-162.
[3] A. L. Andrew, Solution of equations involving centrosymmetric matrices, Technometrics 15 (1973) 405-407.
[4] A. L. Andrew, Centrosymmetric matrices, SIAM Review 40 (1998) 697-698.
[5] A. Ben-Israel, T. N. E. Greville, Generalized Inverses (Second Edition), Springer (2003).
[6] H.-C. Chen, A. Sameh, A matrix decomposition method for orthotropic elasticity problems, SIAM J. Matrix Anal. Appl. 10 (1989), 39-64.
[7] H.-C. Chen, Circulative matrices of degree θ, SIAM J. Matrix Anal. Appl. 13 (1992) 1172-1188.
[8] P. J. Davis, Cyclic transformations of polygons and the generalized inverse, Canad. J. Math. 29 (1977) 756-770.
[9] I. J. Good, The inverse of a centrosymmetric matrix, Technometrics 12 (1970) 925-928.
[10] G. L. Li, Z. H. Feng, Mirrorsymmetric matrices, their basic properties, and an application on odd/even decomposition of symmetric multiconductor transmission lines, SIAM J. Matrix Anal. Appl. 24 (2002) 78-90.
[11] I. S. Pressman, Matrices with multiple symmetry properties: applications of centrohermitian and perhermitian matrices, Linear Algebra Appl. 284 (1998) 239-258.
[12] W. T. Stallings, T. L. Boullion, The pseudoinverse of an r-circulant matrix, Proc. Amer. Math. Soc. 34 (1972) 385-388.
[13] D. Tao, M. Yasuda, A spectral characterization of generalized real symmetric centrosymmetric and generalized real symmetric skew-centrosymmetric matrices, SIAM J. Matrix Anal. Appl. 23 (2002) 885-895.
[14] W. F. Trench, Characterization and properties of matrices with generalized symmetry or skew symmetry, Linear Algebra Appl. 377 (2004) 207-218.
[15] W. F. Trench, Characterization and properties of matrices with k involutory symmetries, Linear Algebra Appl. 429, Issues 8-9 (2008) 22782290.
[16] W. F. Trench, Properties of unilevel block circulants, Linear Algebra Appl. 430 (2009) 20122025.
[17] W.F.Trench, Properties of multilevel block circulants, Linear Algebra Appl. 431 (2009) 1833-1847.
[18] M. Yasuda, A Spectral Characterization of Hermitian Centrosymmetric and Hermitian Skew-Centrosymmetric K-Matrices; SIAM Journal on Matrix Analysis and Applications, Volume 25, No. 3 (2003) pp 601-605.
[19] J. R. Weaver, Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues, eigenvectors, American Mathematical Monthly 92 (1985) 711-717.

[^0]: *e-mail:wtrench@trinity.edu

