Asymptotic preconditioning of linear homogeneous systems of differential equations

William F. Trench*

Trinity University, San Antonio, Texas 78212-7200, USA Mailing address: 659 Hopkinton Road, Hopkinton, NH 03229 USA

> Linear Algebra and Its Applications Volume 434, Issue 7, 2011, pp. 1631–1637

Abstract

We consider the asymptotic behavior of solutions of a linear differential system x' = A(t)x, where A is continuous on an interval $[a, \infty)$. We are interested in the situation where the system may not have a desirable asymptotic property such as stability, strict stability, uniform stability, or linear asymptotic equilibrium, but its solutions can be written as x = Pu, where P is continuously differentiable on $[a, \infty)$ and u is a solution of a system u' = B(t)u that has the property in question. In this case we say that P preconditions the given system for the property in question.

MSC: 15A99; 34C11; 34C41;

Keywords: asymptotic behavior; linear differential system; linear asymptotic equilibrium; strictly stable; uniformly stable

©2010 William F. Trench, all rights reserved

1 Introduction

In this paper $J = [a, \infty)$ and \mathbb{C}^n , $\mathbb{C}^{n \times n}$, $\mathbb{C}^n_0(J)$, $\mathbb{C}^{n \times n}_0(J)$, $\mathbb{C}^n_1(J)$, and $\mathbb{C}^{n \times n}_1(J)$ are respectively the sets of n-vectors with complex entries, $n \times n$ matrices with complex entries, continuous complex n-vector functions on J, continuous complex $n \times n$ matrix functions on J, continuously differentiable n-vector functions on J, and continuously differentiable $n \times n$ complex matrix functions on J. ("Complex" and " \mathbb{C} " can

^{*}e-mail:wtrench@trinity.edu

just as well be replaced by "real" and " \mathbb{R} .") If $\xi \in \mathbb{C}^n$ and $C \in \mathbb{C}^{n \times n}$ then $\|\xi\|$ is a vector norm and $\|C\|$ is the corresponding induced matrix norm; i.e., $\|C\| = \max \{\|C\xi\| \mid \|\xi\| = 1\}$. Throughout the paper $A \in \mathbb{C}_0^{n \times n}(J)$, \mathcal{S}_A is the set of solutions of

$$x' = A(t)x, \quad t \in \mathcal{J},\tag{1}$$

$$\mathcal{J} = \{(t,\tau) \mid a \le \tau \le t\}, \text{ and } \mathcal{R} = \{R \in \mathbb{C}_1^{n \times n}(\mathcal{J}) \mid R^{-1} \in \mathbb{C}_1^{n \times n}(\mathcal{J})\}.$$

We recall that if $X \in \mathbb{C}_1^{n \times n}(\mathcal{J})$ satisfies X' = A(t)X, $t \in \mathcal{J}$, then either X(t) is invertible for all $t \in \mathcal{J}$ or X(t) is noninvertible for all $t \in \mathcal{J}$. In the first case X is said to be a fundamental matrix for (1), and $x \in \mathcal{S}_A$ if and only if $x = X(t)\xi$ for some ξ in \mathbb{C}^n or, equivalently,

$$x(t) = X(t)X^{-1}(\tau)x(\tau)$$
 for all $t, \tau \in \mathcal{J}$.

We begin with some standard definitions.

Definition 1

- (a) Eq. (1) is stable if for each $\tau \in \mathcal{J}$ there is a constant M_{τ} such that $||x(t)|| \le M_{\tau}||x(\tau)||$ for all $t \in \mathcal{J}$ and $x \in \mathcal{S}_A$.
- **(b)** Eq. (1) is strictly stable if there is a constant M such that $||x(t)|| \le M ||x(\tau)||$ for all $t, \tau \in \mathcal{J}$ and $x \in \mathcal{S}_A$.
- (c) Eq. (1) is uniformly stable if there is a constant M such that $||x(t)|| \le M ||x(\tau)||$ for all $(t, \tau) \in \mathcal{J}$ and $x \in \mathcal{S}_A$.
- (d) Eq. (1) is uniformly asymptotically stable if there are constants M and $\nu > 0$ such that $||x(t)|| \le M ||x(\tau)|| e^{-\nu(t-\tau)}$ for all $(t, \tau) \in \mathcal{J}$ and $x \in \mathcal{S}_A$.
- (e) Eq. (1) has linear asymptotic equilibrium if every nontrivial solution of (1) approaches a nonzero constant vector as $t \to \infty$.

It is convenient to include (c) and (d) in the following definition, which may be new. Let ρ be continuous and positive on \mathcal{J} and suppose that

$$\rho(t,t) = 1 \text{ and } \rho(t,\tau) \le \rho(t,s)\rho(s,\tau), \quad a \le \tau \le s \le t. \tag{2}$$

We say that (1) is ρ -stable if there is a constant M such that

$$||x(t)|| \le M||x(\tau)||/\rho(t,\tau)$$
 for all $(t,\tau) \in \mathcal{J}$ and $x \in \mathcal{S}_A$.

We consider the following problem: given a system that does not have one of the properties defined above, is it possible to analyze (1) in terms of a related system that has the property?

Henceforth P is a given member of \mathcal{R} . We offer the following definition.

Definition 2

(a) Eq. (1) is stable relative to P if for each $\tau \in \mathcal{J}$ there is a constant M_{τ} such that

$$||P^{-1}(t)x(t)|| \le M_{\tau}||P^{-1}(\tau)x(\tau)||$$
 for all $t, \tau \in \mathcal{J}$ and $x \in \mathcal{S}_A$.

(b) Eq. (1) is strictly stable relative to P if there is a constant M such that

$$||P^{-1}(t)x(t)|| \le M||P^{-1}(\tau)x(\tau)||$$
 for all $t, \tau \in \mathcal{J}$ and $x \in \mathcal{S}_A$.

(c) Eq. (1) is ρ -stable relative to P if there is a constant M such that

$$||P^{-1}(t)x(t)|| < M||P^{-1}(\tau)x(\tau)||/\rho(t,\tau)$$
 for all $(t,\tau) \in \mathcal{J}$ and $x \in \mathcal{S}_A$.

(d) Eq. (1) has linear asymptotic equilibrium relative to P if $\lim_{t\to\infty} P^{-1}(t)x(t)$ exists and is nonzero for every nontrivial $x\in\mathcal{S}_A$.

Lemma 1 If $x \in \mathbb{C}_1^n(J)$ and $u = P^{-1}x$, then x' = Ax, $t \in J$, if and only if

$$u' = P^{-1}(AP - P')u, \quad t \in \mathcal{J},\tag{3}$$

or, equivalently, if and only if $x = PU\xi$ where U is a fundamental matrix for (3) and $\xi \in \mathbb{C}$.

PROOF. Since x = Pu, x' = Pu' + P'u and Ax = APu, so x' = Ax if and only if Pu' + P'u = APu, which is equivalent to (3). \square

To illustrate the problem that we study here, we cite a theorem attributed by Wintner [8] to Bôcher, which says that (1) has linear asymptotic equilibrium if $\int_{-\infty}^{\infty} \|A(t)\| dt < \infty$. This theorem does not apply to (1) if $\int_{-\infty}^{\infty} \|A(t)\| dt = \infty$, but, by Lemma 1 it does imply that (1) has linear asymptotic equilibrium relative to P if

$$\int_{-\infty}^{\infty} \|P^{-1}(AP - P')\| dt < \infty.$$

Adapting terminology commonly used in computational linear algebra, we will in this case refer to the transformation $u = P^{-1}x$ as asymptotic preconditioning, and we say that P preconditions (1) for asymptotic equilibrium. More generally, if \mathcal{P} is a given property of linear differential systems (for example, one of the properties mentioned earlier), we say that P preconditions (1) for property \mathcal{P} if (3) has property \mathcal{P} or, equivalently, if (1) has property \mathcal{P} relative to P.

This paper is strongly influenced by Conti's work [2, 3, 4] on t_{∞} -similarity of systems of differential equations and our extensions [5, 6] of his results. However, we believe that our reformulation of these results in the context of asymptotic preconditioning is new and useful. We offer the paper not as a breakthrough in the asymptotic theory of linear differential systems, but as an expository approach to what we believe is a new application of standard results on this subject.

2 Preliminary considerations

The proof of most of the following lemma can be pieced together from applying various results in our references to the system (3); however, in keeping with our expository goal, we present a self-contained proof here.

Lemma 2 *Let U be a fundamental matrix for* (3). *Then*:

- (a) Eq. (1) is stable relative to P if and only if U is bounded on \mathcal{J} .
- **(b)** Eq. (1) is ρ -stable relative to P if and only if there is a constant M such that

$$||U(t)U^{-1}(\tau)|| \le M/\rho(t,\tau), \quad (t,\tau) \in \mathcal{J}. \tag{4}$$

(c) Eq. (1) is strictly stable relative to P if and only if ||U|| and $||U^{-1}||$ are bounded on \mathcal{J} or, equivalently, if and only if there is a constant M such that

$$||U(t)U^{-1}(\tau)|| \le M, \quad t, \tau \in \mathcal{J}. \tag{5}$$

(d) Eq. (1) has linear asymptotic equilibrium relative to P if and only if $\lim_{t\to\infty} U(t)$ exists and is invertible.

PROOF. From Lemma 1, it suffices to to show that the assumptions (a)–(d) are respectively equivalent to stability, ρ -stability, strict stability, and linear asymptotic equilibrium of (3). Since every solution of (3) can be written as $u(t) = U(t)\xi$ with $\xi \in \mathbb{C}^n$, (d) is obvious. For the rest of the proof, let \mathcal{U} denote the set of all solutions of (3). Then $u \in \mathcal{U}$ if and only if

$$u(t) = U(t)U^{-1}(\tau)u(\tau) \text{ for all } t, \tau \in \mathcal{J}.$$
 (6)

If τ is arbitrary but fixed and $K_{\tau} = ||U^{-1}(\tau)||$, then (6) implies that

$$||u(t)|| \le K_{\tau} ||U(t)|| ||u(\tau)||$$
 for all $t, \tau \in \mathcal{J}$ and $u \in \mathcal{U}$.

This implies sufficiency for (a). Also from (6),

$$||u(t)|| < ||U(t)U^{-1}(\tau)|||u(\tau)||$$
 for all $t, \tau \in \mathcal{J}$ and $u \in \mathcal{U}$.

Therefore (4) implies that

$$||u(t)|| \le M||u(\tau)||/\rho(t,\tau)$$
 for all $(t,\tau) \in \mathcal{J}$ and $u \in \mathcal{U}$,

which implies sufficiency for (b). Moreover, (5) implies that

$$||u(t)|| \le M ||u(\tau)||$$
 for all $t, \tau \in J$ and $u \in \mathcal{U}$

which implies sufficiency for (c).

We use contrapositive arguments to establish necessity in (a), (b), and (c). In all three cases let M be an arbitrary positive constant. For (a), if U is unbounded and τ is fixed in \mathcal{J} , then $U(t)U^{-1}(\tau)$ is also unbounded as a function of t (since $U(t) = U(t)U^{-1}(\tau)U(\tau)$). Therefore there is a $t_0 \in \mathcal{J}$ and a $\xi \in \mathbb{C}^n$ such that $\|U(t_0)U^{-1}(\tau)\xi\| > M\|\xi\|$. Hence, if $u_0(t) = U(t)U^{-1}(\tau)\xi$ then $u_0 \in \mathcal{U}$ and

$$||u(t_0)|| = ||U(t_0)U^{-1}(\tau)\xi|| > M||\xi|| = M||u(\tau)||;$$

hence (3) is not stable.

For (**b**), if there is a $(t_0, \tau_0) \in \mathcal{J}$ such that

$$||U(t_0, \tau_0)|| > M/\rho(t_0, \tau_0),$$

then

$$||U(t_0, \tau_0)\xi|| > M||\xi||/\rho(t_0, \tau_0)$$

for some $\xi \in \mathbb{C}^n$. If $u(t) = U(t)U^{-1}(\tau_0)\xi$ then

$$||u(t_0)|| = ||U(t_0)U^{-1}(\tau_0)\xi|| > M||\xi||/\rho(t_0, \tau_0) = M||u(\tau_0)||/\rho((t_0, \tau_0)),$$

so (3) is not ρ -stable. A similar argument shows that if (3) is strictly stable, then (5) holds for some M.

Eq. (5) obviously holds for some M if U and U^{-1} are bounded on \mathcal{J} . It remains to show that (5) implies that U and U^{-1} are bounded on \mathcal{J} . If $\tau \in \mathcal{J}$ is fixed and t is arbitrary, then (5) implies that

$$||U(t)|| = ||U(t)U^{-1}(\tau)U(\tau)|| \le ||U(t)U^{-1}(\tau)|| ||U(\tau)|| \le M||U(\tau)||,$$

so U is bounded on I. To complete the proof, we must show that if U^{-1} is unbounded then (5) is false for every M. Let $t_0 \in \mathcal{J}$ be fixed and let $\sigma = \min \{ \|U(t_0)\eta\| \mid \|\eta\| = 1 \}$, which is positive, since $U(t_0)$ is invertible. If U^{-1} is unbounded on \mathcal{J} there is a $\tau \in \mathcal{J}$ and $\xi \in \mathbb{C}^n$ such that $\|\xi\| = 1$ and $\|U^{-1}(\tau)\xi\| > M/\sigma$. Then

$$||U(t_0)U^{-1}(\tau)\xi|| > \sigma ||U^{-1}(\tau)\xi|| > M||\xi||, \quad \Box$$

so $||U(t_0)U^{-1}(\tau)|| > M$.

Lemma 3 Suppose that $R, Q \in \mathcal{R}$ and let

$$F = R' - Q'Q^{-1}R + RP^{-1}(P' - AP).$$
(7)

Then $X = PU \in \mathbb{C}^{n \times n}(\mathcal{J})$ satisfies X' = AX, $t \in \mathcal{J}$, if and only if

$$(O^{-1}RU)' = O^{-1}FU, \quad t \in \mathcal{J}. \tag{8}$$

PROOF. From (7),

$$(Q^{-1}RU)' = Q^{-1}(R'U - Q'Q^{-1}RU + RU')$$

= $Q^{-1}FU + Q^{-1}R(U' - P^{-1}(P' - AP)U),$

so Lemma 1 implies the conclusion. \Box

This lemma provides an infinite family of linear differential systems, all with the same solutions; namely, u is a solution of (3) (and consequently x = Pu is a solution of (1)) if and only if u is a solution of *every* system of the form (8). Therefore, if (8) has a given property \mathcal{P} for *some suitably chosen* R and Q in \mathcal{R} , then P preconditions (1) for \mathcal{P} .

3 Main results

Theorem 1 Suppose that there are $R, Q \in \mathcal{R}$ such that R and R^{-1} are bounded on \mathcal{S} and

$$\int_{-\infty}^{\infty} \|F(s)\| \, ds < \infty. \tag{9}$$

Then:

(a) P preconditions Eq. (1) for ρ -stability if there is a constant M such that

$$||Q(t)Q^{-1}(\tau)|| \le M/\rho(t,\tau), \quad a \le \tau \le t.$$
 (10)

(b) P preconditions Eq. (1) for strict stability if Q and Q^{-1} are bounded on \mathcal{I} .

PROOF. Integrating (8) yields

$$U(t) = R^{-1}(t)Q(t)\left(Q^{-1}(\tau)R(\tau)U(\tau) + \int_{\tau}^{t} Q^{-1}(s)F(s)U(s)\,ds\right),\tag{11}$$

 $t, \tau \in \mathcal{J}$. Therefore

$$U(t)U^{-1}(\tau) = R^{-1}(t)Q(t)\left(Q^{-1}(\tau)R(\tau) + \int_{\tau}^{t} Q^{-1}(s)F(s)U(s)U^{-1}(\tau)\,ds\right). \tag{12}$$

To prove (a), let

$$g(t,s) = ||Q(t)Q^{-1}(s)||\rho(t,s)$$
 and $h(s,\tau) = ||U(s)U^{-1}(\tau)||\rho(s,\tau)$. (13)

By Lemma 2(b), we must show that $h(t, \tau)$ is bounded for $(t, \tau) \in \mathcal{J}$. If $\tau \leq s \leq t$ then (2) implies that

$$\rho(t,\tau)\|Q(t)Q^{-1}(s)F(s)U(s)U^{-1}(\tau)\| < g(t,s)\|F(s)\|h(s,\tau).$$

Since R and R^{-1} are bounded, multiplying both sides of (12) by $\rho(t,\tau)$ yields the inequality

$$h(t,\tau) \le c_1 g(t,\tau) + c_2 \int_{\tau}^{t} g(t,s) \|F(s)\| h(s,\tau) ds, \quad a \le \tau \le t,$$

for suitable constants c_1 and c_2 . Now (10) and (13) imply that

$$h(t,\tau) \le M \left[c_1 + c_2 \int_{\tau}^{t} \|F(s)\| h(s,\tau) \, ds \right], \quad a \le \tau \le t.$$
 (14)

Therefore

$$\frac{c_2 h(t,\tau) \|F(t)\|}{c_1 + c_2 \int_{\tau}^{t} \|F(s)\| h(s,\tau) \, ds} \le M c_2 \|F(r)\| \quad a \le \tau \le r. \tag{15}$$

Integrating this with respect to t yields

$$\log\left(c_1 + c_2 \int_{\tau}^{t} \|F(s)\|h(s,\tau) \, ds\right) - \log c_1 \le Mc_2 \int_{\tau}^{t} \|F(s)\| \, ds. \tag{16}$$

This and (14) imply that

$$\sup\left\{\|h(t,\tau)\|\,\left|\,(t,\tau)\in J\right.\right\} \le Mc_1 \exp\left(M\int_a^\infty \|F(s)\|\,ds\right) < \infty,\tag{17}$$

from (9). This completes the proof of (a).

To prove (b), replace (13) by

$$g(t,s) = ||Q(t)Q^{-1}(s)||$$
 and $h(s,\tau) = ||U(s)U^{-1}(\tau)||$.

Now we must show that $h(t, \tau)$ is bounded for all $t, \tau \in \mathcal{J}$. If (1) is strictly stable then there is a constant M such that $g(t, s) \leq M$ for $s, t \geq a$. This, (12) and the boundedness of R and R^{-1} imply that

$$h(t,\tau) \le M \left[c_1 + c_2 \left| \int_{\tau}^{t} \|F(s)\| h(s,\tau) \, ds \right| \right], \quad t,\tau \ge a,$$

for suitable positive constants c_1 and c_2 . Now the argument used in the proof of (a) again inplies (17). If $a \le t \le \tau$ then (14)–(17) all hold with t and τ interchanged, which completes the proof of (b). \square

Remark 1 The use of logarithmic integration that produced (16) was motivated by the proof of Gronwall's inequality [1, p. 35], a standard tool for studying the asymptotic behavior of solutions of differential equations.

Theorem 2 In addition to the assumptions of Theorem 1(b), suppose that

$$\lim_{t \to \infty} R^{-1}(t)Q(t) = J \quad \text{is invertible.}$$
 (18)

Then P preconditions (1) for linear asymptotic equilibrium.

PROOF. From (11) and (18), $\lim_{t\to\infty} U(t) = V$, where

$$V = J\left(Q^{-1}(\tau)R(\tau)U(\tau) + \int_{\tau}^{\infty} Q^{-1}(s)F(s)U(s)\,ds\right)$$

and the integral converges because of (9), the boundedness of Q^{-1} (assumed) and U (from Theorem 1(b)). Now we must show that V is inverible. Since Theorem 1(b) implies that (1) is strictly stable relative to P, there is a constant K such that $||U^{-1}|| < K$, $t \in \mathcal{J}$. If $\xi \in \mathbb{C}^n$ then

$$\|\xi\| = \|U^{-1}(t)U(t)\xi\| < \|U^{-1}(t)\|\|U(t)\xi\| < K\|U(t)\xi\|, \quad t < a,$$

so

$$\|\xi\| \le K \lim_{t \to \infty} \|U(t)\xi\| = K\|V\xi\|.$$

Therefore $V\xi = 0$ if and only if $\xi = 0$, so V is invertible. \square

Theorem 3 If there are Q and R in \mathcal{R} such that $R^{-1}Q$ is bounded and

$$\int_{-\infty}^{\infty} \|Q^{-1}(s)F(s)\| \, ds < \infty,$$

then P preconditions (1) for stability; moreover, if (18) holds then P preconditions (1) for linear asymptotic equilibrium.

PROOF. Our assumptions imply that if $0 < \rho < 1$ then there is a $\tau > a$ such that

$$||R^{-1}(t)Q(t)|| \int_{\tau}^{\infty} ||Q^{-1}(s)F(s)|| ds \le \rho, \quad t \ge \tau.$$

Let \mathcal{B} be the Banach space of bounded continuous $n \times n$ vector functions on $\mathcal{J} = [\tau, \infty)$ with norm $||U||_{\mathcal{B}} = \sup_{t \in \mathcal{J}} ||U(t)||$, and define $\mathcal{T} : \mathcal{B} \to \mathcal{B}$ by

$$(\mathcal{T}U)(t) = R^{-1}(t)Q(t)\left(C - \int_{t}^{\infty} Q^{-1}(s)F(s)U(s)\,ds\right)$$

where $C \in \mathbb{C}^{n \times n}$ is invertible. If $U_1, U_2 \in \mathcal{B}$ then

$$(\mathcal{T}U_1)(t) - (\mathcal{T}U_2)(t) \le \|R^{-1}(t)Q(t)\| \int_t^\infty \|Q^{-1}(s)F(s)\| \|U_1(s) - U_2(s)\| ds,$$

so $\|\mathcal{T}U_1 - \mathcal{T}U_2\|_{\mathcal{B}} \le \rho \|U_1 - U_2\|_{\mathcal{B}}$. Therefore, by the contraction mapping principal [7, p. 545], there is a $U \in \mathcal{B}$ such that

$$U(t) = R^{-1}(t)Q(t)\left(C - \int_{t}^{\infty} Q^{-1}(s)F(s)U(s)\,ds\right).$$

Since U satisfies (8), Theorem 1 implies that X = PU satisfies (1). Therefore P preconditions (1) for stability. Finally, if (18) holds then $\lim_{t\to\infty} U(t) = JC$ is invertible, so P preconditions (1) for linear asymptotic equilibrium. \square

Remark 2 Strictly speaking, our proof of Theorem 3 defines U only on the interval $[\tau, \infty)$, which has the appearance of leaving a gap if $\tau > a$. However, in this case we appeal to the elementary theory of linear differential systems, which guarantees that U can extended uniquely over J as an invertible solution of $U' = P^{-1}(AP - P')U$.

From (7),

$$Q^{-1}F = (Q^{-1}R)' + (Q^{-1}R)P^{-1}(P' - AP).$$

Therefore we can reformulate Theorem 3 as follows.

Theorem 4 If there is a $T \in \mathcal{R}$ such that T^{-1} is bounded and

$$\int_{-\infty}^{\infty} ||T' + TP^{-1}(P' - AP)|| \, ds < \infty,$$

then P preconditions (1) for stability; moreover, if $\lim_{t\to\infty} T(t)$ exists and is invertible then P preconditions (1) for linear asymptotic equilibrium.

The assertion concerning linear asymptotic equilbrium can also be proved by applying a theorem of Conti [3] to (3).

References

- [1] R. Bellman, Stability theory of differential equations, McGraw-Hill Book Company, New York, Toronto, London, 1953.
- [2] R. Conti, Sulla *t*-similitudine tra matrici e la stabilitá dei sistemi differenziale lineari, Atti Acc. Naz. Lincei, Rend. Cl. Fis. Mat. Nat. 49 (1955) 247-250.
- [3] R. Conti, Equazioni differenziale lineari asintoticamente equivalenti a $\dot{x}=0$, Rev. Mat. Univ. Parma 5 (1979) 847–853.
- [4] G. Sansone and R. Conti, Nonlinear Differential Equations, Macmillan, New York, 1965.
- [5] W. F. Trench, On t_{∞} quasi-similarity of linear systems, Ann. di Mat. Pura ed Appl. 142 (1985) 293–302.
- [6] W. F. Trench, Extensions of a theorem of Wintner on systems with asymptotically constant solutions, Trans. Amer. Math. Soc. 293 (1986) 477–483.
- [7] W. F. Trench, Introduction to Real Analysis, Pearson Education, Upper Saddle River, New Jersey, 2003.
- [8] A. Wintner, On a theorem of Bôcher in the theory of ordinary linear differential equations, Amer. J. Math. Soc. 76 (1954) 183–190.