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Abstract

We consider the asymptotic behavior of solutions of a linear differential system

x0 D A.t/x, where A is continuous on an interval Œa; 1/. We are interested in the

situation where the system may not have a desirable asymptotic property such as

stability, strict stability, uniform stability, or linear asymptotic equilibrium, but

its solutions can be written as x D P u, where P is continuously differentiable

on Œa; 1/ and u is a solution of a system u0 D B.t/u that has the property in

question. In this case we say that P preconditions the given system for the property

in question.
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1 Introduction

In this paper I D Œa; 1/ and Cn, Cn�n, Cn
0.I/, Cn�n

0 .I/, Cn
1.I/, and Cn�n

1 .I/ are

respectively the sets of n-vectors with complex entries, n � n matrices with complex

entries, continuous complex n-vector functions on I, continuous complex n � n ma-

trix functions on I, continuously differentiable n-vector functions on I, and continu-

ously differentiable n � n complex matrix functions on I. (“Complex” and “C” can
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just as well be replaced by “real" and “R.”) If � 2 C
n and C 2 C

n�n then k�k

is a vector norm and kCk is the corresponding induced matrix norm; i.e., kCk D

max
˚

kC�k
ˇ

ˇ k�k D 1
	

. Throughout the paper A 2 Cn�n
0 .I/, SA is the set of solutions

of

x0 D A.t/x; t 2 I; (1)

J D
˚

.t; �/
ˇ

ˇ a � � � t
	

; and R D
˚

R 2 C
n�n
1 .I/

ˇ

ˇ R�1 2 C
n�n
1 .I/

	

:

We recall that if X 2 Cn�n
1 .I/ satisfies X 0 D A.t/X , t 2 I, then either X.t/ is

invertible for all t 2 I or X.t/ is noninvertible for all t 2 I. In the first case X is said

to be a fundamental matrix for (1), and x 2 SA if and only if x D X.t/� for some � in

Cn or, equivalently,

x.t/ D X.t/X�1.�/x.�/ for all t; � 2 I:

We begin with some standard definitions.

Definition 1

(a) Eq. (1) is stable if for each � 2 I there is a constant M� such that kx.t/k �

M� kx.�/k for all t 2 I and x 2 SA.

(b) Eq. (1) is strictly stable if there is a constant M such that kx.t/k � Mkx.�/k

for all t , � 2 I and x 2 SA:

(c) Eq. (1) is uniformly stable if there is a constant M such that kx.t/k � Mkx.�/k

for all .t; �/ 2 J and x 2 SA:

(d) Eq. (1) is uniformly asymptotically stable if there are constants M and � > 0

such that kx.t/k � Mkx.�/ke��.t��/ for all .t; �/ 2 J and x 2 SA:

(e) Eq. (1) has linear asymptotic equilibrium if every nontrivial solution of (1) ap-

proaches a nonzero constant vector as t ! 1:

It is convenient to include (c) and (d) in the following definition, which may be

new. Let � be continuous and positive on J and suppose that

�.t; t/ D 1 and �.t; �/ � �.t; s/�.s; �/; a � � � s � t: (2)

We say that (1) is �-stable if there is a constant M such that

kx.t/k � Mkx.�/k=�.t; �/ for all .t; �/ 2 J and x 2 SA:

We consider the following problem: given a system that does not have one of the

properties defined above, is it possible to analyze (1) in terms of a related system that

has the property?

Henceforth P is a given member of R: We offer the following definition.

Definition 2

(a) Eq. (1) is stable relative to P if for each � 2 I there is a constant M� such that

kP �1.t/x.t/k � M� kP �1.�/x.�/k for all t; � 2 I and x 2 SA:
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(b) Eq. (1) is strictly stable relative to P if there is a constant M such that

kP �1.t/x.t/k � MkP �1.�/x.�/k for all t; � 2 I and x 2 SA:

(c) Eq. (1) is �-stable relative to P if there is a constant M such that

kP �1.t/x.t/k � MkP �1.�/x.�/k=�.t; �/ for all .t; �/ 2 J and x 2 SA:

(d) Eq. (1) has linear asymptotic equilibrium relative to P if limt!1 P �1.t/x.t/

exists and is nonzero for every nontrivial x 2 SA:

Lemma 1 If x 2 Cn
1.I/ and u D P �1x; then x0 D Ax; t 2 I; if and only if

u0 D P �1.AP � P 0/u; t 2 I; (3)

or; equivalently; if and only if x D P U � where U is a fundamental matrix for (3) and

� 2 C:

PROOF. Since x D P u, x0 D P u0 C P 0u and Ax D AP u, so x0 D Ax if and only if

P u0 C P 0u D AP u, which is equivalent to (3).

To illustrate the problem that we study here, we cite a theorem attributed by Wintner

[8] to Bôcher, which says that (1) has linear asymptotic equilibrium if
R

1

kA.t/k dt <

1. This theorem does not apply to (1) if
R

1

kA.t/k dt D 1, but, by Lemma 1 it does

imply that (1) has linear asymptotic equilibrium relative to P if

Z

1

kP �1.AP � P 0/k dt < 1:

Adapting terminology commonly used in computational linear algebra, we will in this

case refer to the transformation u D P �1x as asymptotic preconditioning, and we say

that P preconditions (1) for asymptotic equilibrium. More generally, if P is a given

property of linear differential systems (for example, one of the properties mentioned

earlier), we say that P preconditions (1) for property P if (3) has property P or,

equivalently, if (1) has property P relative to P .

This paper is strongly influenced by Conti’s work [2, 3, 4] on t1-similarity of sys-

tems of differential equations and our extensions [5, 6] of his results. However, we

believe that our reformulation of these results in the context of asymptotic precondi-

tioning is new and useful. We offer the paper not as a breakthrough in the asymptotic

theory of linear differential systems, but as an expository approach to what we believe

is a new application of standard results on this subject.

2 Preliminary considerations

The proof of most of the following lemma can be pieced together from applying various

results in our references to the system (3); however, in keeping with our expository

goal, we present a self-contained proof here.
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Lemma 2 Let U be a fundamental matrix for (3). ThenW

(a) Eq: (1) is stable relative to P if and only if U is bounded on I.

(b) Eq: (1) is �-stable relative to P if and only if there is a constant M such that

kU.t/U �1.�/k � M=�.t; �/; .t; �/ 2 J: (4)

(c) Eq: (1) is strictly stable relative to P if and only if kU k and kU �1k are bounded

on I or; equivalently; if and only if there is a constant M such that

kU.t/U �1.�/k � M; t; � 2 I: (5)

(d) Eq: (1) has linear asymptotic equilibrium relative to P if and only if limt!1 U.t/

exists and is invertible.

PROOF. From Lemma 1, it suffices to to show that the assumptions (a)–(d) are respec-

tively equivalent to stability, �-stability, strict stability, and linear asymptotic equilib-

rium of (3). Since every solution of (3) can be written as u.t/ D U.t/� with � 2 Cn,

(d) is obvious. For the rest of the proof, let U denote the set of all solutions of (3).

Then u 2 U if and only if

u.t/ D U.t/U �1.�/u.�/ for all t; � 2 I: (6)

If � is arbitrary but fixed and K� D kU �1.�/k, then (6) implies that

ku.t/k � K� kU.t/kku.�/k for all t; � 2 I and u 2 U:

This implies sufficiency for (a). Also from (6),

ku.t/k � kU.t/U �1.�/kku.�/k for all t; � 2 I and u 2 U:

Therefore (4) implies that

ku.t/k � Mku.�/k=�.t; �/ for all .t; �/ 2 J and u 2 U;

which implies sufficiency for (b). Moreover, (5) implies that

ku.t/k � Mku.�/k for all t; � 2 I and u 2 U

which implies sufficiency for .c/.

We use contrapositive arguments to establish necessity in (a), (b), and (c). In

all three cases let M be an arbitrary positive constant. For (a), if U is unbounded

and � is fixed in I, then U.t/U �1.�/ is also unbounded as a function of t (since

U.t/ D U.t/U �1.�/U.�/). Therefore there is a t0 2 I and a � 2 Cn such that

kU.t0/U �1.�/�k > Mk�k. Hence, if u0.t/ D U.t/U �1.�/� then u0 2 U and

ku.t0/k D kU.t0/U �1.�/�k > Mk�k D Mku.�/kI

hence (3) is not stable.
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For (b), if there is a .t0; �0/ 2 J such that

kU.t0; �0/k > M=�.t0; �0/;

then

kU.t0; �0/�k > Mk�k=�.t0; �0/

for some � 2 Cn. If u.t/ D U.t/U �1.�0/� then

ku.t0/k D kU.t0/U �1.�0/�k > Mk�k=�.t0; �0/ D Mku.�0/k=�..t0; �0//;

so (3) is not �-stable. A similar argument shows that if (3) is strictly stable, then (5)

holds for some M .

Eq. (5) obviously holds for some M if U and U �1 are bounded on I. It remains

to show that (5) implies that U and U �1 are bounded on I. If � 2 I is fixed and t is

arbitrary, then (5) implies that

kU.t/k D kU.t/U �1.�/U.�/k � kU.t/U �1.�/kkU.�/k � MkU.�/k;

so U is bounded on I . To complete the proof, we must show that if U �1 is unbounded

then (5) is false for every M . Let t0 2 I be fixed and let � D min
˚

kU.t0/�k
ˇ

ˇ k�k D 1
	

,

which is positive, since U.t0/ is invertible. If U �1 is unbounded on I there is a � 2 I

and � 2 Cn such that k�k D 1 and kU �1.�/�k > M=� . Then

kU.t0/U �1.�/�k > �kU �1.�/�k > Mk�k;

so kU.t0/U �1.�/k > M .

Lemma 3 Suppose that R; Q 2 R and let

F D R0 � Q0Q�1R C RP �1.P 0 � AP /: (7)

Then X D P U 2 Cn�n.I/ satisfies X 0 D AX; t 2 I; if and only if

.Q�1RU /0 D Q�1F U; t 2 I: (8)

PROOF. From (7),

.Q�1RU /0 D Q�1.R0U � Q0Q�1RU C RU 0/

D Q�1F U C Q�1R
�

U 0 � P �1.P 0 � AP /U
�

;

so Lemma 1 implies the conclusion.

This lemma provides an infinite family of linear differential systems, all with the

same solutions; namely, u is a solution of (3) (and consequently x D P u is a solution

of (1)) if and only if u is a solution of every system of the form (8). Therefore, if (8)

has a given property P for some suitably chosen R and Q in R, then P preconditions

(1) for P .
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3 Main results

Theorem 1 Suppose that there are R; Q 2 R such that R and R�1 are bounded on I

and
Z

1

kF.s/k ds < 1: (9)

ThenW

(a) P preconditions Eq. (1) for �-stability if there is a constant M such that

kQ.t/Q�1.�/k � M=�.t; �/; a � � � t: (10)

(b) P preconditions Eq. (1) for strict stability if Q and Q�1 are bounded on I:

PROOF. Integrating (8) yields

U.t/ D R�1.t/Q.t/

�

Q�1.�/R.�/U.�/ C

Z t

�

Q�1.s/F.s/U.s/ ds

�

; (11)

t; � 2 I. Therefore

U.t/U �1.�/ D R�1.t/Q.t/

�

Q�1.�/R.�/ C

Z t

�

Q�1.s/F.s/U.s/U �1.�/ ds

�

:

(12)

To prove (a), let

g.t; s/ D kQ.t/Q�1.s/k�.t; s/ and h.s; �/ D kU.s/U �1.�/k�.s; �/: (13)

By Lemma 2(b), we must show that h.t; �/ is bounded for .t; �/ 2 J. If � � s � t

then (2) implies that

�.t; �/kQ.t/Q�1.s/F.s/U.s/U �1.�/k � g.t; s/kF.s/kh.s; �/:

Since R and R�1 are bounded, multiplying both sides of (12) by �.t; �/ yields the

inequality

h.t; �/ � c1g.t; �/ C c2

Z t

�

g.t; s/kF.s/kh.s; �/ ds; a � � � t;

for suitable constants c1 and c2. Now (10) and (13) imply that

h.t; �/ � M

�

c1 C c2

Z t

�

kF.s/kh.s; �/ ds

�

; a � � � t: (14)

Therefore

c2h.t; �/kF.t/k

c1 C c2

Z t

�

kF.s/kh.s; �/ ds

� Mc2kF.r/k a � � � r: (15)
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Integrating this with respect to t yields

log

�

c1 C c2

Z t

�

kF.s/kh.s; �/ ds

�

� log c1 � Mc2

Z t

�

kF.s/k ds: (16)

This and (14) imply that

sup
˚

kh.t; �/k
ˇ

ˇ .t; �/ 2 I
	

� Mc1 exp

�

M

Z

1

a

kF.s/k ds

�

< 1; (17)

from (9). This completes the proof of (a).

To prove (b), replace (13) by

g.t; s/ D kQ.t/Q�1.s/k and h.s; �/ D kU.s/U �1.�/k:

Now we must show that h.t; �/ is bounded for all t , � 2 I. If (1) is strictly stable

then there is a constant M such that g.t; s/ � M for s, t � a. This, (12) and the

boundedness of R and R�1 imply that

h.t; �/ � M

�

c1 C c2

ˇ

ˇ

ˇ

ˇ

Z t

�

kF.s/kh.s; �/ ds

ˇ

ˇ

ˇ

ˇ

�

; t; � � a;

for suitable positive constants c1 and c2. Now the argument used in the proof of (a)

again inplies (17). If a � t � � then (14)–(17) all hold with t and � interchanged,

which completes the proof of (b).

Remark 1 The use of logarithmic integration that produced (16) was motivated by the

proof of Gronwall’s inequality [1, p. 35], a standard tool for studying the asymptotic

behavior of solutions of differential equations.

Theorem 2 In addition to the assumptions of Theorem 1.b/; suppose that

lim
t!1

R�1.t/Q.t/ D J is invertible. (18)

Then P preconditions (1) for linear asymptotic equilibrium.

PROOF. From (11) and (18), limt!1 U.t/ D V , where

V D J

�

Q�1.�/R.�/U.�/ C

Z

1

�

Q�1.s/F.s/U.s/ ds

�

and the integral converges because of (9), the boundedness of Q�1 (assumed) and U

(from Theorem 1(b)). Now we must show that V is inverible. Since Theorem 1(b)

implies that (1) is strictly stable relative to P , there is a constant K such that kU �1k <

K, t 2 I. If � 2 Cn then

k�k D kU �1.t/U.t/�k � kU �1.t/kkU.t/�k � KkU.t/�k; t � a;

so

k�k � K lim
t!1

kU.t/�k D KkV �k:

Therefore V � D 0 if and only if � D 0, so V is invertible.
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Theorem 3 If there are Q and R in R such that R�1Q is bounded and
Z

1

kQ�1.s/F.s/k ds < 1;

then P preconditions (1) for stabilityI moreover; if (18) holds then P preconditions (1)

for linear asymptotic equilibrium:

PROOF. Our assumptions imply that if 0 < � < 1 then there is a � � a such that

kR�1.t/Q.t/k

Z

1

�

kQ�1.s/F.s/k ds � �; t � �:

Let B be the Banach space of bounded continuous n�n vector functions on I D Œ�; 1/

with norm kU kB D supt2I kU.t/k, and define T W B ! B by

.T U /.t/ D R�1.t/Q.t/

�

C �

Z

1

t

Q�1.s/F.s/U.s/ ds

�

where C 2 Cn�n is invertible. If U1, U2 2 B then

.T U1/.t/ � .T U2/.t/ � kR�1.t/Q.t/k

Z

1

t

kQ�1.s/F.s/kkU1.s/ � U2.s/k ds;

so kT U1 � T U2kB � �kU1 � U2kB . Therefore, by the contraction mapping principal

[7, p. 545], there is a U 2 B such that

U.t/ D R�1.t/Q.t/

�

C �

Z

1

t

Q�1.s/F.s/U.s/ ds

�

:

Since U satisfies (8), Theorem 1 implies that X D P U satisfies (1). Therefore P pre-

conditions (1) for stability. Finally, if (18) holds then limt!1 U.t/ D JC is invertible,

so P preconditions (1) for linear asymptotic equilibrium.

Remark 2 Strictly speaking, our proof of Theorem 3 defines U only on the interval

Œ�; 1/, which has the appearance of leaving a gap if � > a. However, in this case we

appeal to the elementary theory of linear differential systems, which guarantees that U

can extended uniquely over I as an invertible solution of U 0 D P �1.AP � P 0/U .

From (7),

Q�1F D .Q�1R/0 C .Q�1R/P �1.P 0 � AP /:

Therefore we can reformulate Theorem 3 as follows.

Theorem 4 If there is a T 2 R such that T �1 is bounded and
Z

1

kT 0 C TP �1.P 0 � AP /k ds < 1;

then P preconditions (1) for stabilityImoreover; if limt!1 T .t/ exists and is invertible

then P preconditions (1) for linear asymptotic equilibrium:

The assertion concerning linear asymptotic equilbrium can also be proved by ap-

plying a theorem of Conti [3] to (3).
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