Asymptotic preconditioning of linear homogeneous systems of differential equations

William F. Trench*

Trinity University, San Antonio, Texas 78212-7200, USA
Mailing address: 659 Hopkinton Road, Hopkinton, NH 03229 USA

Abstract

We consider the asymptotic behavior of solutions of a linear differential system
\[x' = A(t)x, \]
where \(A \) is continuous on an interval \([a, \infty)\). We are interested in the situation where the system may not have a desirable asymptotic property such as stability, strict stability, uniform stability, or linear asymptotic equilibrium, but its solutions can be written as \(x = Pu \), where \(P \) is continuously differentiable on \([a, \infty)\) and \(u \) is a solution of a system \(u' = Bu \) that has the property in question. In this case we say that \(P \) preconditions the given system for the property in question.

MSC: 15A99; 34C11; 34C41;

Keywords: asymptotic behavior; linear differential system; linear asymptotic equilibrium; strictly stable; uniformly stable

©2010 William F. Trench, all rights reserved

1 Introduction

In this paper \(J = [a, \infty) \) and \(\mathbb{C}^n, \mathbb{C}^{n \times n}, \mathbb{C}^n_0(J), \mathbb{C}^{n \times n}_0(J), \mathbb{C}^n_1(J), \) and \(\mathbb{C}^{n \times n}_1(J) \) are respectively the sets of \(n \)-vectors with complex entries, \(n \times n \) matrices with complex entries, continuous complex \(n \)-vector functions on \(J \), continuous complex \(n \times n \) matrix functions on \(J \), continuously differentiable \(n \)-vector functions on \(J \), and continuously differentiable \(n \times n \) complex matrix functions on \(J \). ("Complex" and "\(\mathbb{C} \)" can

*e-mail:wtrench@trinity.edu
just as well be replaced by “real” and “\(\mathbb{R} \).”) If \(\xi \in \mathbb{C}^n \) and \(C \in \mathbb{C}^{n \times n} \) then \(\| \xi \| \) is a vector norm and \(\| C \| \) is the corresponding induced matrix norm; i.e., \(\| C \| = \max \{ \| C \xi \| : \| \xi \| = 1 \} \). Throughout the paper \(A \in \mathbb{C}^{n \times n}_0 \), \(S_A \) is the set of solutions of

\[
x' = A(t)x, \quad t \in J, \tag{1}
\]

\(J = \{(t, \tau) \mid a \leq \tau \leq t\} \), and \(\mathcal{R} = \{ R \in \mathbb{C}^{n \times n}(J) \mid R^{-1} \in \mathbb{C}^{n \times n}(J) \} \).

We recall that if \(X \in \mathbb{C}^{n \times n}(J) \) satisfies \(X' = A(t)X, \ t \in J \), then either \(X(t) \) is invertible for all \(t \in J \) or \(X(t) \) is noninvertible for all \(t \in J \). In the first case \(X \) is said to be a fundamental matrix for (1), and \(x \in S_A \) if and only if \(x = X(t)\xi \) for some \(\xi \) in \(\mathbb{C}^n \) or, equivalently,

\[
x(t) = X(t)X^{-1}(\tau)x(\tau) \text{ for all } t, \tau \in J.
\]

We begin with some standard definitions.

Definition 1

(a) Eq. (1) is stable if for each \(\tau \in J \) there is a constant \(M_\tau \) such that \(\| x(t) \| \leq M_\tau \| x(\tau) \| \) for all \(t \in J \) and \(x \in S_A \).

(b) Eq. (1) is strictly stable if there is a constant \(M \) such that \(\| x(t) \| \leq M \| x(\tau) \| \) for all \(t, \tau \in J \) and \(x \in S_A \).

(c) Eq. (1) is uniformly stable if there is a constant \(M \) such that \(\| x(t) \| \leq M \| x(\tau) \| \) for all \((t, \tau) \in J \) and \(x \in S_A \).

(d) Eq. (1) is uniformly asymptotically stable if there are constants \(M \) and \(\nu > 0 \) such that \(\| x(t) \| \leq M \| x(\tau) \| e^{-\nu(t-\tau)} \) for all \((t, \tau) \in J \) and \(x \in S_A \).

(e) Eq. (1) has linear asymptotic equilibrium if every nontrivial solution of (1) approaches a nonzero constant vector as \(t \to \infty \).

It is convenient to include (c) and (d) in the following definition, which may be new. Let \(\rho \) be continuous and positive on \(J \) and suppose that

\[
\rho(t, t) = 1 \text{ and } \rho(t, \tau) \leq \rho(t, s)\rho(s, \tau), \quad a \leq \tau \leq s \leq t. \tag{2}
\]

We say that (1) is \(\rho \)-stable if there is a constant \(M \) such that

\[
\| x(t) \| \leq M \| x(\tau) \|/\rho(t, \tau) \text{ for all } (t, \tau) \in J \text{ and } x \in S_A.
\]

We consider the following problem: given a system that does not have one of the properties defined above, is it possible to analyze (1) in terms of a related system that has the property?

Henceforth \(P \) is a given member of \(\mathcal{R} \). We offer the following definition.

Definition 2

(a) Eq. (1) is stable relative to \(P \) if for each \(\tau \in J \) there is a constant \(M_\tau \) such that

\[
\| P^{-1}(t)x(t) \| \leq M_\tau \| P^{-1}(\tau)x(\tau) \| \text{ for all } t, \tau \in J \text{ and } x \in S_A.
\]
(b) Eq. (1) is strictly stable relative to P if there is a constant M such that
$$
\|P^{-1}(t)x(t)\| \leq M\|P^{-1}(\tau)x(\tau)\| \text{ for all } t, \tau \in \mathcal{J} \text{ and } x \in \mathcal{S}_A.
$$

(c) Eq. (1) is ρ-stable relative to P if there is a constant M such that
$$
\|P^{-1}(t)x(t)\| \leq M\|P^{-1}(\tau)x(\tau)\|/\rho(t, \tau) \text{ for all } (t, \tau) \in \mathcal{J} \text{ and } x \in \mathcal{S}_A.
$$

(d) Eq. (1) has linear asymptotic equilibrium relative to P if $\lim_{t \to \infty} P^{-1}(t)x(t)$ exists and is nonzero for every nontrivial $x \in \mathcal{S}_A$.

Lemma 1 If $x \in \mathcal{C}^n_1(\mathcal{J})$ and $u = P^{-1}x$, then $x' = Ax$, $t \in \mathcal{J}$, if and only if
$$
u' = P^{-1}(AP - P')u, \quad t \in \mathcal{J},
$$
or, equivalently, if and only if $x = PU\xi$ where U is a fundamental matrix for (3) and $\xi \in \mathcal{C}$.

Proof. Since $x = Pu$, $x' = Pu' + P'u$ and $Ax = APu$, so $x' = Ax$ if and only if $Pu' + P'u = APu$, which is equivalent to (3).

To illustrate the problem that we study here, we cite a theorem attributed by Wintner [8] to Bôcher, which says that (1) has linear asymptotic equilibrium if
$$
\int^{\infty}_{-\infty} \|A(t)\| \, dt < \infty.
$$
This theorem does not apply to (1) if $\int^{\infty}_{-\infty} \|A(t)\| \, dt = \infty$, but, by Lemma 1 it does imply that (1) has linear asymptotic equilibrium relative to P if
$$
\int^{\infty}_{-\infty} \|P^{-1}(AP - P')\| \, dt < \infty.
$$

Adapting terminology commonly used in computational linear algebra, we will in this case refer to the transformation $u = P^{-1}x$ as asymptotic preconditioning, and we say that P preconditions (1) for asymptotic equilibrium. More generally, if \mathcal{P} is a given property of linear differential systems (for example, one of the properties mentioned earlier), we say that P preconditions (1) for property \mathcal{P} if (3) has property \mathcal{P} or, equivalently, if (1) has property \mathcal{P} relative to P.

This paper is strongly influenced by Conti’s work [2, 3, 4] on t_∞-similarity of systems of differential equations and our extensions [5, 6] of his results. However, we believe that our reformulation of these results in the context of asymptotic preconditioning is new and useful. We offer the paper not as a breakthrough in the asymptotic theory of linear differential systems, but as an expository approach to what we believe is a new application of standard results on this subject.

2 Preliminary considerations

The proof of most of the following lemma can be pieced together from applying various results in our references to the system (3); however, in keeping with our expository goal, we present a self-contained proof here.
Lemma 2 Let U be a fundamental matrix for (3). Then:

(a) Eq. (1) is stable relative to P if and only if U is bounded on \mathcal{J}.
(b) Eq. (1) is ρ-stable relative to P if and only if there is a constant M such that

$$
\|U(t)U^{-1}(\tau)\| \leq M/\rho(t, \tau), \quad (t, \tau) \in \mathcal{J}.
$$

(c) Eq. (1) is strictly stable relative to P if and only if $\|U\|$ and $\|U^{-1}\|$ are bounded on \mathcal{J} or, equivalently, if and only if there is a constant M such that

$$
\|U(t)U^{-1}(\tau)\| \leq M, \quad t, \tau \in \mathcal{J}.
$$

(d) Eq. (1) has linear asymptotic equilibrium relative to P if and only if $\lim_{t \to \infty} U(t)$ exists and is invertible.

PROOF. From Lemma 1, it suffices to to show that the assumptions (a)–(d) are respectively equivalent to stability, ρ-stability, strict stability, and linear asymptotic equilibrium of (3). Since every solution of (3) can be written as $u(t) = U(t)\xi$ with $\xi \in \mathbb{C}^n$, (d) is obvious. For the rest of the proof, let \mathcal{U} denote the set of all solutions of (3). Then $u \in \mathcal{U}$ if and only if

$$
u(t) = U(t)U^{-1}(\tau)u(\tau) \quad \text{for all } t, \tau \in \mathcal{J}.\tag{6}
$$

If τ is arbitrary but fixed and $K_\tau = \|U^{-1}(\tau)\|$, then (6) implies that

$$
\|u(t)\| \leq K_\tau \|U(t)\|\|u(\tau)\| \quad \text{for all } t, \tau \in \mathcal{J} \text{ and } u \in \mathcal{U}.
$$

This implies sufficiency for (a). Also from (6),

$$
\|u(t)\| \leq \|U(t)U^{-1}(\tau)\|\|u(\tau)\| \quad \text{for all } t, \tau \in \mathcal{J} \text{ and } u \in \mathcal{U}.
$$

Therefore (4) implies that

$$
\|u(t)\| \leq \|U(t)\|\|u(\tau)\|/\rho(t, \tau) \quad \text{for all } (t, \tau) \in \mathcal{J} \text{ and } u \in \mathcal{U},
$$

which implies sufficiency for (b). Moreover, (5) implies that

$$
\|u(t)\| \leq M\|u(\tau)\| \quad \text{for all } t, \tau \in \mathcal{J} \text{ and } u \in \mathcal{U}
$$

which implies sufficiency for (c).

We use contrapositive arguments to establish necessity in (a), (b), and (c). In all three cases let M be an arbitrary positive constant. For (a), if U is unbounded and τ is fixed in \mathcal{J}, then $U(t)U^{-1}(\tau)$ is also unbounded as a function of t (since $U(t) = U(t)U^{-1}(\tau)U(\tau)$). Therefore there is a $t_0 \in \mathcal{J}$ and a $\xi \in \mathbb{C}^n$ such that $\|U(t_0)U^{-1}(\tau)\xi\| > M\|\xi\|$. Hence, if $u_0(t) = U(t)U^{-1}(\tau)\xi$ then $u_0 \in \mathcal{U}$ and

$$
\|u(t_0)\| = \|U(t_0)U^{-1}(\tau)\xi\| > M\|\xi\| = M\|u(\tau)\|,
$$

hence (3) is not stable.

4
For (b), if there is a \((t_0, \tau_0) \in J\) such that

\[\|U(t_0, \tau_0)\| > M/\rho(t_0, \tau_0). \]

then

\[\|U(t_0, \tau_0)\| > M \|\xi\|/\rho(t_0, \tau_0) \]

for some \(\xi \in \mathbb{C}^n\). If \(u(t) = U(t)U^{-1}(t_0)\xi\) then

\[\|u(t_0)\| = \|U(t_0)U^{-1}(t_0)\| > M \|\xi\|/\rho(t_0, \tau_0) = M \|u(t_0)\|/\rho((t_0, \tau_0)). \]

so (3) is not \(\rho\)-stable. A similar argument shows that if (3) is strictly stable, then (5) holds for some \(M\).

Eq. (5) obviously holds for some \(M\) if \(U\) and \(U^{-1}\) are bounded on \(J\). It remains to show that (5) implies that \(U\) and \(U^{-1}\) are bounded on \(J\). If \(\tau \in J\) is fixed and \(t\) is arbitrary, then (5) implies that

\[\|U(t)\| = \|U(t)U^{-1}(\tau)U(\tau)\| \leq \|U(t)U^{-1}(\tau)\|\|U(\tau)\| \leq M \|U(\tau)\|. \]

so \(U\) is bounded on \(J\). To complete the proof, we must show that if \(U^{-1}\) is unbounded then (5) is false for every \(M\). Let \(t_0 \in J\) be fixed and let \(\sigma = \min \{\|U(t_0)\eta\| : \|\eta\| = 1\}\), which is positive, since \(U(t_0)\) is invertible. If \(U^{-1}\) is unbounded on \(J\) there is a \(\tau \in J\) and \(\xi \in \mathbb{C}^n\) such that \(\|\xi\| = 1\) and \(\|U^{-1}(\tau)\| > M/\sigma\). Then

\[\|U(t_0)U^{-1}(\tau)\| > \sigma \|U^{-1}(\tau)\| > M \|\xi\|. \]

so \(\|U(t_0)U^{-1}(\tau)\| > M\).

Lemma 3 Suppose that \(R, Q \in \mathcal{R}\) and let

\[F = R' - Q'Q^{-1}R + RP^{-1}(P' - AP). \]

Then \(X = PU \in \mathbb{C}^{n \times n}(J)\) satisfies \(X' = AX, t \in J\), if and only if

\[(Q^{-1}RU)' = Q^{-1}FU, \quad t \in J. \]

Proof. From (7),

\[(Q^{-1}RU)' = Q^{-1}(R'U - Q'Q^{-1}RU + RU') \]

\[= Q^{-1}FU + Q^{-1}R(U' - P^{-1}(P' - AP)U). \]

so Lemma 1 implies the conclusion.

This lemma provides an infinite family of linear differential systems, all with the same solutions; namely, \(u\) is a solution of (3) (and consequently \(x = Pu\) is a solution of (1)) if and only if \(u\) is a solution of every system of the form (8). Therefore, if (8) has a given property \(\mathcal{P}\) for some suitably chosen \(R\) and \(Q\) in \(\mathcal{R}\), then \(P\) preconditions (1) for \(\mathcal{P}\).
3 Main results

Theorem 1 Suppose that there are $R, Q \in \mathbb{R}$ such that R and R^{-1} are bounded on \mathcal{J} and
\[
\int_0^\infty \|F(s)\| \, ds < \infty.
\]

Then:

(a) P preconditions Eq. (1) for p-stability if there is a constant M such that
\[
\|Q(t)Q^{-1}(\tau)\| \leq M/\rho(t, \tau), \quad a \leq \tau \leq t.
\]

(b) P preconditions Eq. (1) for strict stability if Q and Q^{-1} are bounded on \mathcal{J}.

PROOF. Integrating (8) yields
\[
U(t) = R^{-1}(t)Q(t) \left(Q^{-1}(\tau)R(\tau)U(\tau) + \int_\tau^t Q^{-1}(s)F(s)U(s) \, ds \right),
\]

\[t, \tau \in \mathcal{J}. \]

Therefore
\[
U(t)U^{-1}(\tau) = R^{-1}(t)Q(t) \left(Q^{-1}(\tau)R(\tau) + \int_\tau^t Q^{-1}(s)F(s)U(s)U^{-1}(\tau) \, ds \right).
\]

To prove (a), let
\[
g(t, s) = \|Q(t)Q^{-1}(s)\|\rho(t, s) \quad \text{and} \quad h(s, \tau) = \|U(s)U^{-1}(\tau)\|\rho(s, \tau).
\]

By Lemma 2(b), we must show that $h(t, \tau)$ is bounded for $(t, \tau) \in \mathcal{J}$. If $\tau \leq s \leq t$ then (2) implies that
\[
\rho(t, \tau)\|Q(t)Q^{-1}(s)F(s)U(s)U^{-1}(\tau)\| \leq g(t, s)\|F(s)\|h(s, \tau).
\]

Since R and R^{-1} are bounded, multiplying both sides of (12) by $\rho(t, \tau)$ yields the inequality
\[
h(t, \tau) \leq c_1 g(t, \tau) + c_2 \int_\tau^t g(t, s)\|F(s)\|h(s, \tau) \, ds, \quad a \leq \tau \leq t,
\]

for suitable constants c_1 and c_2. Now (10) and (13) imply that
\[
h(t, \tau) \leq M \left[c_1 + c_2 \int_\tau^t \|F(s)\|h(s, \tau) \, ds \right], \quad a \leq \tau \leq t.
\]

Therefore
\[
\frac{c_2h(t, \tau)\|F(t)\|}{c_1 + c_2 \int_\tau^t \|F(s)\|h(s, \tau) \, ds} \leq M c_2 \|F(\tau)\| \quad a \leq \tau \leq r.
\]

6
Integrating this with respect to \(t \) yields

\[
\log\left(c_1 + c_2 \int_\tau^t \|F(s)\| h(s, \tau) \, ds\right) - \log c_1 \leq M c_2 \int_\tau^t \|F(s)\| \, ds.
\] (16)

This and (14) imply that

\[
\sup_{(t, \tau) \in J} \{\|h(t, \tau)\| \mid (t, \tau) \in J\} \leq M c_1 \exp\left(M \int_a^\infty \|F(s)\| \, ds\right) < \infty,
\] (17)

from (9). This completes the proof of (a).

To prove (b), replace (13) by

\[
g(t, s) = \|Q(t)Q^{-1}(s)\| \quad \text{and} \quad h(s, \tau) = \|U(s)U^{-1}(\tau)\|.
\]

Now we must show that \(h(t, \tau) \) is bounded for all \(t, \tau \in J \). If (1) is strictly stable then there is a constant \(M \) such that \(g(t, s) \leq M \) for \(s, t \geq a \). This, (12) and the boundedness of \(R \) and \(R^{-1} \) imply that

\[
h(t, \tau) \leq M \left[c_1 + c_2 \int_\tau^t \|F(s)\| h(s, \tau) \, ds\right], \quad t, \tau \geq a,
\]

for suitable positive constants \(c_1 \) and \(c_2 \). Now the argument used in the proof of (a) again implies (17). If \(a \leq t \leq \tau \) then (14)–(17) all hold with \(t \) and \(\tau \) interchanged, which completes the proof of (b).

Remark 1 The use of logarithmic integration that produced (16) was motivated by the proof of Gronwall’s inequality [1, p. 35], a standard tool for studying the asymptotic behavior of solutions of differential equations.

Theorem 2 In addition to the assumptions of Theorem 1(b), suppose that

\[
\lim_{t \to \infty} R^{-1}(t)Q(t) = J
\]

is invertible. Then \(P \) preconditions (1) for linear asymptotic equilibrium.

Proof. From (11) and (18), \(\lim_{t \to \infty} U(t) = V \), where

\[
V = J \left(Q^{-1}(\tau)R(\tau)U(\tau) + \int_\tau^\infty Q^{-1}(s)F(s)U(s) \, ds\right)
\]

and the integral converges because of (9), the boundedness of \(Q^{-1} \) (assumed) and \(U \) (from Theorem 1(b)). Now we must show that \(V \) is inverible. Since Theorem 1(b) implies that (1) is strictly stable relative to \(P \), there is a constant \(K \) such that \(\|U^{-1}\| < K \), \(t \in J \). If \(\xi \in \mathbb{C}^n \) then

\[
\|\xi\| = \|U^{-1}(t)U(t)\| \leq \|U^{-1}(t)\| \|U(t)\| \leq K \|U(t)\| \|\xi\|, \quad t \leq a,
\]

so

\[
\|\xi\| \leq K \lim_{t \to \infty} \|U(t)\| = K \|V\|.
\]

Therefore \(V\xi = 0 \) if and only if \(\xi = 0 \), so \(V \) is invertible.
Theorem 3 If there are Q and R in \mathcal{R} such that $R^{-1}Q$ is bounded and
\[
\int_{-}\infty^{\infty} \|Q^{-1}(s)F(s)\|\ ds < \infty,
\]
then P preconditions (1) for stability; moreover, if (18) holds then P preconditions (1) for linear asymptotic equilibrium.

PROOF. Our assumptions imply that if $0 < \rho < 1$ then there is a $\tau \geq a$ such that
\[
\|R^{-1}(t)Q(t)\|\int_{\tau}^{\infty} \|Q^{-1}(s)F(s)\|\ ds \leq \rho, \quad t \geq \tau.
\]
Let \mathcal{B} be the Banach space of bounded continuous $n \times n$ vector functions on $J = [\tau, \infty)$ with norm $\|U\|_{\mathcal{B}} = \sup_{t \in J} \|U(t)\|$, and define $T : \mathcal{B} \to \mathcal{B}$ by
\[
(TU)(t) = R^{-1}(t)Q(t) \left(C - \int_{t}^{\infty} Q^{-1}(s)F(s)U(s)\ ds \right)
\]
where $C \in \mathbb{C}^{n \times n}$ is invertible. If $U_1, U_2 \in \mathcal{B}$ then
\[
(TU_1)(t) - (TU_2)(t) \leq \|R^{-1}(t)Q(t)\|\int_{t}^{\infty} \|Q^{-1}(s)F(s)\|\|U_1(s) - U_2(s)\|\ ds,
\]
so $\|TU_1 - TU_2\|_{\mathcal{B}} \leq \rho\|U_1 - U_2\|_{\mathcal{B}}$. Therefore, by the contraction mapping principal [7, p. 545], there is a $U \in \mathcal{B}$ such that
\[
U(t) = R^{-1}(t)Q(t) \left(C - \int_{t}^{\infty} Q^{-1}(s)F(s)U(s)\ ds \right).
\]
Since U satisfies (8), Theorem 1 implies that $X = PU$ satisfies (1). Therefore P preconditions (1) for stability. Finally, if (18) holds then $\lim_{t \to \infty} U(t) = JC$ is invertible, so P preconditions (1) for linear asymptotic equilibrium. \qed

Remark 2 Strictly speaking, our proof of Theorem 3 defines U only on the interval $[\tau, \infty)$, which has the appearance of leaving a gap if $\tau > a$. However, in this case we appeal to the elementary theory of linear differential systems, which guarantees that U can extended uniquely over J as an invertible solution of $U' = P^{-1}(AP - P')U$.

From (7),
\[
Q^{-1}F = (Q^{-1}R)' + (Q^{-1}R)P^{-1}(P' - AP).
\]
Therefore we can reformulate Theorem 3 as follows.

Theorem 4 If there is a $T \in \mathcal{R}$ such that T^{-1} is bounded and
\[
\int_{-}\infty^{\infty} \|T' + TP^{-1}(P' - AP)\|\ ds < \infty,
\]
then P preconditions (1) for stability; moreover, if $\lim_{t \to \infty} T(t)$ exists and is invertible then P preconditions (1) for linear asymptotic equilibrium.

The assertion concerning linear asymptotic equilibrium can also be proved by applying a theorem of Conti [3] to (3).
References

