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Abstract

We consider the asymptotic behavior of solutions of a linear differential system
x’ = A(t)x, where A is continuous on an interval [a, 00). We are interested in the
situation where the system may not have a desirable asymptotic property such as
stability, strict stability, uniform stability, or linear asymptotic equilibrium, but
its solutions can be written as x = Pu, where P is continuously differentiable
on [a,o0) and u is a solution of a system u’ = B(f)u that has the property in
question. In this case we say that P preconditions the given system for the property
in question.
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1 Introduction

In this paper d = [a,00) and C", C™", Ci(d), C3*"(4), C}(d), and C}*"(J) are
respectively the sets of n-vectors with complex entries, n X n matrices with complex
entries, continuous complex n-vector functions on J, continuous complex n X 17 ma-
trix functions on 4, continuously differentiable n-vector functions on J, and continu-
ously differentiable n x n complex matrix functions on 4. (“Complex” and “C” can
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just as well be replaced by “real" and “R”) If ¢ € C" and C € C™" then ||§|
is a vector norm and ||C|| is the corresponding induced matrix norm; i.e., |C| =
max {||C§|| | &l = 1}. Throughout the paper A € C§™"*(d), 84 is the set of solutions
of

x'=A@M)x, ted, (H
g={¢t.0|a<r<t}, and R={ReCP"W)|R "' C"¥)}.

We recall that if X e CP*" () satisfies X' = A(t)X, t € J, then either X(¢) is
invertible for all # € J or X(¢) is noninvertible for all # € J. In the first case X is said
to be a fundamental matrix for (1), and x € 84 if and only if x = X (¢)& for some £ in
C” or, equivalently,

x(t) = X)X ' (0)x(z) forallt, T € d.
We begin with some standard definitions.

Definition 1

(a) Eq. (1) is stable if for each t € J there is a constant M such that ||x(?)| <
M:||x(7)|| forallz € J and x € 84.

(b) Eq. (1) is strictly stable if there is a constant M such that | x ()| < M ||x(7)||
forallt,7 e J and x € §4.

(¢) Eq. (1) is uniformly stable if there is a constant M such that | x (t)|| < M ||x ()|
forall (t,7) € §and x € 84.

(d) Eq. (1) is uniformly asymptotically stable if there are constants M and v > 0
such that | x ()] < M|x(t)|e™* P forall (t,7) € § and x € 84.

(e) Eq. (1) has linear asymptotic equilibrium if every nontrivial solution of (1) ap-
proaches a nonzero constant vector as ¢ — oo.

It is convenient to include (¢) and (d) in the following definition, which may be
new. Let p be continuous and positive on § and suppose that

p(t,t) =1 and p(t,7) < p(t,s)p(s,7), a<t=<s5=<t. 2)
We say that (1) is p-stable if there is a constant M such that
x| < M|x@)|/p(, ) forall (£,7) € § andx € 4.

We consider the following problem: given a system that does not have one of the
properties defined above, is it possible to analyze (1) in terms of a related system that
has the property?

Henceforth P is a given member of R. We offer the following definition.

Definition 2
(a) Eq. (1) is stable relative to P if for each 7 € J there is a constant M, such that

|P~Y(0)x ()] < M||P~ Y (x)x(x)|| forall £,7 € 4 andx € §4.



(b) Eq. (1) is strictly stable relative to P if there is a constant M such that
|P7Y(0)x ()] < M|PY(x)x(x)|| forall £,z € J and x € 84.
(c) Eq. (1) is p-stable relative to P if there is a constant M such that
IP7L@)x (@) < M| P~ (x)x(0)||/p(t,7) forall (1,7) € § andx € 84.

(d) Eq. (1) has linear asymptotic equilibrium relative to P if lim;—.oo P ~1(¢)x(t)
exists and is nonzero for every nontrivial x € §4.

Lemmal [fx € C'(J) andu = P~ 'x, then x' = Ax,t € 4, ifand only if
u' =P V(AP — P, teld, 3)

or, equivalently, if and only if x = PUE where U is a fundamental matrix for (3) and
£ eC.

PROOF. Since x = Pu, x’ = Pu’ + P'u and Ax = APu, so x’ = Ax if and only if
Pu' + P'u = APu, which is equivalent to (3). 0O

To illustrate the problem that we study here, we cite a theorem attributed by Wintner
[8] to Bocher, which says that (1) has linear asymptotic equilibrium if | A dt <
oo. This theorem does not apply to (1) if foo |A@®)|| dt = oo, but, by Lemma 1 it does
imply that (1) has linear asymptotic equilibrium relative to P if

/ |P~Y(AP — P')| dt < .

Adapting terminology commonly used in computational linear algebra, we will in this
case refer to the transformation ¥ = P ~!x as asymptotic preconditioning, and we say
that P preconditions (1) for asymptotic equilibrium. More generally, if & is a given
property of linear differential systems (for example, one of the properties mentioned
earlier), we say that P preconditions (1) for property & if (3) has property & or,
equivalently, if (1) has property J relative to P.

This paper is strongly influenced by Conti’s work [2, 3, 4] on #-similarity of sys-
tems of differential equations and our extensions [5, 6] of his results. However, we
believe that our reformulation of these results in the context of asymptotic precondi-
tioning is new and useful. We offer the paper not as a breakthrough in the asymptotic
theory of linear differential systems, but as an expository approach to what we believe
is a new application of standard results on this subject.

2 Preliminary considerations
The proof of most of the following lemma can be pieced together from applying various

results in our references to the system (3); however, in keeping with our expository
goal, we present a self-contained proof here.



Lemma 2 Let U be a fundamental matrix for (3). Then:
(a) Eq. (1) is stable relative to P if and only if U is bounded on d.
(b) Eq. (1) is p-stable relative to P if and only if there is a constant M such that

IUOUT @Il < M/p@t. 7). (t.7) € §. “4)

(¢) Eq. (1) is strictly stable relative to P if and only if |U || and ||U ~"|| are bounded
on d or, equivalently, if and only if there is a constant M such that

IUOU ()| <M, tted. (5)

(d) Eq. (1) has linear asymptotic equilibrium relative to P if and only if lim; oo U(t)
exists and is invertible.

PROOF. From Lemma 1, it suffices to to show that the assumptions (a)—(d) are respec-
tively equivalent to stability, p-stability, strict stability, and linear asymptotic equilib-
rium of (3). Since every solution of (3) can be written as u(¢) = U(¢)¢ with § € C",
(d) is obvious. For the rest of the proof, let U denote the set of all solutions of (3).
Then u € U if and only if
u(t) = U)U Y (v)u(z) forall ¢,7 € d. (6)
If 7 is arbitrary but fixed and K; = ||U~!(z)||, then (6) implies that
lu@®)| < K |U@)||||u(z)| forall £,7 € Jand u € U.
This implies sufficiency for (a). Also from (6),
lu@)| < |U@OU (@)||||u(z)| forall ¢,z € Jand u € U.
Therefore (4) implies that
lu@)|| < M|lu(x)||/p(, ) forall (¢,7) € $and u € U,
which implies sufficiency for (b). Moreover, (5) implies that
lu@)|| < M|u(z)|| forall t,zr € Jand u € U
which implies sufficiency for (c).
We use contrapositive arguments to establish necessity in (a), (b), and (¢). In
all three cases let M be an arbitrary positive constant. For (a), if U is unbounded
and 7 is fixed in J, then U(t)U~!(7) is also unbounded as a function of ¢ (since

U(t) = U@)U ' (t)U(r)). Therefore there is a tp € J and a § € C" such that
|U(to)U 1 (v)€|| > M ||€|. Hence, if uo(t) = U(t)U ! (7)€ then ug € U and

lu(@o)ll = 1U)U ™ (@] > MIE = M Ju(@)]:

hence (3) is not stable.



For (b), if there is a (¢y, 79) € & such that

|U(t0, T0) |l > M/p(t0, 70),

then
|U(t0, T0)é || > M ||&]|/p(t0, T0)

for some £ € C". If u(t) = U(t)U ! (19)£ then

lu(to)ll = 1UE)U " (x0)Ell > ME1l/p(to. T0) = M |u(zo)ll/p((t0. T0)),

so (3) is not p-stable. A similar argument shows that if (3) is strictly stable, then (5)
holds for some M.

Eq. (5) obviously holds for some M if U and U ! are bounded on J. It remains
to show that (5) implies that U and U~! are bounded on 4. If t € J is fixed and ¢ is
arbitrary, then (5) implies that

IO = IUOUT @U@ < [UOUT OIIU@I < M|U@)],

so U is bounded on 7. To complete the proof, we must show that if U ~! is unbounded
then (5) is false for every M. Let fp € d be fixed and let 0 = min {|| U(to)n|| | Inll = 1},
which is positive, since U(ty) is invertible. If U ! is unbounded on J thereisa t € J
and £ € C" such that ||£]| = 1 and ||U ! (2)&|| > M/o. Then

|UG)U (@EN > o|lUT (0EN > Mgl O
so |U(to)U Y (r)| > M. O
Lemma 3 Suppose that R, Q € R and let
F=R —-Q Q'R+ RP (P - AP). (7
Then X = PU € C"™"(J) satisfies X' = AX,t € J, if and only if
(QT'RUY = Q7'FU, 1€d. (8)
PROOF. From (7),

(Q'RUY = QY RU-Q'Q'RU + RU')
Q'FU+ Q7 'R(U' - P~ (P’ — AP)U),

so Lemma 1 implies the conclusion. O

This lemma provides an infinite family of linear differential systems, all with the
same solutions; namely, u is a solution of (3) (and consequently x = Pu is a solution
of (1)) if and only if u is a solution of every system of the form (8). Therefore, if (8)
has a given property & for some suitably chosen R and Q in R, then P preconditions
(1) for 2.



3 Main results

Theorem 1 Suppose that there are R, Q € R such that R and R™" are bounded on J
and

/ |F(s)]| ds < oo. ©)

Then:
(a) P preconditions Eq. (1) for p-stability if there is a constant M such that

10NQ™ Il < M/p(t.71). a=<t <t (10)
(b) P preconditions Eq. (1) for strict stability if Q and Q' are bounded on .

PROOF. Integrating (8) yields
Ur) = R (1)0() (Q_I(T)R(T)U(f) +/ 07 (5)F(5)U(s) dS) Y
t, T € 4. Therefore

UOU™ ' (x) = R (0)00) (Q_I(T)R(f) + /t 07 F(HUEU (1) dS) :

(12)
To prove (a), let

g, s) =000~ ®)lp(t,s) and h(s, 1) = [USU @lp(s. 7). (13)

By Lemma 2(b), we must show that A (¢, t) is bounded for (#,7) € §. If t < s < ¢
then (2) implies that

P, DNQOQ™ S FHUGU (@) < gt ) F(5)llh(s, 7).

Since R and R™! are bounded, multiplying both sides of (12) by p(z, 7) yields the
inequality

t
ht,7) <c1g(t,7) + 02/ gt, )N F(s)|h(s,t)ds, a<t<t,
T
for suitable constants ¢y and ¢;. Now (10) and (13) imply that

t
h(t, 1) <M [cl + C2/ | F)|ACs, 1) ds] , a<t<t. (14)

Therefore
ch(t, )| F @)l
t
ci+ex [ 1P o) ds

< Mc||F(r)| a<t<r (15)



Integrating this with respect to ¢ yields

t t
log (cl + 62/ | F)|ACs, 1) ds) —logcy < MCz/ | F(s)| ds. (16)

This and (14) imply that

sup{||h(t, 7)|| | (t,7) € J} < Mcj exp (M /00 I FE)| ds) < 00, a7

from (9). This completes the proof of (a).
To prove (b), replace (13) by

gt,s) =100 ) and h(s,7) = UGV (D)].

Now we must show that /(¢, 7) is bounded for all #, 7 € 4. If (1) is strictly stable
then there is a constant M such that g(z,s) < M for s, ¢t > a. This, (12) and the
boundedness of R and R~! imply that

hmﬂSMﬁn+q/meMmﬂw

}a tatzaa

for suitable positive constants ¢; and ¢;. Now the argument used in the proof of (a)
again inplies (17). If a <t < t then (14)—(17) all hold with ¢ and 7 interchanged,
which completes the proof of (b). O

Remark 1 The use of logarithmic integration that produced (16) was motivated by the
proof of Gronwall’s inequality [1, p. 35], a standard tool for studying the asymptotic
behavior of solutions of differential equations.

Theorem 2 In addition to the assumptions of Theorem 1(b), suppose that
[lim R7Y)O(t) = J isinvertible. (18)
—>00
Then P preconditions (1) for linear asymptotic equilibrium.

PROOF. From (11) and (18), lim;_, U(¢) = V, where
V=1J (Q_l(t)R(t)U(r) + /oo QY (s)F(s)U(s) ds)

and the integral converges because of (9), the boundedness of Q_1 (assumed) and U
(from Theorem 1(b)). Now we must show that V is inverible. Since Theorem 1(b)
implies that (1) is strictly stable relative to P, there is a constant K such that |[U || <
K,t € 4. If &£ € C" then

51 = 1UT OU@EN < IV OIIUOE] < KIU@ENL 1 <a,

SO
€l < K lim [U@)E] = K| VE].

Therefore V& = 0 if and only if § = 0, so V is invertible. [



Theorem 3 If there are Q and R in R such that R~ Q is bounded and

/ 10~ () F(s)]| ds < oo,

then P preconditions (1) for stability; moreover, if (18) holds then P preconditions (1)
for linear asymptotic equilibrium.

PROOF. Our assumptions imply thatif 0 < p < 1 then there is a T > a such that

IR )00 / 10 )F©)ds < p. 1>

Let 8 be the Banach space of bounded continuous n xn vector functionson d = [z, 00)
with norm ||U || g = sup,ey |U(t)||, and define T : B — B by

(TU)0) = R7'(1)0) (C —/ 0~ (s)F(s)U(s) ds)
where C € C™" is invertible. If Uy, U, € B then
TUN@) = (TU)0) < IIR_I(I)Q(I)II/ 1O~ () F()|[| U1 (s) — Ua(s)| ds,

so |[TU1 — T Usz| g < p||U1 — Usa| g- Therefore, by the contraction mapping principal
[7, p. 545], thereis a U € B such that

Ut) = R7'(1)0() (c — /Oo O~ L(s)F(s)U(s) ds) )

Since U satisfies (8), Theorem 1 implies that X = PU satisfies (1). Therefore P pre-
conditions (1) for stability. Finally, if (18) holds then lim; o, U(t) = JC isinvertible,
so P preconditions (1) for linear asymptotic equilibrium. 0O

Remark 2 Strictly speaking, our proof of Theorem 3 defines U only on the interval
[, 00), which has the appearance of leaving a gap if t > a. However, in this case we
appeal to the elementary theory of linear differential systems, which guarantees that U
can extended uniquely over J as an invertible solution of U’ = P~1(AP — P")U.

From (7),
O 'F=(Q 'R+ (Q 'R)PYP — 4P).

Therefore we can reformulate Theorem 3 as follows.

Theorem 4 Ifthereisa T € R such that T~ is bounded and
o0
/ |T" + TP~Y(P' — AP)| ds < oo,

then P preconditions (1) for stability; moreover, if lim; o0 T'(t) exists and is invertible
then P preconditions (1) for linear asymptotic equilibrium.

The assertion concerning linear asymptotic equilbrium can also be proved by ap-
plying a theorem of Conti [3] to (3).
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