
An Elementary View of Weyl’s Theory of Equal

Distribution

William F. Trench

c©2012 The Mathematical Association of America. All rights reserved

Abstract

Suppose that −∞ < a < b < ∞, a ≤ u1n ≤ u2n ≤ · · · ≤ unn ≤ b,
and a ≤ v1n ≤ v2n ≤ · · · ≤ vnn ≤ b for n ≥ 1. We simplify and
strengthen Weyl’s definition of equal distribution of {{uin}

n
i=1}

∞

n=1 and
{{vin}

n
i=1}

∞

n=1 by showing that the following statements are equivalent:

(i) limn→∞

1

n

∑n

i=1
(F (uin) − F (vin)) = 0 for all F ∈ C[a, b],

(ii) limn→∞

1

n

∑n

i=1
|uin − vin| = 0,

(iii) limn→∞

1

n

∑n

i=1
|F (uin) − F (vin)| = 0 for all F ∈ C[a, b].

We relate this to Weyl’s definition of uniform distribution and Szegö’s
distribution formula for the eigenvalues of a family of Toeplitz matrices
{[tr−s]

n
r,s=1}

∞

n=1, where tr = 1

2π

∫

π

−π
e−irxg(x) dx and g is real-valued and

continuous on [−π, π].

1 Introduction

We consider four definitions of “distribution” that can be traced back to H.
Weyl. We assume throughout that the doubly-indexed sequences

U = {{uin}
n
i=1}

∞
n=1 and V = {{vin}

n
i=1}

∞
n=1

are contained in a finite interval [a, b]. As usual, C[a, b] is the family of real-
valued continuous functions on [a, b]. To avoid annoying repetition, every oc-
curence of “distributed” is to be interpreted as “distributed in [a, b].”

We have presented part of this discussion in [4] and [5]. However, [4] is
interesting mainly to linear algebraists and operator theorists, and [5] is not
widely circulated. Moreover, the arguments given here are simpler and we think
that the conclusions will be interesting to a wider audience.

Our first definition is stated and attributed to H. Weyl in [1, p. 62].
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Definition 1 U and V are equally distributed if

lim
n→∞

1

n

n
∑

i=1

(F (uin) − F (vin)) = 0 for all F ∈ C[a, b]. (1)

Definition 2 V is uniformly distributed if

lim
n→∞

1

n

n
∑

i=1

F (vin) =
1

b − a

∫ b

a

F (x) dx for all F ∈ C[a, b]. (2)

Definition 3 A sequence {xi}
∞
i=1 ⊂ [a, b] is uniformly distributed if

lim
n→∞

1

n

n
∑

i=1

F (xi) =
1

b − a

∫ b

a

F (x) dx for all F ∈ C[a, b]. (3)

Put another way, {xi}
∞
i=1 is uniformly distributed if {{xi}

n
i=1}

∞
n=1 is uniformly

distributed as in Definition 2.

Definition 4 If a and b are respectively the minimum and maximum values of
a continuous function g on a closed interval [c, d], then U is distributed like the

values of g if

lim
n→∞

1

n

n
∑

i=1

F (uin) =
1

d − c

∫ d

c

F (g(x)) dx for all F ∈ C[a, b]. (4)

In the setting of linear algebra and operator theory, the members of U and
V could be the eigenvalues of two families {An}

∞
n=1 and {Bn}

∞
n=1 of Hermitian

matrices, and the problem is to find conditions on {An − Bn}
∞
n=1 which imply

that U and V are equally distributed.
It is well known that (2) is equivalent to

lim
n→∞

Cn(I)

n
=

`(I)

b − a

for every subinterval I of [a, b], where `(I) is the length of I and Cn(I) is the
cardinality of {uin}

n
i=1 ∩ I.

Definition 3 is a special case of Definition 2; nevertheless, a special case
of Definition 3 is probably the most famous of all the definitions that we are
considering. If x is an arbitrary real, let [x] denote the greatest integer not
greater than x, and let x̂ = x − [x], so 0 ≤ x̂ < 1. According to another
definition of Weyl, {xi}

n
i=1 is equidistributed modulo 1 or uniformly distributed

modulo 1 if {x̂i}
∞
i=1 is uniformly distributed in [0, 1] as in Definition 3, with

a = 0 and b = 1.
The most famous example of Definition 4 is related to a special case of

Szegö’s distribution theorem [1, p. 64]. Suppose g is real-valued and continuous
on [−π, π]. Let

tr =
1

2π

∫ π

−π

e−irxg(x) dx, r = 0,±1,±2, . . . ,
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and
Tn = [tr−s]

n
r,s=1, n = 1, 2, 3 . . . .

These are Toeplitz matrices. Since g is real-valued, t−` = t`, so Tn is Hermitian
and therefore has real eigenvalues λ1n, λ2n, . . . , λnn; in fact, they are all in
[a, b], where a and b are respectively the minimum and maximum values of g on
[−π, π].

Szegö showed that {{λin}
n
i=1}

∞
n=1 is distributed like the values of g; i.e.,

lim
n→∞

1

n

n
∑

i=1

F (λin) =
1

2π

∫ π

−π

F (g(x)) dx for all F ∈ C[a, b]

if g is essentially bounded and Lebesgue integrable on [−π, π]. Moreover, there
are many results on this question under still weaker assumptions on g. We
consider only the case where g is continous.

Although we have stated four definitions to provide a historical perspective,
Definitions 2–4 are special cases of Definition 1. In connection with Definitions 2
and 3, let

win = a +
i

n
(b − a) for 1 ≤ j ≤ n and n = 2, 3, . . . . (5)

From first year calculus, we know that

lim
n→∞

1

n

n
∑

i=1

F (win) =
1

b − a

∫ b

a

F (x) dx for all F ∈ C[a, b].

From this and (1), U is uniformly distributed if and only if U and {{win}
n
i=1}

∞
n=1

are equally distributed. Similarly, from (3), {xi}
∞
i=1 is uniformly distributed if

and only if {{xi}
n
i=1}

∞
n=1 and {{win}

n
i=1}

∞
n=1 are equally distributed.

As for Definition 4, let

yin = c +
i

n
(d − c) for 1 ≤ j ≤ n and n = 2, 3 . . . . (6)

Since g is continuous on [c, d], it follows that

lim
n→∞

1

n

n
∑

i=1

F (g(yin)) =
1

d − c

∫ d

c

F (g(x)) dx for all F ∈ C[a, b].

From this and (4), U is distributed like the values of F if and only U and
{{g(yin)}n

i=1}
∞
n=1 are equally distributed.

2 The Main Theorem and Corollaries

Henceforth we assume – without loss of generality – that

a ≤ u1n ≤ u2n ≤ · · · ≤ unn ≤ b and a ≤ v1n ≤ v2n ≤ · · · ≤ vnn ≤ b.

Here is our main result. We will prove it in Section 4.
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Theorem 1 The following assertions are equivalent:

lim
n→∞

1

n

n
∑

i=1

(F (uin) − F (vin)) = 0 for all F ∈ C[a, b]; (7)

lim
n→∞

1

n

n
∑

i=1

|uin − vin| = 0; (8)

lim
n→∞

1

n

n
∑

i=1

|F (uin) − F (vin)| = 0 for all F ∈ C[a, b]. (9)

This theorem and the discussion of Definitions 2–4 in Section 1 yield the
following corollaries.

Corollary 1 U and V are equally distributed if and only if (8) is true.

Corollary 2 V is uniformly distributed if and only if

lim
n→∞

1

n

n
∑

i=1

|vin − win| = 0, (10)

with {{win}
n
i=1}

∞
n=1 as in (5). Moreover, each of the following statements is

equivalent to (10):

lim
n→∞

1

n

n
∑

i=1

(F (vin) − F (win)) = 0 for all F ∈ C[a, b],

lim
n→∞

1

n

n
∑

i=1

|F (vin) − F (win)| = 0 for all F ∈ C[a, b].

Corollary 3 For each n ≥ 2, let σn be a permutation of {1, 2, . . .n} such that

xσn(1) ≤ xσn(2) ≤ · · · ≤ xσn(n).

Then {xi}
∞
i=1 is uniformly distributed if and only if

lim
n→∞

1

n

n
∑

i=1

|xσn(i) − win| = 0. (11)

Moreover, each of the following statements is equivalent to (11):

lim
n→∞

1

n

n
∑

i=1

(F (xi) − F (win)) = 0 for all F ∈ C[a, b],

lim
n→∞

1

n

n
∑

i=1

|F (xσn(i)) − F (win)| = 0 for all F ∈ C[a, b].
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Corollary 4 Let {{yin}
n
i=1}

∞
n=1 be as in (6) and, for each n ≥ 2, let ρn be a

permutation of {1, 2, . . .n} such that

g(yρn(1),n) ≤ g(yρn(2),n) ≤ · · · ≤ g(yρn(n),n).

Then U is distributed like the values of g if and only

lim
n→∞

1

n

n
∑

i=1

|uin − g(yρn(i),n)| = 0. (12)

Moreover, each of the following statements is equivalent to (12):

lim
n→∞

1

n

n
∑

i=1

(F (uin) − F (g(yin)) = 0 for all F ∈ C[a, b],

lim
n→∞

1

n

n
∑

i=1

|F (uin) − F (g(yρn(i),n)| = 0 for all F ∈ C[a, b].

We hope that the following suggestion will be taken as constructive rather
than offensive: if (7), (8), and (9) are equivalent, then regarding (7) as the
definition of equal distribution is putting the cart before the horse. Therefore –
with some trepidation – we suggest that (8) should be the definition. Analogous
suggestions apply to (10), (11), and (12) in connection with Definitions 2–4.

For examples that support this suggestion, suppose

U` = {{u
(`)
in }n

i=1}
∞
n=1 ⊂ [a, b], V` = {{v

(`)
in }n

i=1}
∞
n=1 ⊂ [a, b] for 1 ≤ ` ≤ k,

λin ≥ 0, 1 ≤ i ≤ n, and λ1n + λ2n + · · ·+ λnn = 1.

Further, let U = {{uin}
n
i=1}

∞
n=1 and V = {{vin}

n
i=1}

∞
n=1, where

uin = λ1nu
(1)
in +λ2nu

(2)
in +· · ·+λknu

(k)
in and vin = λ1nv

(1)
in +λ2nv

(2)
in +· · ·+λknv

(k)
in .

Then Corollary 1 obviously implies that U and V are equally distributed if
U` and V` are equally distributed for i = 1, 2, . . . , k, and Corollary 2 obvi-
ously implies that V is uniformly distributed if V1, V2, . . . , Vk are uniformly
distributed. These conclusions are not obvious from Definitions 1 and 2.

3 Required Lemmas

We need the following lemmas, in which V b
a (φ) is the total variation of a function

φ on [a, b].

Lemma 1 (Helly’s First Theorem) Let {φm}∞m=1 be an infinite sequence of

functions on [a, b] and suppose that

|φm(x)| ≤ K < ∞ for a ≤ x ≤ b and V b
a (φm) ≤ K, m ≥ 1.

Then there is a subsequence of {φm}∞m=1 that converges at every point of [a, b]
to a function of bounded variation on [a, b].
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Lemma 2 (Helly’s Second Theorem) Let {φm}∞m=1 be an infinite sequence

of functions on [a, b] such that V b
a (φm) ≤ K < ∞, m ≥ 1, and

lim
m→∞

φm(x) = φ(x) for a ≤ x ≤ b.

Then V b
a (φ) ≤ K and

lim
m→∞

∫ b

a

F (x) dφm(x) =

∫ b

a

F (x) dφ(x) for all F ∈ C[a, b].

Lemma 3 Suppose φ(a) = φ(b) = 0, φ is of bounded variation on [a, b], and

∫ b

a

F (x) dφ(x) = 0, for all F ∈ C[a, b].

Then φ(x) = 0 at all points of continuity of φ. Thus, φ(x) 6= 0 for at most

countably many values of x.

For proofs of Lemmas 1–3, see [2, p. 222], [2, p. 233], and [3, p. 111].

Lemma 4 Suppose x1 ≤ x2 ≤ · · · ≤ xn and y1 ≤ y2 ≤ · · · ≤ yn. Let

{`1, `2, . . . `n} be a permutation of {1, 2, . . . , n} and define

S(`1 , `2, . . . , `n) =

n
∑

i=1

|xi − y`i
|. (13)

Then

S(`1 , `2, . . . , `n) ≥ S(1, 2, . . . , n) =

n
∑

i=1

|xi − yi|. (14)

Proof The proof is by induction. Let Pn be the stated proposition. P1 is
trivial. Suppose that n > 1 and Pn−1 is true. If `n = n then Pn−1 implies Pn.
If `n = s < n then choose r so that `r = n, and define

`′i =











`i if i 6= r and i 6= n,

s if i = r,

n if i = n.

Then
S(`1 , `2, . . . , `n) − S(`′1 , `

′
2, . . . , `

′
n) = σ(xn) − σ(xr), (15)

where

σ(x) = |x − ys| − |x− yn| =











ys − yn, x < ys,

2x − ys − yn, ys ≤ x ≤ yn,

yn − ys, x > yn.
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Since σ nondecreasing, (15) implies that

S(`1 , `2, . . . , `n) ≥ S(`′1 , `
′
2, . . . , `

′
n).

Since `′n = n, Pn−1 implies that

S(`′1 , `
′
2, . . . , `

′
n) ≥ S(1, 2, . . . , n).

Therefore (15) implies (14), which completes the induction.

4 Proof of Theorem 1

Obviously, (9) implies (7). To see that (8) implies (9), suppose that F ∈ C[a, b]
and ε > 0. By the Weierstrass approximation theorem, there is a polynomial P
such that

|F (x)− P (x)| < ε/2 for a ≤ x ≤ b.

By the triangle inequality,

|F (uin) − F (vin)| ≤ |F (uin) − P (uin)| + |P (uin) − P (vin)|

+ |P (vin) − F (vin)| (16)

< |P (uin) − P (vin)| + ε.

Let M = maxa≤x≤b |P
′(x)|. By the mean value theorem,

|P (uin) − P (vin)| ≤ M |uin − vin|.

This and (16) imply that

1

n

n
∑

i=1

|F (uin) − F (vin)| < ε +
M

n

n
∑

i=1

|uin − vin|.

From this and (8),

lim sup
n→∞

1

n

n
∑

i=1

|F (uin) − F (vin)| ≤ ε.

Since ε is arbitrary, this implies (9).
To complete the proof, we must show that (7) implies (8). The proof is by

contradiction. If (8) is false, there is an ε0 > 0 and an increasing sequence
{`k}

∞
k=1 of positive integers such that

1

`k

`k
∑

i=1

|ui`k
− vi`k

| ≥ ε0, k ≥ 1. (17)

However, we will show that if (7) holds, then any increasing infinite sequence
{`k}

∞
k=1 of positive integers has a a subsequence {nk}

∞
k=1 such that

lim
k→∞

1

nk

nk
∑

i=1

|uink
− vink

| = 0, (18)
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which contradicts (17).
If S is a set, let card(S) be the cardinality of S. For a ≤ x ≤ b, let

νn(x; U) = card({i | uin < x}) and νn(x; V) = card({i | vin < x}).

Define

ρn(x; U) =

{

νn(x; U)/n, a ≤ x < b,

1, x = b,
(19)

and

ρn(x; V) =

{

νn(x; V)/n, a ≤ x < b,

1, x = b.
(20)

Then
1

n

n
∑

i=1

F (uin) =

∫ b

a

F (x) dρn(x; U) for all F ∈ C[a, b] (21)

and
1

n

n
∑

i=1

F (vin) =

∫ b

a

F (x) dρn(x; V) for all F ∈ C[a, b] (22)

[2, p. 231]. If
φn = ρn(·; U)− ρn(·; V),

then (7), (21), and (22) imply that

lim
n→∞

∫ b

a

F (x) dφn(x) = 0 for all F ∈ C[a, b]. (23)

Since
|φn(x)| ≤ 1, a ≤ x ≤ b, and V b

a (φn) ≤ 2, n ≥ 1,

Lemma 1 implies that every sequence {`k}
∞
k=1 of positive integers has a subse-

quence {nk}
∞
k=1 such that

lim
k→∞

φnk
(x) = φ(x) for a ≤ x ≤ b,

where φ is of bounded variation on [a, b]. From (23) and Lemma 2,

∫ b

a

F (x) dφ(x) = 0 for all F ∈ C[a, b].

This and Lemma 3 imply that φ(x) = 0 for all but countably many values of x.
Since limk→∞ φnk

(x) = 0 for all but countably many values of x, (19) and
(20) imply that

lim
k→∞

νnk
(x, U)− νnk

(x, V)

nk

= 0

for all but countably many values of x. Therefore, given ε > 0, we can choose
x0, x1, . . . , xm so that

a = x0 < x1 < · · · < xm = b,
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xj − xj−1 < ε for 1 ≤ j ≤ m, (24)

and

lim
k→∞

νnk
(xj, U) − νnk

(xj , V)

nk

= 0. (25)

Let

Ij = [xj−1, xj) for 1 ≤ j ≤ m− 1, and Im = [xm−1, xm],

and denote

Ujk = card{i | uink
∈ Ij}, Vjk = card{i | vink

∈ Ij}.

Since

Ujk =











νnk
(x1; U), j = 1,

νnk
(xj ; U)− νnk

(xj−1; U), 2 ≤ j ≤ m − 1,

nk − νnk
(xm−1; U), j = m,

and

Vjk =











νnk
(x1; V), j = 1,

νnk
(xj; V) − νnk

(xj−1; V), 2 ≤ j ≤ m − 1,

nk − νnk
(xm−1; V), j = m,

(25) implies that

lim
k→∞

Ujk − Vjk

nk

= 0 for 1 ≤ j ≤ m. (26)

Since

min(Ujk, Vjk) =
Ujk + Vjk − |Ujk − Vjk|

2
,

and
m

∑

j=1

Ujk =

m
∑

j=1

Vjk = nk,

it follows that
m

∑

j=1

min(Ujk, Vjk) = nk − rk, (27)

where

rk =
1

2

m
∑

j=1

|Ujk − Vjk|.

From (26),

lim
k→∞

rk

nk

= 0. (28)

From (24) and (27), there is a permutation τk of {1, . . . , nk} such that

|uink
− vτk(i),nk

| < ε
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for at least nk − rk values of i; hence

nk
∑

i=1

|uink
− vτk(i),nk

| < nkε + rk(b − a).

Now Lemma 4 implies that

nk
∑

i=1

|uink
− vink

| < nkε + rk|b − a|.

Hence, from (28),

lim sup
k→∞

1

nk

nk
∑

i=1

|uink
− vink

| ≤ ε.

Since ε is arbitrary, this implies (18), which completes the proof.

Acknowledgments. I thank Professor Paolo Tilli for a suggestion that en-
abled me to complete the proof of Theorem 1 in my earlier papers [4, 5].

Lemma 4 and its proof are similar to a well known result [6, p. 108] applicable
in the case where (13) is replaced by

S(`1 , `2, . . . , `n) =

n
∑

i=1

(xi − y`i
)2.

I thank a referee for pointing out that the present version of Lemma 4 shortens
my previous proofs of Theorem 1. I also thank the referee for a remark that
motivated the last paragraph of Section 2.
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