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A Data Combination Method for Postflight Trajectory Analysis

WiLLiam F. Trenca*
Drexel Institule of Technology, Philadelphia, Pa.

During the powered flight of a space vehicle, such as the Saturn vehicle, the onboard
accelerometers provide a source of trajectory information that can be used to obtain a record
of position and velocity. However, the trajectory information so obtained usually is degraded
by systematic errors that tend to become large, but whose form is essentially predictable,
given a reasonably valid model for the errors in the inertial measurements. This paper de-
scribes a postflight technique for employing a relatively small amount of ground-based
tracking data to eliminate these systematic errors. The technique has been applied to a
simulated two-stage Saturn flight. Bias errors were introduced into the accelerometer data,
and noisy ground-based data were simulated. The trajectory estimates were derived from
inertial data alone, and from the present method. In all cases considered, a small number
of ground-based position measurements yielded position and velocity estimates that were
essentially free of bias errors. Even though the analytical basis for the method rests on the
assumption of linear time-invariant error model, the method vielded good results in the
presence of large, nonlinear, time-varying errors,
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1. Introduction

WO independent classes of trajectory data are usually

available from the powered flight of a space vehicle:
data from ground instrumentation along the tracking range,
and data telemetered to the ground. (The Saturn vehicle
has in its inertial system three mutually perpendicular ac-
celerometers, mounted on a stable platform, from which
thrust acceleration data are telemetered.) A postflight tra-
jectory analysis technique, which depends entirely on one
or the other of these data sources, is usually inadequate. No
single ground instrument can track the vehicle during the
entire flight, and abrupt changes in position estimates often
occur when the track is handed over from one to another.
These discontinuities are caused by differences in the error
characteristics of the instruments. Another shortcoming
of ground instrumentation is that its accuracy can be severely
limited by the geometry of the tracking problem; thus, the
term ‘‘geometrical dilution of precision” in common use
among trajectory analysts.

Trajectory estimates based on data from the inertial system
exhibit prohibitively large bias errors, introduced by platform
drift and misalignment, scale factor errors, and nonorthogon-
ality of the accelerometers.

This paper presents a method for combining these two
kinds of data to obtain improved postflight estimates of the
vehiele’s position and velocity during powered flight. It is
assumed that errors in the inertial system cause the measured
thrust acceleration vector Ax(f) to be related to the true
thrust acceleration A r(f) by

Aut) = I + K)Ar() (V)

where K is a constant 3 X 3 matrix whose elements are un-
known a priori. It isshown below, subject to certain lineariz-
ing assumptions, that

9
X =Y@®n+ 21 P50 @
i=
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where X ({) is the true trajectory, and ¥V (f) is the trajectory
that would be obtained from A (f) alone. Each of the vee-
tors {P;(t)} is the solution of a 3 X 3 system of linear time-
varying differential equations, which can be computed from
Ax(t). The constants g, . . ., ¢o are unknown a priori, and
cannot be determined from the accelerometer data alone.
Using standard methods of weighted least squares, they are
chosen so that the right side of (2) gives the best fit, of the
form (2), to the ground-based measurements. As shown be-
low, q1, . . . , gs are used to calculate Ar(t) from Ax(f), and
an improved estimate of X () is obtained by integrating the
equations of motion, using the corrected thrust acceleration
data.

2. Analytical Basis for the Method

Let X(f) be the vehicle’s position at time ¢, relative to an
inertial frame. The equation of motion is

X =Ar+ 6(X) (3)

where G(X) is the acceleration due to gravity. The vector
Y (t), which is the position estimate based on A 4, is a solution
of

V=Ay+ Q)
Theerror E = X — Y satisfies
E=Ar — Ay + G(X) — ()
E@©) = E(©0) =0
We assume that the error committed in writing

GX) - aY) = HE

where

(H)i; = Og:i/dz; (G,7i=1,273)
is negligible. Substituting this in (4) yields

E— HE = JAx E@©) = E@0) =0 (5)
where

J=—-1+ T+ K™

(It is reasonable to assume that (I + K)™! exists; if it did
not, the null space of I + K would be nontrivial, and there
would be a direction in which the inertial system would be
unable to detect thrust accelerations.)
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Denote the elements of J by

't 4 T
J=1|q s s
qs qs Qo

From (5), E can be written in the form
9
EO) = 3 aPs0
i=

where

P; = HP; + F, Py0) =0
If we denote the components of A s by (Ea, far, Ear), the fore-
ing functions are given by

En 0 0
o 0 0
0 0 Eu

F., Fs, Fs, and Fy, Fs, Fy ave similar, with Ey replaced by
#iar and $u, respectively. We will refer to Py, . .., Py as
error functions, and to qi, . . . , gs as error coefficients.

Consistent with the linearizing assumption made in the
derivation of (5), the derivatives appearing in H can be evalu-
ated at points on the uncorrected trajectory (that is, the
trajectory obtained from A). Hence, the error functions
can be calculated from A, and if the error coefficients were
known, the true trajectory could be obtained from

9
X®=Y0+ _):l g;P5(0 (6)
&

As an alternative, one can compute Ay = (I 4 J)Ay and
obtain the corrected trajectory from (3). This was the
method used in the calculations described subsequently.

3. Estimation of the Error Coefficients:
Theoretical Considerations

If estimates of X () are available from other data sources,
such as ground instrumentation, the error coefficients can be
obtained by weighted least squares estimation, where the
data are fitted to a linear combination of Pyi(f), . . ., Ps(l).
Let X(t), . .., X (tx) be estimates of X (f) at times ty, . . . , I,
derived from ground instruments. Assume that the errors
in X(4) have zero mean and known covariance matrix Cj.
The %, jth element of C is given by

Cijk = [-'E;(fk) = Zs(fk)][-fdjﬂ(i;}l;;(tk_)_] 3;.7 = 1: 21 3

(The bar denotes expected value.) The joint covariance

matrix of the errorsin X (t), . .., £(tx) is
Ci 0 0
0 s 0
C= )
0 0. Cx

where the zeros are 3 X 3 matrices with zero elements, so that
C is of order 3K.
Define the 3K-dimensional vectors

X(h) X(t) Y (t)
U= ff = V= '
b 3 (tx) i (tx) j’(lx)
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the nine-dimensional vector

qQ

UE]
and the 3K by 9 matrix

Pi(ty) Pa(t) ... Ps(ty)
Py(ts) Polte) ... Polt)

Pi(tx) Palts) . . . Polts)

I'rom (6), U = V + PQ. For every nine-dimensional vec-
tor @', we can define a vector, U’ = V + PQ’, and a posi-
tive number,

o2 = (U’ — yre~U’ - 0)

The quantity ¢* is a function of (g, . . ., ), it can be
written directly in terms of the vector @ as follows:

Q) = (V — U + PQYTC(V — U + PQ")

It can be shown that ¢? has a unique minimum value, at-
tained when Q' = @, a solution of

AJ =PrC\U -V) =L @
where
A = Pr¢-ip

1f A is nonsingular, @ is unique; § = A—'L. If A is singular,
there are infinitely many vectors @ for which the same mini-
mum value of ¢? is attained. Since this case is of consider-
able interest, we will examine it further.

The singularity of A is equivalent to the existence of a
nontrivial vector

such that A Z = 0. From the positive definiteness of C, it
follows that A Z = 0 if and only if PZ = 0 and from the
definition of P, this is equivalent to
9

ZZ_{PJ(:&);'O (k=],...,K)

j=1
From this, we can conclude that either

9

3 24Ps) = 0 ®
J-

identically in ¢, or A ean be rendered nonsingular by intro-
ducing additional ground-based data. We will assume that
if A is singular, it is because of (8). It can be shown that
(8) is satisfied if and only if A lies in the same inertial
plane for all ¢; thatis,

nu Ea + nadiae + ns Fae = 0

where 7, nz, and ng are the (constant) components of a normal
to the plane of Ax. It follows from (1) that Ay lies in &
fixed inertial plane if and only if Ay does. We will denote
these planes by I'r and T'y.

It is reasonable to expect that I'» will be known in ad-
vance; in fact, I'r is often defined by

&r@®) =0
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because the { axis of the inertial system is erected normal to
the plane of the nominal trajectory. From this, it can also
be seen intuitively that @ cannot be obtained uniquely in this
situation, because, if it could, then the matrix K could be
obtained uniquely. This would be absurd, since the coeffi-
cients ki, ke, and ks, which cause errors arising from ac-
celerations along the { axis, cannot be determined if there
are no such accelerations. IHowever, even though @ is not
unique, this does not preclude finding the best correction for

the trajectory, since it can be shown that if Q= and § are
both minimizing vectors, then

9 -
_Z] (@5 — @)Pst) =0
i=

4. Estimation of the Error Coeflicients:
Practical Considerations

It is unlikely that the vector A will be strictly confined to
a plane, since guidance errors will cause some motion of the
vehicle out of the nominal plane of the trajectory. Thus, it
is not likely that A will be exactly singular. Rather, the
question of interest is how “nearly singular,” or “ill condi-
tioned” A is. An equivalent question is how ‘‘close” the
vector A x stays to a plane. We give a procedure that simul-
taneously leads to a precise definition of the latter situation,
and also provides the appropriate reduction of the system
(7) to a lower order, if necessary.

Let the times at which thrust accelerations are measured
be of the form ¢, = 0, h, 2k, . . ., Nh, and define the 3 X 3
matrix ¥ = (¥,;) by

i S As(u) A, (nk)

n=0

‘I"'.’f ('::J ] 11 2: 3)

- l =
where we have adopted the notations Aix = £a, Aoy =
Nar, Asae = $me

It can be shown that ¥ is symmetric and positive semi-
definite, and it is singular if and only if A is singular. In
this case,

n™n = 0

where n is the unit normal to I'y.

The eigenvalues of ¥ are nonnegative. Denote them by
n? > w? > v? > 0. Letl, m, and n be an orthonormal sys-
tem of eigenvectors. Thus I, m, and n are the principal axes
of ¥ and »? »:? and »s® are the mean square values of the
projection of A on I, m, and n, respectively.

¥ is singular if and only if »s*, its smallest eigenvalue, is
equal to zero. In this case, the vector  is the normal to the
plane T'y. However, even if ¥ is not exactly singular, a
convenient measure of the ‘closeness” to singularity is
afforded by

T = (P12 + 1’22)/?32

which is the ratio of the mean square value of the component
Ay in the plane of I and m, to the mean square value of the
component perpendicular to it. If r = «, ¥, and conse-
quently A, are singular. Clearly, the bigger the value of r,
the more nearly singular ¥ becomes. If r = =, oris very
large, define the matrix

(=]
(=]

0

o«
e

Lol ==~ ]

-7

=

=

I
cogoco=~co3
=
e =)
cogoosoog
cycosooz e
cosrcozg oo
cozgoosocoz

s
3coscozoQ

3
ez oo

3
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where the nonzero entries are the components of [, m, and n,
normalized so that ||I]| = ||m|| = ||n|| = 1. If wedefine A’ =
RART L' = RL, and §' = R{, then we can write (7) in the
equivalent form

Arér o LJ (9)

If »s® = 0, the first three rows of R are eigenvectors of A, as-
sociated with the eigenvalue zero. From this, it is not hard
to verify that the elements in the first three rows and columns
of A’ are zero, as are the first three elements of L’. Hence,
(9) is really a 6 X 6 system, since 7', §’, and g’ are arbi-
trary, whereas the other 6 components of @' are the solution
of the system obtained by striking out the first three rows
and columns of A’, and the first three elements of L’. If we
define @' to be the solution of (9) obtained in this way, with
¢, §2', and ;' taken to be zero, then

Qo = R7/Qy

is a vector for which the ¢2(@) is minimized.

5. Results with Simulated Data

To test the method presented in this paper, two computer
programs were written. One was a simulation program, that
accepts thrust acceleration data as input, and produces the
following outputs:

a) A reference trajectory, obtained by numerical integra-
tion of the equations of motion with error-free input data.
This is used as a standard in later computations.

b) A simulated time history of the output of the accelerom-
eters. This is obtained by means of a program that intro-
duces systematic errors into the thrust acceleration data in
accordance with an error model that accounts for scale factor
errors, cross coupling between accelerometer axes, non-
orthogonality of the axes, misalignment, and drift. The
last two types of errors do not match the assumed time-
invariant error model of Eq. (1).

¢) A simulated range data tape, containing estimates of
the position of the vehicle as a function of time, as would be
provided by ground based data. This tape is obtained by
computing the local coordinates of the target, corresponding
to the reference trajectory, and adding noise and bias errors.
The resulting estimates of the local coordinates then are
transformed into the central coordinate system, and stored
on a tape that represents the input that would be provided
by ground instrumentation. In addition, this tape contains
a covariance matrix for each time of observation.

The output tapes deseribed by b) and c¢) are used as input
to a second program that combines the data from the two
tapes, corrects for the systematic errors in the tape b) data,
and computes a corrected trajectory.

When the errors in the inertial data were of the form (1), the
corrected trajectory was found to lie extremely close to the
reference trajectory. However, the more interesting result
is that, if errors in the guidance system are simulated with
a time-varying error model in the simulation program, the
method still provides excellent corrections to the trajectory,
despite the fact that it is based on a constant error model.

The fact that good corrections to the trajectory can be
obtained with the constant error model (1), even in the case
when the actual errors are considerably more complicated,
shows that the operational program is a useful tool for ob-
taining improved estimates of the trajectory under practical
conditions.

Several simulated applications of the method were com-
puted, using a thrust acceleration profile for a two-stage, 600-
sec powered flight of a Saturn vehicle. Tracking range data
were introduced every 20 sec. We will summarize some
typical runs, where we used three different error models for
the inertial system, described as follows:
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Table 1 Results for the three error models
(perturbations) at t = 560 sec after launch

Perturbed trajectories
True

trajectory No. 1 No. 2 No. 3
z,m 1,383,877.8 1,383,503.5 1,400,570.4 1,393,474.3

y, m 403,440.1 403,436.4 421,290.2 426,477.7
z, m 27,283.8 39,161.8 30,834.3 126,126.2
Position error, m = 11,900 24,700 102,000
i, m/sec 5,805 5,803 5,868 5,826
y, m/sec —1,076 —1,076 —1.,036 —992
Z,m/sec 162 216 178 717
Velocity error,
m/sec = 54 85 562
Corrected values (Tracking range 1)
T, m 1,383,882.8 1,383,883.4 1,384,002.0
¥, m 403,420.7 403,417.1 403,624 .4
z,m 27,296.5 27,295.9 27,271.1
Position error, m =2 25 27 223
&, m/sec 5,805 5,805 5,808
y, m/sec —1,076 —1,076 —1,070
2, m/sec 163 162 162
Velocity error,
m/sec = 1 0 7
Corrected values (Tracking range 2)
z 1,383,918.1
¥y 403,525.8
z 27,750.2
Position error = 488
i 5,807
g —1,072
1 166
Velocity error = 6

Case 1: Platform drift about one axis at rate of 0.00015°
sec/m.

Case 2: Scale factor error on each axis of 1%, nonortho-
gonality of axes = 0.1°.
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Case 3: Constant scale factor error on each axis of 19,
nonorthogonality of axes = 0.1°. Platform drift about all
three axes at rate of 0.0015° sec/m.

Case 1 is & time-varying error model. Case 2 is a constant
error model of the form (1). Case 3 is again time varying,
with very large errors. This case was computed primarily
to test the linearizing assumptions.

The tracking range that was simulated can be described
as follows:

Ground sensors:  One radar and one Azusa in the launch
area, and one radar and one Azusa down range.
Errors:
Tracking range 1:

or = 20m g4 = og = 03 mr

o1 = agm=1X 1073
Tracking range 2:

A = gg = AE = 3mr

=

O’g=ﬁ=100?ﬂ o4 =

Jg=K:=Am=cr,..=1X10"

In tracking range 2, A4, AE, Al, and Am are constant bias
errors.

The results are given in terms of a tangent plane coordinate
system, with origin at the launch point. The z coordinate is
positive down range, y is positive along the vertical at the
launch point, and z completes the right-hand system. The
results are summarized in Table 1.
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