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WEIGHTING COEFFICIENTS FOR THE PREDICTION OF
STATIONARY TIME SERIES FROM THE FINITE
PAST*

WILLIAM F. TRENCHt

1. Introduction. This paper presents a method for calculating weighting
coefficients for the minimum variance linear prediction of weakly stationary
time series on the basis of n 4 1 consecutive observations. The theoretical
solution of this problem is well known, since the coefficients satisfy a linear
algebraic system of order n + 1; however, the numerical solution of such
a system is difficult if = is large. We give a simple algorithm, part of which
could be derived from the properties of a certain class of orthogonal poly-
nomials [2]; however, the derivation given here does not require a knowl-
edge of that theory.

2. Formulation of the problem. Let {y.] be a complex-valued weakly
stationary time series, with zero mean, unit variance, and correlation
sequence {¢,}:

(1) E?}myr-l-ﬂ = ¢, y ¢p = 1.

Let the joint distribution of %o, ¥1, -+ -, ¥ be of rank n + 1, so that the
Hermitian matrix

(2) Tn - (4’:--:)::—0

is positive definite.

We consider the problem of predicting ymir, ¥ = 1, given observed
values ¥m, Ym—1, " * , Ymn Of a realization of the process. It is known [6,
pp. 126-129] that the best prediction based on a linear combination of the

observed values is

(k) k)

n
Tmn = Eﬂ \;’rn Ym—r 5
—

where

(3) Z{;qx_w:i? = ¢rix, 0sr=n
This is the best prediction in the sense that, of all linear combinations of
Yms Ymeis *** » Ymn , it minimizes the variance E | 252 — ¥psx |*. Under the

assumption on the rank of the distribution, (3) has a unique solution.

* Received by the editors March 29, 1967.
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Little work has been devoted to finding explicit expressions for the
weighting coefficients in the finite case, or to developing efficient methods
for solving (3). For the purely autoregressive case, the complete solution
is known explicitly [2, pp. 186-187]. Kozuljaev [3] has solved the prediction
problem for the special finite moving average process

Um = (1 + 1)“”‘_2%;,,_.-,

where {z,] is an uncorrelated zero mean process. In this case,
&i l_lz/’rli |!-|§‘.",
lb,' = 0, !il >Tr.

(4)

Kozuljaev solved (3) by means of Cramer’s rule, which requires consider-
able caleulation of determinants. The author [5] obtained the same results
by a simple device (discussed in §4 below) that applies to any process
which is the finite moving average of an uncorrelated process. The same
device was stated independently for k = 1 by Davisson [1].

In [4] the author gave a method for inverting matrices of the form (2)
that takes advantage of their simple structure. This paper presents an
algorithm for solving (3) directly, without requiring the inversion of (2).
In the most general case, the number of multiplications required is propor-
tional to n°. However, if the generating function

®(z) = )j; b2

is rational, the technique simplifies so that the number of multiplications is
proportional to n. All processes of the mixed autoregressive, finite moving
average type are in this class.

3. Recursion formulas for the general case.

TureoreM 1. If the joint distribution of Yo, 11, =<+, ¥a is of rank n + 1,
the weighting coefficients satisfy the following recursion formulas:
(5) Yt =¢;,  N=1,
and if 1 = m = n, then
(6) hm - (]- kg I‘;’:Enl—)lvm——l lg)xm—l "

m—1

(7) 15:111 = hm_l (¢'m+j - 20 'Ps.lal—l¢m+j—a—l) 3
and

) ) 71
(8) v = 98 — Ui ama, 0=r=m-— 1Ll
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Instead of proving Theorem 1 directly, we shall obtain it as a special

case of Theorem 2 below. Theorem 1 provides an efficient method for

. (
computing \b{i:?, ceey u‘«.ﬁ, as follows.

(a) If k = 1, start with (5); then compute (6), (7) and (8) form = 1,
2, ---,n,withj = 1.

(b) If k > 1, compute (5) withj = 1 and j = k. For each m, first com-
pute (6), (7) and (8) with j = 1; then compute (7) and (8) withj = F.
Repeat form = 1,2, -+, n.

This sequence of computations is economical of storage. It is only
necessary to retain quantities computed at level m — 1 until the computa-
tions at level m are eomplete.

For k = 1, this algorithm was derived in [4]. For the reader who wishes
to refer to that paper, we point out that ¢\» is denoted there by ¥,
and X, by A, .

Turorem 2. Let 5o, m, -+, 1. be arbitrary, and for each m = n, let
fomy Eimy *** 5 Emm e the solution of

(9) zu¢r—s£am = Mr, 0 é r é m.
Then
( 10) S = M0,
and for 1 < m £ n,
m—1
(]1) Emm = hm—](.’]m - Zl} ‘;’i}r}:—lﬂm‘-crl)
(where Ny, is defined in Theorem 1) and
(12) Erm o Er-m-l = Emml}rtul—]r—lvm—l, 0 =rsm-— 1.

Proof. Since ¢g = 1, (10) is obvious. Define &, m—1 = 0. Then, from (9),

bl

m—1
(13) .¢r--s(zam = Ea-m—l) = bpm (Tfm o Zn ¢m—s£a-m—l)

a=0

for 0 < # £ m. In [4] it is shown that the elements of the last column of
T. " are

(14) brmm — ‘_‘km“l;i:ir—lrm-li 0 é rEom — 1!
and

(15) Bison = M
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From (13) and (15),

m—L
{]-G) Emm = M_l('f:'m e >::¢m—sfs-m—l)-

=0

From (9) with m replaced by m — 1,
zo¢m—r—l-sz‘s-m—l = MNm—r—1, 0 é T é m - l.

Hence

m—1 m—1 m—!

E 'pi}v:—l Z ¢m-r——-l—a£l-m—l = "'!('ln?l—lﬂm—r—l

r=0 am0 r_
By interchanging the order of summation on the left, and noting that, from
(3),

m—1

(1)
E:(I Dinr-1-s¥rm-1 = Pm—s, 0 <s=m—1,
-

we find that
m—1 m—1

§n¢MEl-m—1 = E'}’r m—1Tm—r—1 «

From this and (16), (11) follows. From (11), (13) and (14), (12) follows,
which completes the proof of Theorem 2.

Theorem 1 is a special case of Theorem 2, with n, = érps .

Theorem 1 (with k = 1) and Theorem 2 provide an efficient algorithm
for computing the solution of a system of the form

n
> brsks = r, 0<rsn
=0

4. Prediction of the finite moving average process. If {yn} is a finite
moving average of an uncorrelated process, thereis an integer p such that
¢ = 01if |7] > p, and the elements of 7', lying outside a dlagnnal strip
vanish. From (3), it can be shown that the definition of W can be ex-
tended for all r so that

P
(17a) 2 dibiim = 0, —w <1< ®,
I==p
(17b) B = =l ~pSrs -1,
(17¢) ® =, m+1=<r<m+op.

This reduces the calculation of the weighting coefficients to solving a
boundary value problem of order 2p. The author used this fact in [5] for
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the special case (4), for which the difference equation can be solved ex-
plicitly. However, even if it is not convenient to solve (17a)-(17¢) ex-
plicitly, it is still useful to employ them in the following computational
scheme, which provides Yo, ¥iv, ---, ¥+ and requires a number of
multiplications proportional to n, rather than to n’.

Equation (8) now holds for all r, as can be verified by observing that,
with the extended definition, the right member satisfies (17a)-(17ec),
and coincides with the left member for —p < r < m + p — 1, a total of
m + 2p values.

A careful examination of (8) shows that if ¢i%_; is known for 0
Sp—1landm —p < r < m — 1, then ¢!} can be caleulated for 0
Sp—1landm —p+ 1 < » < m. Similarly, if £ > 1, and ¢, is
also known form — p < r £ m — 1, ¢ can be caleulated for m — p
+ 1 = r £ m. To see this, observe that (8) implies that

r

=
=r

(k) U‘I) 1
(18) mn = Ty
'}’-—'p—l»m—l

since Y4l . = 0. From (17a) and (17e),

2

»
(k) r i (k) .
'f/m+p-m—1 — _¢p ?_{¢J m—jim—L 3
i=1

and from (17a) and (17b),

p
(19) B i = (1 = jZ_} &'ﬁb;l—)l-m‘—l)-

From these last three equations, Y and ¥4 can be computed; the other

values of \bi,l,,’ and zpi,‘.? mentioned above can then be calculated from (8).
In this way it is possible to proceed recursively up to m = n. At each step
only 2p values of ¥ and (if k 5 1) only p values of %, need be computed.
Given ¢¥ for n — p + 1 = r < n, the remaining coefficients can be ob-

tained recursively from (17a) and (17¢):

P
&) -1 (k)
m = —¢p Z Pi¥ripiim P = = P by oese 0,

i=—p+1
The computations described in this section are of interest only if k < p;
since ¢, = 0 if [r| > p, (3) and (16) each imply that ¢% = 0 for all
rifk > p.
b. The mixed moving average, autoregressive case. The method of the
previous section can be generalized to the case where the generating fune-
tion

B(z) = _Zm@ i
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is a rational function. If {z,} is an uncorrelated sequence and {.} is the
solution of

(20) Ym + Ay lm—1 + e 4 Aolim—-g = CoTm + oty + -0 + Cplm—p »
—wo <m< w,

then {y.] is weakly stationary, provided the roots of
AR =Y ad, w=1,

lie outside the unit eircle. The autocorrelation sequence is generated by
(21) #(2) = a2 C(2)C*(1/2)/[A(2)A*(1/2)],

where ¢ is chosen so that ¢ = 1, and
r r
C(z) = ; o7

The coefficients a, , ¢y, and ¢, are assumed to be nonzero. (If f is a poly-
nomial, then f* is the polynomial whose coefficients are the conjugates of
those of f.)

For the process (20), ¢+ can be caleulated with a number of multiplica-
tions proportional to n. The algorithm is readily derivable from Theorems 3
and 4 below.

Define {v,}, {e} and {b,} by their generating functions:

(22) C(2)C*(1/z) = imz
(23) A@A /T = 3
and

A = S b
0
Turorem 3. Let {wir.} be the solution of the difference equation
(24) _f Fiwrdsm = 0, —o <r< w,
that satisfies the boundary conditions

7
(25) Ed:w}k—)i-m = —by_;, 1

=i

A
=,
A

D,
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and

(26) iﬂ) awi im =0, 1<1=p.
Then if m = q — p,

(27) wi = é Oy — Gk, —PST=m+p.

Proof. 1t is only necessary to verify that the right side of (27) satisfies
(24), (25) and (26), because there is only one sequence which does so.
From (21), (22) and (23),

P
o

-2
b =0 2, it

Jue=p

Using this, it can be shown that the right side of (27) satisfies (24) for
0 = r = m, by substituting in (3) and regrouping terms. It also satisfies
(25) and (26), as can be verified by using the relations between {a.}, {a,]},
and {b,} that are implied by their generating functions. This completes the
proof of Theorem 3.

The system (24), (25) and (26) reduces to (17) if A(z) = 1, in which
case Wiy = Yin-

Theorem 3 reduces the calculation of y%, 0 < r < m, to solving a differ-
ence equation of order 2p, for if w¥ is known for 0 < r < m, the weighting
coefficients can be obtained by solving (27), with 0 = r = m. This is easy
to do, because the matrix T, = (a—,), 0 £ 1, 8 £ m is invertible by in-
spection if m = 2¢. If the (r, s)th element of T\, ' is denoted by b,um , then

7 (Z;: a.-z“) A*(z), 0

(28) iﬂ br!mzr = z’A(l/z)A*(Z), q é r g m — q’

IIA
A

r q_ls

m—r

ZA(1/2) (Z &‘-z‘), m—g+1=r=<m

Example. Consider the sequence {y;} obtained from the uncorrelated
sequence {z;} by
Yi — NYjm = Tj — Tj,

where —1 < N\ < 1. The difference equation (17) reduces to

(k) (k) (k)
Wrilm — 2Wem + We—1,m = 0, —wo <r< »,

(k) (k) k-1
W-1n — k"wilrs = _'>\ y

(k) (k)
Winttim — mem = 0.




WEIGHTING COEFFICIENTS 1509

Thus, w¥ is a first degree polynomial in 7; the coefficients can be deter-
mined from the boundary conditions. The result is

P e T N7 (m — 7)1 — \) + 1]
” (1 = Nm( =N + 2]

T, can be obtained from (28) with A(z) = 1 — Az; the final result is
v = (1 = \)’wi.

Even if it is not convenient to solve the difference equation explicitly,
Theorem 3 and (28) can be combined with the following theorem, whose
proof we omit, to devise an efficient algorithm for caleulating the weighting
coefficients. The required number of multiplications is proportional to n.

Tureorem 4. Forany k = 1,

(k) (k) (k) -
Werm = Wrm—1 — #’mmwmmr-—lxm—l ] —w <7< «,
and
S |
(k) (k) - (1)
(29) mm = (i aiwm+p'.f-m-1)(to aiwi—p-"l-m—l) .
i=0 =

The algorithm is constructed in a way analogous to that of §3; the details
are tedious to write out for the general case, but straightforward for any
particular A(z) and C(z).

6. Variance of the estimates. Let

n
Ymtk — Zﬂ ‘p,/:'fl)ym—f
r=

2
2
ank = I

The known result,
e = 1= 2R,
follows from (1) and (3). In particular, (19) implies that
'I/(—l,)p—l.m—l = ¢pmld'3u_:.1
for the moving average case. This does not vanish, because the process is

nondeterministic; hence, the division in (18) is legitimate. For the mixed
moving average, autoregressive case, it can be shown that

Q
= (1) 2 -
ZO aﬂﬂj—-p—lnm—l = Um—l-l/'}’p y
=

which does not vanish; hence, the division in (29) is legitimate.
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