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CONTINUOUS SMOOTHING WITH POLYNOMIAL WEIGHTING*

WILLIAM F. TRENCH¥

1. Introduction. We consider finite memory continuous filters with poly-
nomial weighting designed to smooth or differentiate a signal consisting of an
unknown polynomial of given degree plus stationary noise. The derivatives
W, weth o wetmm iy > 0,m = 1) of the weighting functions are required
to vanish at the endpoints of the smoothing interval; if v = 0, this gives an ad-
vantage over least squares smoothing in that, when defined to be zero outside the
smoothing interval, the weighting functions have m — 1 continuous derivatives
in (—oo,00). If v=10 or v = m, the method discussed here is analogous to the
minimum R,, method of discrete smoothing.

It is shown that these weighting functions can be expressed as convex linear
combinations of their least squares counterparts, so that previously established
estimates for the generating functions of least squares polynomial smoothing [1],
[2] also hold for the new methods.

2. Formulation of the problem. Let H, be the space of polynomials of degree
not greater than n and let f = p + & where p is in H, and ¢ is a sample function
from a zero mean stationary random process with spectral density i». We consider
smoothing operations of the form

; _
M) 2(x) = f W) f(x + y)dy.
=1

where W is chosen so that

@ Eg(x) = f W(yp(x + 1) dy = p():

here r is a fixed integer (0 < r < n) and the equality is to hold for every pin H,,.
The output g from (1) consists of (2) plus a zero mean random component

1
E(x) = j W(yk(x + y)dy
-1

with spectral density
D(O) = |C(0)*(0),

where
1

3) c() = j e W (x)dx
-1

is the generating function of the smoothing operation. The variance of the smoothed
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estimate of p is
@) o*(E) = j " |CO)20) do.

If {&) is r-times differentiable, {¢”} has spectral density
P(0) = 0*"y(0)

and variance
) 2@ =[" evon.
Condition (2) is satisfied for every'p in H, if and only if
(©) fiww)ywyﬂzan, 0sssn;

from this it follows, on expanding (3) about 0 = 0, that
(7 lim C(0)/6" = (—1).
g=0

Schoenberg [3] has given reasons for calling a smoothing method stable
(when r = 0) if |C(0)] < 1 for 0 # 0. We will say that a smoothing method is
r-stable if its generating function satisfies (7) and

[CO)/0] < 1, 0#0;

the desirability of this property is obvious from (4) and (5).
If F is square integrable in [— I, 1], then the polynomial Q in H, that mini-
mizes

1
e f (F(x) — Q) dx
=1

1
Q(x) = J. K(x, y)F(y) dy,
-1

where

n

K(x,y) = )

i=0

.
J+

5 P{x)P(y)

and P;is the Legendre polynomial. Taking F(y) = y" we can easily see that

y 1
(®) WelX) = 3 (J' +3 P{(0)P(x)

i=o

satisfies (6); smoothing with this weighting function is called least squares smooth-
ing. Among all continuous functions that satisfy (6), w,, is the unique one that
minimizes

Jw) =j Wi dx = o j " lcor o,
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which yields the known result that smoothing with w,, provides the minimum
variance estimate of p (of the form (1)) if {} is white noise ( = 1).

The question of stability of smoothing with w,, was introduced by Wilf [4].
L. Lorch and P. Szego [5], following Wilf’s approach, subsequently showed that
continuous least squares smoothing is stable for r = 0 and n sufficiently large.
The author [1], [2] showed that least squares smoothing is r-stable for all r and n.
Lorch and Szego [6] gave an independent proof, using a method different from
that of [1], [2], of stability for all n when r = 0.

In this paper we consider smoothing with the polynomial weighting function
of lowest degree that satisfies (6) and the boundary conditions

9) w1y = wi(— 1), vEjSv+m—1.

In § 4 we show that this smoothing method is r-stable and give a recursive method
for obtaining W; in § 5 we show that if v = 0 or v = m this method is an analogue
of minimum R,, smoothing of discrete data, which was recently shown to be
stable (for » = 0) by Greville [7].

If v=0in (9) the continuity of W (defined to be zero for |x| > 1) and its
first m — 1 derivatives in (— o0, o0) is a desirable feature if the filter (1) is to be
approximated by a physical device, because it avoids the sharp cutoff that would
be required to approximate the discontinuities in a similarly extended w,,.

3. Properties of least squares weighting functions. To aid our investigation of
the new smoothing methods we develop some useful properties of least squares
weighting functions. '

Since P{—x) = (= 1YP{(x), (8) implies that
{IOJ Wep [ "'x] = {— l)rwru(x}

and, depending upon the parity of n — r, either w,,_, = w,, OF W,, = W, .. {:
we will assume without loss of generality that n — r is even, so that w,, = w, .,
and

1
(11) ‘[ W, (x)x*dx = rlé,,. 0s=n+1.
-1

LeMMA 1. Any polynomial of the form
R

“2) G = Z Ks“'r.ni-ls:

5=0

where K, - -« . Ky are constants and K, # 0, has at least n sign changes in(—1, 1).
Proof. If r = n, G is orthogonal to H,_,, which gives the result; if r = 0,
the same argument applies to x*>G(x). Now suppose 0 < r < n = 2k. Then

1
j G(x)dx =0;
-1

hence G changes sign at least once in (— 1, 1) and, since G is even, it must change
sign at points +x,, -+, +x;, where 0 < x; < -+ < x; < L. Let
g(x) = (x* = x}) -+ (x* = x3)

= bo " blxz s AL bszj.
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Ifj < k then for i = k,

J W, 24x)q(x)(b, - ; — b,x?) dx
=1

1 1
by f W 210a0¢) dx — b,j w, 2q(x) dx
-1 ~1

Il

ri(b,_ b, — b,b,_ ) = 0.
Thus from (12),

1
j G(x)q0)b, -, — bx?)dx = 0,
-1

which is a contradiction since Gg does not change sign in (— 1, 1)and b,b,_, < 0;
thus j = k. This establishes the theorem ifniseven;if0<r<n=2k+1a
similar argument shows that xG(x) has at least 2k sign changes in (—1,1) (not
at the origin), so that G has at least 2k + 1.

LEMMA 2.
(13) i 7Swi(0) > 0, s=nrmod2), s=n,
and
(14) wi0) = 0, s#rmod2), s<n-—1.

Proof. Equation (10) implies (14); since Lemma 1 and (10) imply that w,,
has n distinct roots symmetrically placed about the origin, the derivatives (13)
whose orders have the same parity as r are nonzero and alternate in sign ; further-
more,

1
Wo(0) = j w2(x)dx > 0,
-1

which completes the proof of (13).
LEMMA 3.

(15) " rw(1) > 0, 0<s

IIA

n.

Proof. (Recall that n — r is even.) The signs of the derivatives near the origin
are given by Lemma 2; by Rolle’s theorem, w® has n — s sign changes placed
symmetrically about the origin, which gives (15).

4. The new polynomial weighting functions. Let W, be the polynomial of
lowest degree that satisfies

1

(16) J W(x)x*dx = r!d,,, 0<s=n,
-1

and

(17) wix1) = WwO(—-1) =0, y<j<v4+m—1.

Clearly W,,, also depends upon r and v, but we will not indicate this by additional
subscripts ; rand v are fixed in the following discussion. We assume that0 = r = n
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(if r>n W, =0)and that v<n (if v>n, W,, =w,,). As before, we assume
that n — ris even.

LemMMA 4. There is at most one polynomial of degree less than n + 2m + 1
that satisfies (16) and (17).

Proof. If W,,, and W,, both satisfy (16) and (17), then h = W, — W, is
orthogonal to H, and therefore has at least n + 1 distinct zeros in (-1, 1), so
that h"" has at least n — v + 2m + 1 zeros (counting multiplicities at x = +1)
in [—1, 1]; thus either degh > n + 2mor h = 0.

THEOREM 1. If 0 S r,v S n,m = 1, and n — r is even, then W,,, is unique and
of exact degree n + 2m. Furthermore,

“8} Wmn = Z Ajmnwr.n+2j;
=0

where Agpps ** 5 Apmn Gre constants and

“93) Ajmn > Uv
(19b) Y Apa=1.
i=0

Proof. We use induction on m. Form = 1,

w(\]

(20) w i n+

2(I}w,,,— w! (1_)11«{,_,_,_,__;_t
" W }-W‘”’{ll ’

from (15) the denominator is nonzero and the coefficients of w,, and w, . , satisfy
(19). W), satisfies (16) because of (11) and W)(1) = W)~ 1) = 0; the uniqueness
follows from Lemma 4.

Now suppose the theorem is true for some m = 1. Then any weighted average
of W,,and W,, ., ; satisfies (16) and (17); we have only to choose coefficients so that

WhEm(1) = WSim(1) =0

m+ 1.0

Hence

wt\-ﬁm(”w g Wl\rrlz(]],
21 W N m,n m
( ) m 1;“ W[\+m)[” W{\ l—:-mz“]

To complete the induction we need only show that

(22) whEmweim) < 0.

m.n+ 2

From (17),
Wox) = (x* = 1)"Qpilx),

where Q,,, is of degree n — v and, by Lemma 1 and Rolle’s theorem, has exactly
n — v sign changes in (—1, 1). Hence W, . , has exactly two more sign changes
in(—1, 1) than W) since both are either even or odd we conclude that the former
has exactly one more sign change in (0, 1) than the latter. Both are convex com-

binations of wi, w5, -+, wi), ., ., (by the induction assumption) and, by
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Lemma 2, have the same sign near the origin. Thus Qu(1)Qp,n+2(1) < 0 and since
WEm(1) = 27m ! Q1)

(22) is established and the proof of Theorem 1 is complete.
Equations (8), (20) and (21) provide a recursive method for obtaining W,,,;
it can also be written explicitly as

Wen Went2 70 Wendom
oo @py  *° Oom
1| a a a
10 11 im
(23) Won = D ,
An-1,0 Gm-1,1 Oy — 1,m
where
a;; = wﬁ:,++"2j(l), 0<jsm, 02ism—1,
and
1 1 1
) gy Aom
p=| %o ayy Aim
Om-1,0 9m-1,1 """ Gm-1m

Expansion of the determinant in (23) by elements of the first row yields (18)
and (19b); however, the proof of (19a) is more straightforward by the induction
argument. Theorem 1 ensures that D # 0 if v < n.

Our main result now follows easily.

THEOREM 2. The smoothing method (1) with W = W, is r-stable.

Proof. The generating function of W, is a convex combination of the
generating functions

1
C,(0) = j wx)e *dx, k=nn+2,---,n+2m,
i |

which are known to be r-stable [1], [2].

5. Connection with minimum R,, smoothing. Ifv = Oorv = m, W,,,is thesolu-
tion of an extremal problem similar to that of minimum R, smoothing of discrete
data.

THEOREM 3. W, (with v = 0 in (17)) is the unique function in C*™[—1,1]
that minimizes

0= j (W2 dx
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subject to (6) and the endpoint conditions
WU l) = WU(—1)=0, 0sjsm—1.

If m < n, W= W, (withv = min (17)) is the unique function in C*™[—1, 1] that
minimizes Q subject to (6) only (no endpoint conditions); if m > n, any linear combina-
tion of W,,, -+, W, ., is a solution of this problem with Q = 0.

Proof. Both extremal problems are of the isoperimetric type; hence there
exist unique constants 44, 4,, - -+, 4, such that the solutions of the given problems
are extremals of the functional

1 n
J(W) = f_ [{ Wm(x)? — 2W(x) 3 zljx":| dx

i=0

whose first variation is given by

1 n
awinl =2 [ (W - ) 5 50|

m=1 1
(24) =2y (—z)fw<"'+ﬂ(x)h('"'i"l(x)|
i=o -t

J

1 "
+2j [{— 1)"WEem(x) — ijj]h{x) dx.

-1 =0
If Wis an extremal for the first problem of the theorem, then 8J[W; h] = 0 for
every m-times differentiable h such that h(1) = W(—1)=0,0<j<m— 1;
hence,

(25) Wem(x) = (= 1y Z Apd
i=0

and Wis a polynomial of degree not exceeding n + 2m; by the uniqueness proved
in Theorem 1, W = W, with v = 0.

For the second problem, J[W;h] = 0 for every 2m-times differentiable h;
hence (25) again applies. The sum on the right side of (24) must vanish for every
hin C®™[—1, 1], which implies that W satisfies the natural endpoint conditions

wi1) = w9(-1) =0, m<j<2m-—1.

If m £ n, our conclusion follows from Theorem 1, while if m > n, the conclusion
is obvious.
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