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STABILITY OF A CLASS OF DISCRETE MINIMUM VARIANCE
SMOOTHING FORMULAS*

WILLIAM F. TRENCH

Abstract. We study stability of midpoint smoothing formulas matched to discrete data consisting
of equally spaced samples of an unknown polynomial of known maximal degree plus a random error
with known spectral density. Stability is established for a class of minimum variance smoothing
formulas which includes least squares and minimum R,, smoothing formulas, previously shown to be
stable by T. N. E. Greville.

L. Introduction. We consider the problem of smoothing a sequence of
observations,

(n v, = f(r) + &,

where fis an unknown polynomial of degree not exceeding 2k and {¢,} is a sample
sequence from a real-valued stationary time series with zero mean and continuous
spectral density

O(4) = i ¢, cos ri;

that is,
E(EjsjirJ = ¢,.

We apply to (1) the smoothing formula

g
(2) U= ) W,

$=-q

where the weighting coefficients w_,, - -, w, are chosen to minimize

q
Q(W-qs oy wq} = Z ¢’r—swrws

rs=-q

subject to the constraints

q
(3) Y ws' = &, 0<r< 2k

~q

If {w_g, ---, w,} is any solution of (3) and

q
- N
U, = Z Wellp— 55
s=-q
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then
4) Euf = f(r)

whenever fis a polynomial of degree not exceeding 2k, and

E{h‘:.t _f(r))Z = Q[W—q! Y wq}'

For these reasons we shall follow the convention introduced in [11], and refer to
(2) as MV(q, k;®), which stands for “‘minimum variance smoothing formula,
with respect to ®, of span 2g + 1 and degree 2k + 1.”

If ® = 0, the constrained minimum problem has a unique solution for every
g and k. Moreover, it happens that

(3) W, = W_g,

so that MV(g, k; ®) is symmetric, and (4) holds even if fis of degree 2k + 1, rather
than 2k.
If ¢ < k, then (3) has only the uninteresting solution

wo =1,

therefore we shall assume that g > k.
The characteristic function of MV(g, k; ®) is defined to be

q
C(%) = ) w,cosri.
-q
It follows [6] from (3) and (5) that
(6) C(A) = 1 + O(A%*?), A=0.

Schoenberg [5] has shown that a symmetric smoothing formula is stable under
repeated application if and only if

(7) IC(A) < 1, 0<|iEm.
(For a different interpretation of (7), see [11] and the footnote reference to
Lanczos in [6].)

Results on stability of minimum variance smoothing formulas are quite
limited. Greville [1] has shown that MV(q, k; ®) is stable forallg =2 k + 1 =2 1 if

O(4) = sin*™(4/2),

where m is a nonnegative integer. If m = 0, this is equivalent to least-squares
smoothing, the stability of which had been conjectured by Schoenberg; if m 2 1,
it is equivalent to minimum R,, smoothing, as defined by Wolfenden [13]. Trench
[11] has obtained the following result.

THEOREM 1. Suppose MV(q, k; ®) is stable for allq = k + 1 = 1, and let

X‘ l—rI (1 + ﬂ,-x)
Q(x} — ls=1 ]
[T0 =7y

i=1
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where t is a nonnegative integer, 0; = 0, and 0 = y; < 1. Define

n(4) = Q(sin? (2/2))d(4).

Then MV(q, k; n) is stable forallg =z k + 1 =z 1.

Wilf [12], Lorch and Szegd [2], [3], Lorch, Muldoon and Szegd [4], and
Trench [8], [9], [10] have considered related questions for continuous smoothing
formulas.

In this paper we obtain sufficient conditions (Theorem 3) for stability of
MV(g. k; ®,,), where

D,.(1) = (sin? (4/2))*(cos? (4/2))". Hv> —1/2.

These results are extended to more general spectral densities in Theorem 4.

2. Characteristic function of MV(q. k; ®,,). Throughout this paper
Wy =u@+ 1) Ww+s—1)
and
(W =y — 1)+ (u—s+1).

The following result reduces to Sheppard's formula for the characteristic
function of minimum R,, smoothing [1], [7] when g = m and v = 0.
THEOREM 2. The characteristic function of MV(q, k; ®,,) is

(—1)"”_ i (—q)dg +pu+ v+ 1)

. 25 -
K Ss—k—Dik+at 32, @2

@®) Ca)=1-

Proof. The variance of the output of MV(g, k; ®,,) is
q
0'2 izxd Z ¢r—swrws’
rs=-g
where {¢,} are the Fourier coefficients of ®,,. This can be written as

) o? oy _f [C(A)PD,, (1) di.
2n

Since cos r4 is a polynomial of degree |r| in
x = sin? (2/2),
C(4) is a polynomial of degree ¢ in x, which, from (6), is of the form
(10) CA)=Px)=1— i bx*.
s=k+1
Substituting this into (9) and taking x as the new variable of integration yields

(1) 7= (“ >
s=k

T Jo 1

2

bsxs) x#—l.u’?.[l — x]\-—l.fZ dx.

Thus, P(x) (and therefore C(4)) can be obtained by minimizing (11) with respect to
bk"‘l' RS bq.
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We complete the proof of Theorem 2 with the following lemma.
LEMMA 1. Suppose o, § > —1, p is a positive integer, and n is a nonnegative
integer. Then the minimum value of

1
J‘ (F(x))*x*(1 — x)? dx
0
Jor F(x) of the form
Fix)=1—x? E": a.x’,

5=0

is attained with

(=1 "&P(—n—pn+p+a+f+ 2)sx,
-5 s(s — p)p + o + 1), '

Proof. Differentiating

1 n 2
(13) J. (1 -xry asx’) x*(1 = x)*dx
0 5=0

(12) Fix)=1-—

with respect to ag, - -+ , @, and equating the results to zero yields
1 n 1

(14) J. X — xfdx = Y asJ. xIrrEsty o xf dx, 0<rgn.
0 =0 4]

From the properties of the beta function,

E &+ DI+ 1)
x5l = xdx = —5——F7—, Enp>—1
L” ) [C+n+2) 4
Applying this to (14) and cancelling common factors yields
(15) p+r+a+p+2), Rp+r+a+l) 0<r<n

p+r+a+l), T A Qprrtatfr2,
Subtracting the rth equation from the (r + 1)st and using the relationship

(x+1); (K (x+1,

oD, "0, o, VY
yields
i) (P+r+x+ﬁ+3}p1|="_'_(?P+"+3+2)s__l:_{s+”ﬂsn]‘
p+r+o+1),,, Sop+r+a+f+4) p

0<rsn-—1.

Denote the solution of (15) more precisely by a,,(x, f, p); writing (15) fora — 1,
p + 1,p + land n — 1, and comparing the result with (16) yields

{17} asnlavﬁ!f,] — _pas-].n—l[:‘ - 11.3 + I.P + lj* 1

A
L

A
=
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Givenag, ., "+, @, .- forall e fand p, this yields a,,. - - - , a,, but not
ag, ; hence we need another recursion formula. Multiplying (15) by (2p + r + «
+ B+ 2),/2p + r + « + 1), yields, after some manipulation,

P+r+a+B+2, i(2p+r+s+z+ﬁ+2)"_,

) . - a ay ] B
P+r+a+tn, & @rristatl,, =&hHP

(18)

0

174N
1A
=

Subtracting the rth equation from the (r + 1)st yields

pPH+r+a+ B+ 3pip-
{pita ittt Wepey

l ny
" 2p+r+s+o+pf+3), -1 n—>5
= .B.p), 0=r=n-1
S T T e U S
Comparing this with (18) for o, § + 1, pand n — 1 yields
(19) ana,op) =P, @B+ 1p) OSssn-L

Starting from (15) with n = 0, induction on »n using (17) and (19) implies that

(=DA=—n—ph+dn+p+a+ B+ 2,

= <s<
as“(a,ﬁ.f?} (P— ]}'($+P]3![p+a+ l)p_'_s U:S:rh
which yields (12).
Comparing (11) and (13) shows that P(x) can be obtained by setting
(20) p=k+1, n=g—k—-1, a=u—1/2, B=v—=12

in (12). This and (10) yield (8). which completes the proof of Theorem 2.

3. Main results. From (10), MV(q. k; ®,,) is stable if and only if
[P(x)] < 1, D<x=1;

however, it is convenient to consider the polynomial F(x) defined by (12).

LEMMA 2. If
(21) [F(I)l < 1,
then
(22) Fix)) <1, 0<x<1.

Therefore, MV(q, k; ®,,) is stable if and only if (21) holds, with parameters n, p, o
and B given by (20).

Proof. From a result of Greville (see the proof of Lemma 2 of [1]), (F(x))* is
interpolated at x = 0, at the relative extrema of F(x) in (0, 1), and at x = 1 by the
polynomial

S =1+ f 1P () (F/ (1) dt,
0
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where

p—1

gx) = Y dg(s, x)x*,
5=0
_ —p—=Dp+a+1),.5,
fosln4s+ D n+pra+f+2),
and
(23) s, x) = (3p + 22 — 3s)(1 — x) — (2 + I)x, 0s=sp-—1.
Clearly

s, 0) >0, a>—-1, 0=s=p—1:
consequently, since d; < 0, g(x) is negative near x = 0. Moreover,
(s,x) <0, a,f>—1, 0<s<p-1,

so that g(x) is monotone increasing. Hence ¢(x) either remains negative for all x
on (0, 1) (from (23), this is true if and only if —1 < f = —1/2) or changes sign
exactly once, from negative to positive. In either case,

fln<1
implies

flx)<1l, 0<x<=1.

From the manner in which f(x) interpolates (F(x))?, it now follows that (21) implies
(22), which completes the proof of Lemma 2.

The next theorem is our main result on stability of MV(g, k: ®,,).

THEOREM 3. (a) MV(q,0;®,,) is stable if and only if —1/2 <v < pu + 1.

(b) If —=1/2 < v £ 1/2, then MV(q, k: ®,,) is stable forallq = k + 1 = 1 and
u> =172

(c) For each k,p and ©, MV(q, k; ®,,) is stable for all q sufficiently large if
—1/2 < v < u + 1, or unstable for all g sufficiently large if t > u + 1.

Proof. From (12),

(=17 "FP(—n—pdn+p+a+p+2),

F(l)=1 -
wl (p—1) = s(s — p)ip + o+ 1),

L]

which can be rewritten (see the Appendix) as

(1" n+ B+ )"0+ Dn+p+oa+f+2),

4 F(l) =
(24) () m+p+a+ )t & slin+p+a+2),

If p =1, then
(n+p+ 1D
(n+ o+ 2)0t0°

hence |F(1)| < 1 ifand only if < « + 1, and (a) follows from (20) and Lemma 2.

[F(1)| =
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If § < 0, then (24) implies

F()| < (n + 1)! Poln + 1),
Th+p+a+ )TV G st

(n+ D +2), ,

25 -
) M+p+a+ )" p— 1)

_ {n_'_p]hl*ll
S+ p+a+ )Y

<1 ifa>—-1;

hence (b) follows from (20) and Lemma 2.
(The first equality in (25) can be obtained from the identity ¢_. (u),/r!

= (u+ 1),/q')
To prove (c), we rewrite (24) as

(n+ f + 1P+
(n+ o+ 2" P2

T B+p=0)r" P+ )n+p+atp+2
n+p+o+ e & slin+ p+ o+ 2),

IF()] =

The expression in brackets approaches (8 + p — 1) V/(p — 1)! as n approaches
infinity, and

lim

(n+,8+l}‘_":"_”f_{0 iff<a+l,
n—w (N + o + 2}{"_‘”2} N

o iff>a+1;

hence (c) follows from (20) and Lemma 2.

Parts (a) and (b) of the next theorem follow from Theorems 1 and 3. Part (c)
requires a minor modification of Theorem 1: namely, replacement of the phrase
“forallg = k + 1 = 1" by “*for each fixed k and sufficiently large g.” This modified
version of Theorem 1 also follows from the proof given in [11].

THEOREM 4. Let

x*(1 — x)' [T (1 + 0:x)
i=1

O(x) = e
I (1- }’_;x}
j=1

J
where p,v > —1/2,0;, 2 0and 0 < y; < 1. Define

®(1) = Q(sin? (4/2)).
Then
(a) MV(q,0;®)is stable if v< pu + 1.
(b) If —1/2 < v < 1/2, then MV(q, k; ®) is stable for all g2 k + 1 = | and
> =172
(c) For each k, u and v, MV(q, k; ®) is stable for all q sufficiently large if
—12<v<pu+1
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Appendix. The purpose of this Appendix is to verify (24).
LEMMA A.1. The following is an identity in u and v:

s m\(u+v), (@™
A.l -1 = ——
( ) s;{) { }3( $ ) u’)s [_ [})(ml
Proof. f v # —m + 1.---, —1,0, the left side of (A.1) is a polynomial of

degree m in w. Call it Q(u). If r = 0,1, --- , m — 1, then

o= "3 (- 11*(*1')

s=0

(0 + 1)
(v),

_ @O+ Duey Z {_1},( ]{F+ 2 =0,

(V) $=0

since the last sum is the mth difference of a polynomial of degree less than m. As a
polynomial in u, the right side of (A. 1) has the same zeros as the left ; moreover, both
sides equal 1 when u = —v. Hence (A.1) is an identity.

LEMMA A.2. The following is an identity in x and y:

(=17 "SF(=n = pllx + ¥);
(P_ l}ls » 5{-5_9) (.")

(A.2)
)Y rst (4 1)x + y),
(=)D & sy +n+ 1),
Proof. Forafixedy # —n —p + 1, ---. —1,0, the left side of (A.2) is a poly-

nomial of degree n + p in x. Call it P(x). Then
(A.3) P(—y—r)=1, 0sr=sp-—1.

Also, P(x) can be rewritten as

p—1ntp

()H+p 5=0

)(‘- T J’L(J 2 s)n+p o
Ifr=20,1,---, n, then

P(r) =

{__'l)p 1(V+ r}n-rp r
W+ p Z =

n+p)

](y + ),

which is the (n + p)th difference of a polynomial of degree less than n + p: hence

P{r):(}‘ r=0‘]‘...,n

The right side of (A.2) also vanishes at x = 0, 1, -+, n. Because of (A.3), the

proof will be complete if we show that the right side of (A.2) equals 1 when
x=—y—r,r=01,---,p— 1;that is, we must show that

(_}' J r}ml"“ 4 {” + l)s(_r]s _
(=)0 Sosly+n+1),

(A4)
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This is accomplished by rewriting the left side of (A.4) as

(cy =" L ) e,
(= Z ; ( )(y +n+ 1),

and invoking (A.l) withm =r,u = —y,andv =y +n + L
Now (24) can be obtained by setting x=n+ f + l and y=p +a + 1 in (A.2).

Acknowledgment. I wish to thank one of the referees for bringing Lemma 2
:0 my attention.
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