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ASYMPTOTIC INTEGRATION OF LINEAR DIFFERENTIAL EQUATIONS
SUBJECT TO INTEGRAL SMALLNESS CONDITIONS INVOLVING
ORDINARY CONVERGENCE*

WILLIAM F. TRENCH*

Abstract, The problem of asymptotic behavior of solutions of an nth order linear differential
equation is reconsidered, and a result obtained by Hartman under integral smallness conditions
requiring absolute integrability is shown to hold with most of the conditions stated in terms of ordinary
integrability. Results of Fubini and Halanay for linear perturbations of nonoscillatory second order
equations are similarly extended.

1. Introduction. We study the behavior as 1 — oc of solutions of the scalar
equation

(1) x4 p (x4 -+ plt)x =0, t >0,

with n = 2. Except when stated otherwise, all functions are permitted to be
complex-valued; ¢ is a real variable throughout.

Our main result is the following theorem.

TueoreM 1. If py. -+, p,€ C[0, 20),

(2) J. Ip (et dt < o,
0
and the integrals
3) J. p " Vdr,  2<k<n,
0

converge—perhaps conditionally—for some g > 0, then (1) has solutions o, - ++ | X, -
which satisfy

r=j

t
—(1 ), <jsr,
@ W =) o T OIS
oft"™'79), r+elsjsn-1.

Hartman [4, Thm. 17.1, p. 315] has shown that the conclusion of Theorem 1
holds if

j PO dt < 0,  1SkEn,
0

for some g = 0, and Hartman and Wintner [5] had earlier obtained the result for
g = 0. (For a history of the problem with g = 0, see [4, p. 321].) The contribution
here is that ordinary—rather than absolute—convergence is sufficient in (3) if
qg>0.
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A special case of Hartman's result, due to Hille [6, part of Thm. 3]. is that if
f& Plpo) dr < x, then
¥+ pltly =0

has solutions x, and x, such that lim,_., xo(t) = 1 and lim ., (x,() — 1) = 0.
Theorem 1 shows that this conclusion holds even if [/ t*p(t)dr converges con-
ditionally.

2. Proof of Theorem 1. To avoid unnecessary subscripts, we let r be a fixed
integer (0 < r £ n — 1) throughout. For convenience, let

(5) Mx= ) px®¥
K= 1

(thus, (1) can be written as x™ + Mx = 0) and define the transformation y = Tx
by

r x (- s
(6) }'(f} = :._I + J: E’{'n __s]”I [M‘(Hi'}d.‘)

if0<r =gy orby

" (e — )yt J‘ (A — gy rHlal-t
D f AT T iMld
(7) W) r!+ N ”!U R e l)!(M\lls)cs

if g < r<n— I Here [q] is the integer part of g and (4 = 0.
Under the hypotheses of Theorem 1, we will show that T maps the space
V{to. o). consisting of functions in C"~'[t,, o0) and satisfying

(8) y=0("9), 0=Zjsn—-1,

and

) (@ rxy =07, 0sj=n-2,

into itself, and is a contraction mapping with respect to the norm

(10) lixl = sup{ nil ey + e i I(r""x“"(f))’l}
tzig | j=0 =0

if to is sufficiently large. (The condition (8) is partially redundant, since (9) and the
condition that x(r) = O(t") imply (8); however, it is convenient in the following
proof to define | x|l as in (10).) Since V[t,, o) is a Banach space under this norm,
it will then follow from the contraction mapping principle [1, p. 11] that T has a
fixed point (function) which, we will show, is essentially the solution of (1) which
satisfies (4).

Throughout the rest of the paper, it is to be understood that all estimates
hold for t = t,.

The following lemma is the key to the proof of Theorem 1.

LemMMa L. Suppose the hypotheses of Theorem 1 hold and x € V(ty, ). Then

(1) _f (—r; S (Mx)(s) ds| < Ixlmey =07, 0Sisntqg—r—1,
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where m is continuous on (0, ), decreases monotonically to zero as t — « . and does
not depend on x or tg.

Proof. First observe that
(12) “w sjp,{s)x‘""“[,s}ff,s"g | X|E (nef=nmatr+t 0sjsn+qg—r-—1,
[
where
E\(t)= J” s py(s) ds.

'

which exists, because of (2). Fork =2, --- , n — 1, define
elt) = J” 9 p(s) ds,
‘
which exists because of the assumed convergence of (3). Then
JﬂI sTTETr lp (N s ds = — Jﬂ' ei(s)s" " Mg) ds

which, by integration by parts, equals

—ey(s)s" TF T xR (s)

+_[ ey(s)(s" T * xR s)) ds.
r r
This converges to a finite limit as r, approaches oo, since
le(t)e 57 X0, < il lewler)]
lex(s)(s” ™~ x" )T =[xl feals)s ™47,

and lim, .. .. e,(t) = 0. Therefore, the integral

I(1n) =J‘ ‘s"*"""‘pk{s).vc"‘""(s}ds

= e ()" F xR + J‘T ed$) (" F X" M(s)) ds

converges and satisfies
(13) [0 S NIxil EWlt),
where

E\(t) = (1 + t%q) sup |eys)|,

because, from (10),
ek =R < il

and
oo

U“ es)(s" xR s)) ds | < x| (suplefs)) | T ds.

I
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(Here we need the assumption that g > 0.)
Now. if0Sj<n+g—r—1,

j SIpdsIx"H(s) ds = ‘f $TT U s) ds
T r

= [ L (j-n—qg+r+ !lf Ids)s' =" 747 ds
and. because of (13) and the obvious monotonicity of E;.

S 2x|Efnyimmetrtt 0 <j<n4+qg—r— L

(14)

J‘ s'py(s)x" " (s) ds

This inequality also holds for j = n + ¢ — r — 1, because then the integral on the
left is just I,(¢) (cf. (13)). Now, from (5). (12) and (14),

Lﬁﬂmnm& ghwam+225m*f"“”k
T k=2
0sjs=n+yg—r—1,
and so (11) holds, with
m(t) = 2"”""(!:?,{:) +2 ) E,‘(f})A
k=2

Since E,. - - -, E, all decrease monotonically to zero as t — ¢, this completes the

proof of Lemma 1.
Returning to the proof of Theorem 1, we consider two cases.
Case 1. Suppose 0 < r < g. Then Lemma 1 implies that the integral

1

(15) Ho = [ C a0 ds

is defined whenever x € V[t,, o0), and that
(16) |HO(@)| < lixiim(o)er=79, 0=sjsn-—-1
Since (6) can be rewritten as
) = % + H(1),
(16) implies that
(17 wo=0"), 0=jsn-1

Moreover,
() = (0 HO@W) = 077G = NHOW + tHYT ),

0=sj=n-2,
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so (16) also implies that
(18) (= y )| = (T H )] £ (Ix((j = ol + Dm(e= 9™,
0<jsn-2,
which, with (17), implies that ye V[t,, oc); thus, T maps V[t,.oc) into itself.
If %, X e V[ty, 20), then
-~ z f - 9}" !
Tx(r) — Tx(r) = 7 ‘I]‘_ [M(x — X)](s)ds
T

and, by setting x = ¥ — X in (15) and using (16), (18) and the monotonicity of m,
we find that

n=2
IT% — TX|f < |IX — i;!m{:‘ul(ﬂfo_" + Y (i—r+1).

i=0
Since m(t) = o(1), this implies that
|T% — TX| < 3% — %|

if 1, is sufficiently large. Hence. T is a contraction mapping of V[t,. o0) into itself,
and therefore has a unique fixed point (functmn) x, such that Tx, = x,: ie.,

x{t) = — J. - 1)1 (Mx,)(s] ds.
Clearly, x, satisfies (1) on (t,, c0), and it can therefore be extended as a solution
of (1) over (0, c0). That x, satisfies (4) can be seen from (16), with x = x, in (15).

Case 2. Suppose g < r. Then Lemma | implies that the integral

a {I— s)n r+g)l-1

19 = _

(19) g(1) . e =N S (Mx)(s) ds

is defined whenever x € V[t,, c¢), and that

(20) lg 0] = lix|m(e)eta=a~i, O0sisn-r+[qg -1

Now (7) can be rewritten as

!.r
W) = pris G(),

where
Wy = — lql=i-1
(21) Gt) T [q] !},J (t— A" g(A)dA,
0sjisr-[q] -1
and
(22) Gty = g™ (),  r-[glsjsn-1.
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From (20) (with i = 0), (21) and the monotonicity of m,

. ol
J) e e o
G0 = 4] l)'.[ lg(A)] dA

x| mleg)” 1=~
(23) s oo ”!J' ja=ag;
| x| mirg)er =79
T+ -r—[q—ji- D"
From (20) (with i = j — r + [q]) and (22).
(24) IGY(0)| < lixlim(e)er=I7%, r—[glsjsn—1.

Using (23) and (24) and a computation similar to that of Case 1, it is straight-
forward to verify that y, as defined by (7), is in V[t,, o) and that T is a contraction
mapping if to is sufﬁcient]y large. The function left fixed by T satisfies

0<jsr—I(g)-1.

“ )r [q]—1 = [/‘._S}n-r-ﬂq]—l
(r—[q]— 1! da L (n=r+[q) = 1)

and so is a solution of (1) on (ty, o), and can be extended as such over (0, o).
Since the integral on the right of (25) is G(1) (cf. (21)), with x = x, in (19), it is clear
from (24) that x, satisfies (4) for r — [¢] < j < n — 1. The same conclusion cannot
be obtained from (23) for 0 < j = r — [g] — 1, since the last member of (23) is
O(t"~#~%) rather than o(t" "~ 9); hence, a different analysis is needed for this case,
as follows. Again let x = x, in (19). From (20) (with i = 0) and (21),

(25) xAn) = ;_‘ + (Mx,)(s)ds,

i ltxllf"“‘Jl R
L) s 1]
1G9 o 7 ”!Lm(zt}a"‘ 4di,
O=zj=r—[q]—1;
hence
”x ”,q lql-1
r+ [] l]
(26) [aaslel (3] 5_“ [q] = ”lJ. m(A)a =9 d;,

which shows that (4) also holds if 0 £ j < r — [¢] — 1, since the right side of (26)
approaches zero as t — oo. (This is obvious if the integral converges, and it follows
from I’'Hopital’s rule if it diverges, since m(t) = o(1).)

This completes the proof of Theorem 1.

3. A related result.
THEOREM 2. Suppose p, , - -- . p,€ C[0, o) and r is a fixed integer,0 < r = n — 2.

Then (1) has a solution x, satisfying (4) if
(27) J"ppl(m dt < o,
Q

(28) JA .I pt)* ' dt existsfor2 <k <n—r-—1,
0
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and, for some q > 0,
x
(29) .[ pdNt "t dr exists forn —r S k S n.
[\

We omit the proof of this theorem, which is very similar to that of Theorem 1.
The essential difference is the need to restrict further the domain V[r,, x) of the
transformation T, by defining V[4. o) to be the subset of C"~'[ty, ) consisting
of functions x which satisfy (9) and

: o). 0=j=r,
xY(t) = )
oY, r+l<j<n—1,

instead of (8), and defining || x|| by

r n=1
x| = sup {Z )+ Y V)
J

t2t0 (j=0 j=r+l

n—2

+ 07y |(rf'"x‘”{.r}]‘r}.
j=0

instead of (10). The other changes required to adapt the proof of Theorem 1 to

that of Theorem 2 stem naturally from these and the differences between the

hypotheses of the two theorems.

Hartman [4, p. 315] has shown that the conclusions of Theorem 2 hold if the
integrals in (27), (28) and (29) all converge absolutely.

The essential difference between the conclusions of Theorems 1 and 2 is this:
the former states that (1) has a fundamental system {x,, - -, X, ,} consisting of
functions which satisfy (4). while the latter implies that (1) has a “partial” system
of r + 1 (<n) solutions {xg, - -+, X,} such that

1=J
(1 +ol™, 0=jSi,
() = (i—N!

ol "i7 9y, i+1<jsn-1,

for0Zi=sr

4. Linear perturbations of a nonoscillatory second order equation. We now
apply Theorem 1 to obtain a result on the asymptotic behavior of solutions of

(30) (o)XY + gl)x =0, >0,
considered as a perturbation of
(31 (rt)y') + fe)y =0, t >0,

which is assumed to be nonoscillatory. In this case it is known [4, p. 355] that (31)
has solutions y, and y, such that

(32) volt) >0 and y,(t) > 0, t = i (for some i),
(33) nyoyy — Yoy =1
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and

() -

THEOREM 3. Suppose r, f, and g are continuous, r > 0, and f is real-valued on
[0, c0). Let (31) be nonoscillatory on (0, <o), suppose v, and y, are solutions of (31)
which satisfy (32), (33) and (34), and suppose

fo (8(1) — SO o) ™9+

converges—perhaps conditionally-—for some q > 0. Then (30) has solutions X, and
x, such that

xolt) = yolt)(1 + o(s ™).

(35)
Xot) = yolt)(1 + ols ™) + ¥y(B)o(s ™+~ "),

and

— ] .\--q y
(36) x"“} Ul + ols™9)

xi(r) = yiO)(1 + o(s™9) + yolt)o(s g+ 1),
where
(37) § sy zl_{_r}‘ _
Yolt)

Proof. From (33),

(38) s() = 0, 121,

MOl

so (34) implies that s = s(t) maps (i, o) one-to-one onto [s(f), oc). By rewriting (30)
as

(r(t)x’) + f(t)x + (g(t) — f(D)x = 0
and making the change of variables s = s(t) and u(s) = x(r)/y(r), it is straight-
forward to verify that (30) is equivalent to

d*u
(39) S plsu =0,

with
p(s) = ) (vo(N*(glt) = f(1), (s = s(1)).
From (37) and (38),

s p(s)ds = J. (8(0) = FO) )™ Hyolt) 7" " d,
i

s(1)

which exists for some g > 0, by assumption:; hence Theorem 1 implies that (39)
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has solutions ug and u, such that

upls) = 1 + ols™9). duols) ols™9 ),
ds
and
Tuy
uyls) = s(1 + ols™). : I::T] =1+o(s™9

Now let x,(1) = volt)us(t)) (i = 0, 1): then x, and x, are solutions of (30), and
elementary manipulations (which make use of (33). (37) and (38)) show that they
satisfy (35) and (36).

Halanay [3] obtained the conclusion of Theorem 3 forr = land ¢ = 1 under
the stronger assumption that

J. lg(t) — fOly (N dt < x,
0
He also obtained the conclusions of Theorem 3 for r = 1 and g = 0 by assuming
that
(40) J. . ig() — f(Dvelny () dr < x:
0

of course, Theorem 3 does not improve on this, because it applies only if ¢ > 0.
(Hartman and Wintner obtained a similar result for ¢ = 0, under an assumption
weaker than (40); cf. [4, Thm. 9.1, p. 379].)

By considering

(41) X" = x4+ P)x=0

as a perturbation of y” — y = 0 and taking a = 2¢, we obtain the following
corollary to Theorem 3.

COROLLARY 1. If Pe C[ty, ) and [ 5 P(t) e* dt converges—perhaps condition-
ally—for some a > 0, then (41) has solutions xo and x, such that

”f=(-—l' =i 3 —ary)
(42) xa it £8 L j=0,1.
Xty = el + ofe™™).

This corollary contains a result obtained by Fubini [2] for @ = 2, under the
stronger assumption that [5"|P(t)] e dt < o0: however, Fubini did not specify
the order of convergence in (42).
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