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ORTHOGONAL POLYNOMIAL EXPANSIONS
WITH NONNEGATIVE COEFFICIENTS*

WILLIAM F. TRENCH?t

Abstract. This paper presents general theorems implying that the coefficients in the expansions
of one set of orthogonal polynomials in terms of another are positive or nonnegative. These theorems
imply several results, previously obtained by special arguments, for the classical orthogonal poly-
nomials. A special case of one of the theorems settles affirmatively a conjecture of Askey.

1. Introduction. The question of when the coefficients in the expansions

(8)) 4x) = Y a,,p(x)
r=0

of one set of orthogonal polynomials in terms of another are nonnegative has
been studied in several recent papers (for examples and applications, see the
references); in addition, there arc several older results on this question for the
classical orthogonal polynomials. Most of these results have been obtained by
special arguments, often involving explicit computation of the coefficients.
Askey [3] and Askey and Gasper [5) observed as recently as 1971 that there were
only two general theorems [4], [11] implying nonnegativity of the coefficients
in (1), and that many of the classical results had not been shown to follow from
them. Since then, the author [8] has considered the case where {p,(x)} and {g,(x)}
are orthogonal with respect to distributions du(x) and dv(x) = w(x)du(x), and
has given conditions on w(x) which imply that the coefficients in (1) are nonnegative
for all n, while those in the “‘inverse™ expansions

Pu(X) = 2. brar(x)
r=0
alternate in sign; i.e, (—1)"""b,, 2 0.

2. Main results. Here we present general theorems which imply several
known results on the classical polynomials. Our starting point is the following
lemma.

LemMa 1. Fors =0,1,---, n, let p(x) be a polynomial of degree s with s roots
in an interval (a,b). Suppose xo¢ (a,b), pdxy) >0 (0<s=<n), and Q(x) is a
polynomial of degree n. Then

(2) Qx)= Y cpfx), ¢ 20, 0

=0

if there is a distribution function F(x) with at least n + 1 points of increase in (a, b)
such that [° x* dF(x) exists for 0 < k < 2n, :

A

s<n,

b
3) (—W‘f Ix - xlpx)dF(x) <0, 0Sj<s<n,
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and
1:]
@ (- [ - xbemdrx 20, 0jgn

Moreover, ¢, >0 (0 < s < n) if at least one of the inequalities in (3) is strict for each s.
Proof. Descartes’ rule of signs implies that

px) = Y pilx = xl/, a<x<b,
i=0

with
5) (= 1¥p;, > 0;
therefore (3) and symmetry imply that

b
©) [ popmar o, 0srssa res,
and (4) implies that

b

% [ rwewdrmzo,  osrsn
From (2), ¢q, - - - , ¢, satisfy the system

b n b
[ oware = ¥ ¢, [ nwpodrm,  osrsn,
a 5=0 a

which, since F(x) has at least n + 1 points of increase, has a positive definite Gram
matrix G with nonpositive off-diagonal elements (cf. (6)). Stieltjes [7] (see also
[10, §3.5]) showed that the inverse of such a matrix is nonnegative. This and
(7) imply that ¢, = 0, 0 £ s < n. If at least one of the inequalities in (3) is strict for
each s, then all of those in (6) are strict because of (5), and so the off-diagonal
elements of G are negative; in this case, Stieltjes’ result implies that G™! > 0.
Since at least one of the inequalities in (7) must be strict, it then follows that
¢,>0,0<s=n

The idea of applying Stieltjes’ theorem here came from a paper by M. W.
Wilson [11].

Except where stated otherwise, we assume throughout the rest of the paper
that {p,(x)} and {g,(x)} are orthogonal over a finite or semi-infinite interval (a, b)
with respect to distributions du(x) and du(x), respectively, and normalized so as
to be positive at some point x, ¢ (a, b). It is to be understood that the distributions
have enough moments and points of increase so that the polynomials are defined
and unique up to normalization.

For convenience below, we state the following obvious “principle of com-
position”: If p(x), g,(x) and r,(x) are polynomials of exact degreek = 0, 1,2, - - - such
that

K
qilx) = ._ZA aypix)
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and
K
rx) = Z bugdx),
i=0
with
®) (@ a320, () by20, 0=sisks=n,
then
k
rdx) = ¥ capdx),
. i=0
with
©) 20, 0sisksn

moreover, if the inequalities in either (8a) or (8b) are all strict, then so are those in 9.

THEOREM 1. If"
b
(10) 0 [ e~ xlp ) S0, 0Sj<ssm,

then a,, = 0 in (1); moreover, a,, > 0 if at least one of the inequalities in (10) is

strict for each s.
Proof. The polynomials {p(x)} satisfy the conditions of Lemma I, with

F(x) = v(x). Since
b
[ o= xoba ot = .,,( ; j @GP d),  0Sjsn,

inequality (4) also holds with F(x) = v(x) and Q(x) = g,(x); to see this, observe
that since g,(x) has n roots in (a, b), Descartes’ rule of signs implies that g, M(xe) > 0
if xo = band (—1)"q¢™(x,) > 0if xo < a. Now the conclusion follows from Lemma

1

Because of the difficulty of verifying (10), Theorem 1 may be too general to
yield specific results; however, the following special case is applicable, as we will
see below from examples.

THEOREM 2. Suppose

(11) d(x) = o(x) du(x),

where o(x) is nonnegative (#0) and n times differentiable on (a, b). If xo < a, then
Qppn ; Oin {l) If
(12)  (=1F7(x — xoYa(x)]*® £ 0, a<x<b, 0Zj<s<n;

moreover, a,, > 0 if at least one of the inequalities in (12) is strict for each s. The
same conclusions hold if x, = b, and (12) is replaced by

(13) [(x = xoYa(x)]® £ 0, a<x<b, 0Lj<s=n.
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Proof. Let h(x) be the projection of |x — x,|’a(x) on the space of polynomials
of degree <s (<n) with respect to the inner product

b
(fog) = f £(g(x) du(x);

thus,
h(X) - bopo(x} o+ bsps(x)v
where
(14) b 1 b .
s = WJ: [x — xol/a(x)p(x) du(x).

Since xo ¢ (a, b), [x — x,l/a(x) has n derivatives on (a, b). Moreover, the function
Ix — xola(x) — h(x)

is orthogonal to every polynomial of degree <s, and therefore has at least s + 1
zeros in (a, b); hence, its sth derivative has at least one, and so

({x = xola(x))*” — b,p(x)lx=x, = 0
for some x, in (a, b), which implies that the sign of b, is the same as that of
PO ([0x — xol o (X)),

If xo < a, then (—1Fp(x,) > 0, and (10) follows from (11), (12) and (14); if
xo 2 b, then p{’(x,) > 0, and (10) follows from (11), (13) and (14). Theorem 1,
therefore, implies that a,, > 0 in (1) in either case. It is straightforward to verify
that the statements concerning strict positivity of a,, also follow from Theorem 1.
The following corollary settles affirmatively a conjecture of Askey [1], [3];
its proof has also been given separately elsewhere [9].
COROLLARY 1. If ¢ > 0 and

dv(x) = |x — x| du(x),

then a,, > 0 in (1) for all n.

Proof. With a(x) = |x — x,/° and 0 < ¢ < 1, the inequalities in (12) hold
strictly for all n if x, < a, and those in (13) hold strictly for all n if x, = b. This
gives the result for 0 < ¢ < 1, and it follows from this for all positive c, by the
principle of composition.

Example 1. Corollary 1 implies known results for the Laguerre polynomials
{L}(x)} and the Jacobi polynomials {P™#(x)} (for definitions, see [6]); namely,
that

Ly Mx) = ¥ a,Li(x),

r=0
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with @, > 0if u > 0 and « > —1, and that
Petelsym ¥ b Pl
r=0

ifu>0and o, f > — 1.

Askey [1] cited these results as evidence supporting his conjecture of
Corollary 1.

COROLLARY 2. Suppose X;,X,, - . X, are in an interval I which does not
intersect (a, b), {p{x)} and {g,(x)} are normalized so as to be positive on I, and

dv(x) = a(x) du(x),

where
m -
(15) o(x) = ¥ byx — x*
. k=1
with
(16) (a) b, >0, by D<eg <1, k=1,---,m.

Then a,, > 0 in (1) for all n.
Proof. Ifa > — oo and x, < q, then

(=1 0x — aplx — x)™”

-i J -’ f=irg.. * + 175!
(17) =(-1y ggo (i)(xk - af " lx = x>

=(_1}5'J‘S! JZ r{)(xk"‘a)j‘i Ck+i'){x_x*rk+i-s.
i=o0 \1 5
Because of (16b),

{_l)s—f

sl
) <o, iy e 1,
s

and, therefore, the last member of (17) is negative if 0 < j < 5 and x > a. Now
(16a) implies that o(x) satisfies (12) (with strict inequality) for all nif I = (— o0, a],
and so the conclusion follows from Theorem 2. The proof for the case where
I = [b, o) is similar. -

Corollary 1 and the following lemma enable us to improve on a result ob-
tained in [8].

LEMMA 2. Suppose y, ¢ (a, b) and

{18] (_'1}'pr{y0] > Gv '_l),ql'(}ﬁ}} 0! r= 011| RN

Let m be a positive integer, and suppose the distribution

_du(x)

[x = yol™

dv(x) =



—
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has moments of all orders on (a, b). Then a,, = 0 in (1) for all n.
Proof. For m = 1, it is known [6, Thm. 3.1.4, § 3.1] that

q—"_—'(yi)m— ix),  (4,.B,>0),
qn(y())
and the conclusion follows from (18); it follows for all positive integrals m from
this and the principle of composition.
Lemma 2 is not valid for arbitrary positive m. For a counter-example, see [8].
The following theorem improves on Theorem 1 of [8].
THEOREM 3. Suppose (a, b) is finite. Let I be one of the intervals (— oo, a] or

gux) = A.p.(x) — B,

[b, =c), and let J be the other. Suppose p(x) > 0 and q(x) > 0(r = 0,1, ---) for x

inl Let xy,---,x,beinlandz,,---,z beinJ, and define

L x = x]

du(x) = M--du{x), a<x<b,
[1-:1x = 2™

j=1 i
where my, .-, m, are nonnegative integers and c,,---,c, are arbitrary non-
negative numbers. Suppose du(x) and dv(x) have moments of all orders on (a,b).
Then a,, = 0 in (1) for all n; moreover, a,, > O if at least one of ¢, - - - , ¢ is positive.

The proof consists of a straightforward application of Corollary 1, Lemma 2,
and the principle of composition. (Notice that the assumptions imply that (— 1y
-pdx) > 0 and (- 1)" g,(x) > 0 on J, so that Lemma 2 is applicable.)

Example 2. With

du(x) = (1 — x)*(1 + x) dx
and
do(x) = (1 — x)(1 + x)"*du(x),

Theorem 3 implies a known result for the Jacobi polynomials; namely, that

n

PEtel~8x) = ¥ a,PeP(x),
r=0

with a,, > 0if 4 > 0, k is a nonnegative integer,« > —1 and g > k — 1.

Example 3. We introduce a class of orthogonal polynomials which includes
Jacobi’s and Heine’s polynomials [6]. Suppose k 22 and a, < a, < --- < .
Let v be a fixed integerin {1, ---,k — 1} and let A = («,, - - -, o) be a k-tuple of
real numbers restricted only by the requirement that o, > —1 and «,,, > —1.
Let {P{")(x)} be a sequence of polynomials orthogonal over [a,, a,. ,] with respect
to

5
du(x) = [] |x — ajf* dx,

i=1

and normalized so that P{*Y(c0) = co. Then Theorem 1 implies that

PP(x) = i a,,Pi!(x),
r=0
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with a,, = 0 for all n if
B=(x; —ky, sty — Ky oyin F Hyrrs s % + s

provided k;, - -, k, are nonnegative integers, k, < 1 + &, and pt,, 4, -+, J4 ar€
arbitrary nonnegative numbers; moreover, 4,, > 0 if at least one of the latter is

pasitive.
3. Special results concerning even distributions. The case where du(x) and
dv(x) are even distributions deserves special attention. If

(19) (a,b) =(—R,R), u(—x)= —u(x), o—x)= —ux),
then
p—x) = (=1 (x),  gu(—=x) = (—1)'g,(x),

and it is appropriate to consider separately the expansions

(20) QZn(x) = E meZr{x}
. r=0
and
(21) Gza+1(x) = 2:0 CnP2r+1(X)-

In this case, the sequences {P,(y)} and {Q,(y)}, defined by

P) = p20'?), Q) = 420",

are orthogonal over (0, R?) with respect to du(y'/?) and dv(y'/?), and the sequences
{P,(y)} and {0,(y)}, defined by

Fa{y} = y- HZPZN + 1(y”2)) Qn(y) = y_ ”242::+ l{yuz)a

are orthogonal over (0, R?) with respect to y du(y'’?) and y do(y*'?). Our earlier
results, applied separately to these two pairs of sequences, yield conclusions not
directly obtainable by considering {p,(x)} and {g,(x)}.

The next two theorems follow from Theorem 1.

THEOREM 4. Suppose (19) holds and

(22) p(R)>0, ¢(R)>0, r " 0,1,---.
Then: (i) b,, = 0 in (20) if

R
J‘ (x? — x}¥p,lx)dv(x) £ 0, 0<j<rsn,
0

for some x, = R, and b, > 0 if at least one of these inequalities is strict for each r;

(i) ¢,, = 0in (21) if

mn =

R
J‘ (x® - x%)ijzp 1(x)dv(x) = 0, 0sj<rsn,
0
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for some x, = R, and c,, > 0 if at least one of these inequalities is strict for each r.
- 2 rn

THEOREM 5. Suppose (19) holds and
[(0) >0, q,,(0) > 0,
23) 7 o B0 N
P2r+1(0) > 0, 92,4 1(0) >0,

Then: (i) b,, = 0 in (20) if
R
{—IFJ‘ (x2 + x3¥p,,(x) du(x) £ 0, OD=sj<ran,
0

for some number x,, and b,, > 0 if at least one of these inequalities is strict for each
r; (i) c,, 2 0in(21) if

R
(—l)ff (2 + x2Vxpa s (NI SO, 0Sj<r<n,
[v]

for some x,, and c,, > 0 if at least one of these inequalities is strict for each r.
The next theorem follows from Theorem 2.
THEOREM 6. Suppose (19) holds and

do(x) = p(x?) du(x),

where p(y) has n derivatives on (0, R?). Then: (i) b,, = 0 and ¢,, 2 0 in (20) and (21)
if (23) holds and

(24) (=1 + Y Yp()™ £ 0, 0<y<R* 0sj<sanm

Jor some number y; moreover, b,, > 0 and c,, > 0 if at least one of the inequalities
in (24) is strict for each s. (i) The same conclusions hold if (22) holds and (24) is

replaced by
(v — o9 <0, O0<y<R, 0<j<ssn

for some y = R.

Corollaries 1 and 2 and Theorem 3 can also be adapted to the special case (19).
We present only the following adaptation of Corollary 1.

COROLLARY 3. Suppose (19) holds. Then a,, > 0 and b,, > 0 for all n in (20)
and (21) if: (i) (22) holds and

dv(x) = (x} — x?)° du(x)
with ¢ > 0 and x, = R; or, (ii) (23) holds and
duv(x) = (x% + x2) du(x)

where ¢ > 0 and x, is any real number.
Example 4. By taking
du(x) = (1 — xZ}_’ dx
and
dv(x) = (1 — x3)* du(x),
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we obtain from (i) of Corollary 3 the following known result for Jacobi polynomials,
due to Gegenbauer:

PEr et x) = 3 b.P5(x)
r=0

and

P‘;n++ui'+’](x] o Z crnp‘z.r.i}l(x)t
: r=0

where b,, > 0and ¢, > Oforallnife > —1and y > 0.
Example 5. As applications of Corollary 3 (ii), we show that

25) Pemx — 1) = 3 (= 1) ", PE)
r=0

with ¢,, > Oforallnife > —1and > —1/2, and

(26) XPERxE — 1) = 3 (= 1P Y PE ()
r=0

with ¢, > Oforallnifa < —1and § > 1/2.
By substituting y = 2x? — 1 in the orthogonality relation

1
[ Pempemin - yra + Pay =0, r#s,
=¥ |
and using the evenness of the resulting integrand, we find that

1
27 I PeM(2x? — 1)P=P(2x2 — 1)(1 — x?P(x2fP* 12 dx = 0, r#s.
=1

This can be interpreted to mean that {P®P(2x? — 1)} is the “even-degree”
subsequence of a sequence of polynomials orthogonal over (=1, 1) with respect
to

dv(x) = (1 — x?f(x*)P* 12 dx.
Since {P*¥(x)} is orthogonal over (—1, 1) with respect to
du(x) = (1 — x?)*dx,

we infer the stated conclusion concerning (25) by applying (ii) of Corollary 3, with
Xo = 0and ¢ = § + 1/2, to the sequences {p,,(x)} and {g,,(x)} defined by

Pau(x) = (—1)"P§;"(x)
and

42.(x) = (—1y'PEP2x? — 1).

(The factor (— 1)" adjusts the normalizations of {p,,(x)} and {q2.(x)} so that they
satisfy (23), as required in (ii).)
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To prove the assertion concerning (26), we interpret (27) to mean that
{xP™PY(2x? — 1)} is the “odd-degree” subsequence of a sequence of polynomials
orthogonal over (— 1, 1) with respect to

du(x) = (1 — x?)*(x?)f~ V2 dx,

and apply (ii) of Corollary 3, with x, =0 and ¢ = § — 1/2, to the sequences
{P;,+1()} and {d,, ,(x)} defined by

Pzaea(X) = (= 1)'PER (%)
and
Gans 1(X) = (=1 PEA(2x2 — 1).
The results in this example can also be deduced from earlier known properties
of the Jacobi polynomials.
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