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LIMITS OF CERTAIN SEQUENCES ASSOCIATED WITH
CYLINDER FUNCTIONS
William F. Trench

ABSTRACT. This paper presents a theorem on the asymptotic
behavior of the sequence of values of the r-th derivative of the
cylinder function QI AL +BY al the zeros of C()
AJ(5)+ BY(S) where - visan mlcgt.r‘

The following theorem is our main result.

THEOREM 1. Suppose

Cy= Al + BY, and Gy = Alprm * BY pime
where 1, and Y, are the Bessel functions of the first and second kinds and A and B are

real numbers such that
il 7
(1) A=+B~=1.,
Let m,r, and s be nonnegative integers, and denote the successive positive zeros of C{us)

and Cl{;,)m by {x,}and {yq}. respectively. Then

3 % o
{a} l'!l—rgax‘r{_lcl(ﬁi]]ﬂ(xn)l = lim yll Jf— (.(S]{ Yn)1 =\/2;1T
if m+ r+sisodd, and

(b) hm x312 C(r} (xp )= inn y3‘f“|(,{s){ ) = |$-r_1@+_m]_[

N

ifm+r+siseven If
(2) s-r-m(2v+m)=0

in(b), then either

(3 T e, O

vtm rm:u

where { is a rational function independent of A and B, such that

rsmvy

(4) llmt (x)=1,

rsmv

or
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; 2k+3/2 (1) ; 2k+3/2 A
(5) ,],me“ / ICym(xp) and ;ﬂ“myn / IC 3)(yn]}

are finite, nonzero, and equal for some positive integer k. Their common value is also
independent of A and B.

Before proceeding with the proof, we observe that parts (a) and (b) can be stated
more simply as follows, although the statement given above is convenient for the
proof.

COROLLARY 1. Let A and B be real numbers satisfving (1) and
CG,= Al +BY, and C.u = AJ# + BYH.
where p-v is an arbitrary integer, and let {x,} be the sequence of successive positive
zeros of C{US} Then
. ] 2 ” PRI,
#—ﬂox n"r [C‘(‘f)(xn}t =y/2[m

ifg-v+r+sisodd and .
e BTN e ISTR ]
r&‘—rmuox“ 'C{,u (xp)l \/ﬁ
ifu-v+r+tsiseven.

PROOF OF THEOREM 1. Solving the system

(r) _ (0 (r)
Cotm = Alpm ¥ BY iy

. (s
A9 = A1 + BY)

for A and B and invoking (1) yields

) 5) s 2 ) (r) ;2
[ CL(J:*II‘I Y[Us)'dlﬁ) Y(L'Qm 17+ I(J:' md"s)‘Jl(JS] —utm I

;
TomiEionE

6) 1=

for all values of x for which the denominator is nonzero. In fact, it is easily verified
from (1) that the equation obtained by multiplying both sides of (6) by the
denominator on the right is an identity in the complex plane.

Now denote

i}
(M I0L0Y S0 - YD 010 = Fwigp(17%)

and
= 1R )2 + (Y 2
Pk () = 4R + (v {0,

Then (6) and the definition of {x,} and {y,} imply that the function



CYLINDER FUNCTION SEQUENCES 291

2o
(8) 1} () = 7P 200 IW gyt 1/%)1
interpolates {ICéPm(xn)l } for those n such that Pys(Xp) # 0, and that the function
2 .1/2 ;
9) T5(x) = FPiH2 0 Wpgpmy(1/)]
; 5 ; e | =
interpolates { |C(U )(yn)l } for those n such that py4., (y,) #0. Since gi_];t;axn =
lim yp = = and, as we will see below, p ). has at most finitely many zeros, the key to
n—reo H
the proof is to study the behavior of Puk for large values of its argument and that of
Wrgmp for small values of its argument.
We will first show that
(10) py(x) = 2/mx + O(1/x3).
This is known for k =0 and k =1 [I, page 138], but perhaps not for k = 2. To prove

it, we first observe that Jg‘) and Y(,_]f) can be written as
Jﬁ”(x) =/ 2/mx [P (x,p)cos(x - pm/2 - w/4) - Qux,p)sin(x - um/2 - m/4))
and
Yg‘}(x) =/ 2mx [P (x,p)sin(x - pn/2 - w/4) + Qy (x,p)cos(x - um/2 - w[4)].
This is well known for k = 0 |2, page 206], and by using the identity

k-1 k-
& - w

valid for any cyclinder function [2, page 82], it can be established by induction, with
[ Q. (Xop-DHQp 1 (x,ut1)]
= ,2 .

Pr(x,1)

11
e (P (xuDPyxt] KT

Qylx.p) = p) ;

Starting from the known asymptotic properties,
Po(x.m) = 1 +0(1/x2), Qqx,u) = O(1/x)
[2. page 199], (11) and induction imply that
sz(x.,u} =(-1y + 0(]}'x2). sz(x..u] =0(1/x),
Poj1(x) = O(1/x), Qajy 1 (x,) = (-1J + O(1/x?).

Since

Pk(X) = 2/mx [PRx0) + QF(x.40)],



292 WILLIAM F. TRENCH

this implies (10).

Now we must consider wyg, .., for small values of its argument. [f m = 0, then the
relations in (7) reduce to Bassett’s formulas, several of which are listed in [2, page
76]. If CU is any cylinder function of order v, then - following Bassett - we can express
C{!l‘:' in terms of €, and (,'t; by repeated differentiation of Bessel’s equation,

ClH1[NC,+ (1 -v7/x7)C, = 0.
Induction on k lcads to

(12) E(x) = Fy(1/X)C,(x) + Gy (1/X)C,(x),
where

(13) Fyg=0,Gyg=1,F;1 =1,G,; =0,

(14) Fy 4100 = ¥ F50) + Gype(y) - yFy(y),

(15) Gy 4 19) = ¥2Gp () - (1 =02y Dy (y).

Taking €, = J,, and then ;=Y in {12) and using (7) and the known relation

JYH(x) - JH(x)Y (%) = 2/mx
[2. page 576] yiclds
Wl Y) = YLF (G (y) - Gyt YIF ],
where y = 1/x.
From (13), (14), (15) and induction,
Fyn(¥) = D™ E, (9, Gyp-) = (DGyp(y),
Fyak(¥) = (DKky + O(y3), Fy 2410 = (DK + 0(y2),
Gy 2k(¥) = DK+ 0(y%), Gy 241 () = (D¥ Tky + Oy,
From the last four equations it is straightforward to verify that w ., is a polynomial
which is even or odd with r +s, and that
(DB 2((sr)/2)y2 + O(y?) if £ + s is even,

(o) W™ | DB D2y 4 ogy3yif r+ 5 is odd.

Since any zero of py, is a zero of wiq,, for every s. it is now clear that p,, has at
most finitely many zeros in the complex plane.

Now we wish to find the lowest degree term in wpg..., where m=0.

Differentiating the identity
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! vtm-1
Corm®) = = Cpam 1 () + 7 Cpa 1 (X)

[2, page 83] yields

Coim) = - Clm (0 + Grm Ejrg- DR L e .

Applying this to J(r} and Yg_?m in (7) yields

1
A7) Wesmp(¥) = Wri g s m-1,0() + (0tm- 1)Ek ol- ”k( !:k)' kHWr-k,s.m-].v(Y)-

From this and (16), it can be shown by induction on m that wg., is a polynomial,

even or odd with m + r +s; that
(18) Wygy(y) = (D(MF3rts-D/2y 4 oy 3)
if m+r+sis odd; and that
(19) Wygp¥) = D3 2[5 r o m2v +m)] y2/2 +0(y%)

if m+r+s is even. In verifying (18) and (19), note that the induction assumption
applied with subscript m - 1 permits us to rewrite (17) as
Wesmo(Y) = “Wra ] sm-1, 0 @+ m-Dywp g b g () + 00,

where *+* stands for 0(y4) if m+r+sis even or 0{y3) if m+r+sis odd. In either
case these terms can be ignored.

Now (8), (9), (10), (18), and (19) imply that

V2 [1+0(1/x3)] if m+ r+sis odd,
y= {(x'yzf\/ﬁ) Is-r-m(2v + m)I[1 + O(1/x2)] if m +r + s is even,

for j = 1,2. This implies (a) and (b).

If (2) holds with m + r + s even and wg,.,, 0, then

S
Wrsmu¥) = Argmpy X2 + O(y2k+4)

with k a positive integer and A #0; in this case the limits (5) have the stated

=0, then

rsmv

properties. If wyo

H(S) y(D ;y(S}

(r)
(20) J u+m

vtm
identically in the complex plane. But flgs:)nu = meﬂﬁ}) is in any case meromorphic. If
(20) holds, then any zero of fg... is a zero of p, . | and any pole of f,,. is a zero

of pyk- Since Pyu+m,k and py have at most finitely many zeros, (20) implies that
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Fosiinp IS rational. Since (20) also implies that

fi’gmu = p&*m,kfpgk’
(10) implies (4) under the stated assumptions. This completes the proof.

It is perhaps worth noting that if v=q + 1/2, where q is an integer, then ]% and
I% are rational functions.

If m=0 and (2) holds, then obviously s =r and (3) holds, with f ., = 1. Less
trivial examples of this case are given by m =1, r=0, s=1,v =0, when (3) takes the
form

C1=-C
and bym=1,r=0,s=3,v= 1, when it can be shown that (3) takes the form
Ci' =1 -3)xHC;.

An example where the limits (5) have the stated properties for some integer
k>0isgiven by m=1,r=1,s=4, v= 1. Applying the method used in the proof of
Theorem 4 to this case shows that

1300Y{P 00 - Y5030 = - 12/mx4,
and, from this and (10), the interpolating functions (8) and (9) satisfy
00 = 6/2Tw x 7121 + 00 /x5 = 1.2;

hence, if {x,} and {y,} are the successive zeros of 6‘14) and Ci. respectively, then

i sy = i T = /T
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