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Asymptotic Integration of y™+P@y =f() under Mild
Integral Smallness Conditions

By
William F. TRENCH

(Drexel University, U.S.A.)

This paper gives sufficient conditions for the equation
(D) yO+P@Y =f(t) (n>2)

to have solutions which behave like polynomials of degree <n as t—co. This
question has been investigated by many authors, but, to our knowledge, always
under integral smallness conditions on P and f which require absolute convergence
of all improper integrals in question. Also, most authors have assumed that 7>0.
(For exceptions to this, see [1], [2], and [4].) Here we allow 7 to be any real number.
Moreover, our integral smallness conditions require only ordinary (i.e., perhaps con-
ditional) convergence, except for a condition on P in Theorem 2 which does require
absolute convergence, but is still considerably weaker than the usual condition.

We assume throughout that P and f are real-valued and continuous on (0, o)
and that 7 is real. 'When we say that an improper integral converges, we mean that
it may converge conditionally, unless, of course, it is clear that the integrand is non-
negative.

Theorem 1. Suppose v and m are integers, 0<y<m<n—1, and let a be a non-
negative number such that

(2) y—a<m;

moreover, suppose that a <1 if v£0. Assume that the integrals

(3) [ amremp(yar
and
(4) | IO

converge. Let

—_ S tj
(5) q(t)—;:»ajﬁ'
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where a,, - - -, a,, are given real constants, with a,,>>0. Then (1) has a solution y,,
defined for sufficiently large t, such that

(6) WO =pOO)+o(r-""),  0<r<n—1.

The following two lemmas will be useful in proving Theorem 1 as well as Theo-
rem 2, which is stated below.

Lemma 1. Suppose u e C[t,, co) for some t,>>0 and let a and b be constants,

0<a<b. Suppose also that r t’u(t)dt converges, and define

)= sTu£ U: stu(s)ds

Then

(7) f J T US| <2000, 101,

Proof. Let U(t) :fm s’u(s)ds, and note that
3

(8) U< po(2)-

Now,
(5—1)°u(s) = —(1 -~ g)“sa-bv'(s),

so integrating by parts yields

(9) IZ (s—t)u(s)ds= — (1 — %)as“"’U(s) : —l—Jt U(s)%[(l — %)as“"’]ds.

where the first product is nonpositive and the second is positive if s>¢,. This
enables us to let 7—oo0 in (9) and infer that

<(1=2) e[ (1-L) w12 (s

IJ:O (s — t)u(s)ds
e 4 (-5

00
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(see (8)). This completes the proof of Lemma 1.

Lemma 2. Suppose u e Clt,, oo) for some t,>0 and

Jm tn—y—1+zxu(t)dt

converges, where v and « are as in Theorem 1. Define

(10) W)= f iL_SITu( $ds  if v=0,
or

(=2 . [ (A—s) -t . B
(1) w(t)= f o s 1<,
and let

o(t) =sup Uw stor-tray(s)ds|.
>t T

Then w e C™[t,, c0),

(12) [w()]|< ?‘o(t)t N v<r<n—1,
and, if v>1,
20(t)e» 7=
(13) Iw@)|< ) —,  0<r<y—1.
(n—y—D! 525 (=7
Moreover,
14 w(t)=o(t*—""%), O<r<n—1.

Proof. From Lemma 1 with
a=n—r—1, b=n—y—14a, i=1t,

(15) Uw(t—-s)"”"‘u(s)ds <L2o(t)re, L y<r<n—1.

This implieé that w as defined by (10) or (11) is in C™[t,, co) and satisfies (12) and
(14) for y<r<m—1. Therefore, the proof is complete if y=0. If 0<r<<v—1, then

2
r—D!l(n—v—1)!

(16) OIS~ [ a=ay-rapmar

from (11) and (15) (the latter with r=y). Since p is nonincreasing, we may replace
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p(3) by p(t,) here, then replace 1, by zero in the lower limit of integration (recall that
a<1), and integrate repeatedly by parts to obtain (13).
From (16),

IW(T)(t)]t_H'T”‘S 2t?
—r—1)! (1—y—1)!

f‘ o(A-7d2,
to

which implies (14) for 0<r<<v—1. (If Jm p(D2A-2did < oo, this is obvious; if
r p(A)A~*dA= oo, it follows from I’Hospital’s rule. Here again we have used the
assumption that o< 1.) This completes the proof of Lemma 2.

Proof of Theorem 1. For t,>>0, let H(t,) be the Banach space of functions 4 in
C-Y[t,, o) such that

AD()=0(>"""), 0<r<n—1,

with norm
n-1
a7 Ihll=sup {5 ripo@l}.
t=to r=0
For M >0, let

(18) Hy(t)={h e H®)|||h[|<M}.

Since v<<m and a,,>>0 in (5), there are constants M, 2, and T, such that if

(19) t,>T, and he Hy,(t),

then |

(20) qO+HD> .l

and

@1 lgP@)+h7(@O<am7,  0<r<n—1,

for all t>#, (From (20), (g+A) is defined and real-valued on [, oo) if (19) holds.)
We assume henceforth that 4, h,, and h, are in H,(¢,) for some #,>T,. . The
constants appearing in estimates that follow may depend upon T,, but they do not
depend upon ¢, A, hy, h,, etc.. We assume that ¢ >, throughout.

We will show that the transformation '

(22) h=Th
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defined by
23) fitt)= f Lol 1), [~ f6)+Ps)g(s) +HsYlds if v=0

or by

) = =5 0= D A+ P(s)a(6)+ s 1ds
o W=D )= )
if lgvgn—l,

is a contraction mapping of H,(¢,) into itself if #, is sufficiently large. To this end,
we first study the integral

(25) F(ts =[5 P6)g@)+s)Yds.

The convergence of this integral follows easily from Dirichlet’s test and the con-
vergence of (3); nevertheless, we will write out the details of the proof, because they
will be useful in obtaining estimates that we need below. Let

@(t)zjw Sn—v—l+a+mrP(s)dS’
t
which exists, because (3) converges. If z>¢, then

[[smormreep(s)a o)+ hs)ys

—— [ Ps)ls~(q(6) + Hs)yes

(26)
= —0(s)[s"™(q(s)+h)I ;
+7 [ 06l (a6)+ HEDF (6~ 6)) + (5~ h(s)Y s
Now,
0 (s~ q(s)) =0(s7")
and
@) (s~ ™h(s))' |< (m-+ 1) Ms*~™1<,

(See (17) and (18).) Since @(z)=o0(1), the last two inequalities together with (2),
(20) and (21) enable us to let z—o0 in (26) to obtain

E(t; y=0(@)[t~™(q()+h(D)

(29) -
+7 L D(s)s~™(q() +h(NI (s~ g (s)) + (s~ ™h(s))'ds,
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where the integral on the right converges absolutely.

We will now show that F(¢; /) satisfies a Lipschitz condition with respect to /.
Applying the mean value theorem to G(u)=u" and invoking (20) if <0 or (21) with
r=0 if 7>0 yields the inequality

[[=™(q (&) + ()] —[t-™(q () + ()] |
(30) <Ayt~ () —hy(2)]
<Ay —hy||

(see (17)) for some constant 4,. With Q,(s)(j=1, 2) defined by

Q,(8)=[5s""(q(s)+ ;NI (s~ g ()Y + (s~ ™hy(s))'],
applying the mean value theorem to G(u, v)=u"~'v and invoking (20) and (21) yields
(31) |01(5) — Qo8) | < Aos™™ 7 hi(8) — hol(s) [+ Al (5 ™A () — (s~ ™ ho(s))'|

for suitable constants 4, and 4,. (Here we have also used (2), (27), and (28) to
obtain the first term on the right.) From (17) and (31),

(32) |04(8)— Qo) | < A, || oy — By || 57~ 71—

for some constant 4,.

From (2), (29), (30) and (32),
(33) |F(t; h)—F(t; h)| < As|| by —ho|| =™ =29(2),
for some constant A,, with ’
(34 $(t)=sup ()= o(1).
Here we have used (2) again.

The convergence of (4) and (25) imply that the function

Gt iy= 5=+ 1)+ Ps)a@)+ s)Y s
is defined on [f,, o0). Moreover,

|G(t; BI<LIG(E; 0)[+|G(r; ) —G(z; 0)|
=[G(t; 0| +[F(z; h)—F(z; 0)),

so that invoking (33) with #,=h and h,=0 (and recalling that ||4||< M) yields

|G(1; )| < o(t)=A,Mt*=~*+sup | G(T; 0)|.
T=t
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Now Lemma 2 with u= —f+ P(q+ h) implies that /4 as defined by (10) or (11) is in
H(t,), and that

35 A1 < Ka(ty)

for a suitable constant K. Moreover, if 4,=Jh, (i=1, 2), we can apply Lemma 2
with

u=Pl(g+h)—(g+h)],
and conclude from (33) that
(36) 1oy — ol| < KAt (t) || s — .

Since ¢ and ¢ both decrease to zero as t—oco, we can choose 7, so that

(37 Ko(t)<M
and
(38) KAy (1)< 1.

Now (35) and (37) imply that 7 maps H,(%,) into itself, and (36) and (38) imply that
7 is a contraction mapping. Therefore there is a function 4, in H,(%,) such that /,—=
T hy. Since (23) or (24) holds with A=h=h,, the function Yo=4q+h, satisfies (1).
Moreover, Lemma 2 (specifically, (14)) with u=w=~#, implies that

hP@)=o(7%),  0<r<n—I,

and this implies (6). This completes the proof of Theorem 1.
We now consider the case where m=y and a=0, so that (2) does not hold; that
is, we will give sufficient conditions for (1) to have a solution y, which satisfies

(a.4o(M)r~7fv—r)l,  0<r<y,

39 (L) =
(39) (@) {o(t”"), v+1<r<n—1.

A digression is needed to formulate this condition.

Lemma 3. Suppose u e Clt,, o) for some t,>0 and jm t*'u(t)dt converges.
Define

1i(t; w)=u(?)

and

(40) : rew=" =" e, 1<j<k
t ]—— M
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Then the integrals (40) converge and satisfy the inequalities

20(2)ti-* ,
@D a0l TS 1<i<k
where
5(t)—sup s u(s)ds |

The integrals
(42) r L wd,  0< j<k—1,

all converge, and if this convergence is absolute for some j, in {0, 1, - - -, k—1}, then it
is absolute for j,<j<k—1.

Proof. The convergence of the integrals (40) and inequality (41) follow from
Lemma 1. Since

43) Lt wy=—1,-(t; u), 1<j<k—1,

integration by parts yields

ta
L tE -t wydt =

: + 7;1—] I: t¥-91_(t; wydt,
so (41) and the assumed convergence of
r tE-1L(t; u)de =r t*5-tu(t)dt
imply that (42) converges, by finite induction. If
(44) r 151 [t 1) di < oo
for some j<<k—1, then
@9) [ 1165 wlas=ot-++++,
and

f“ tk—H(r \,(s; u)[ds) dt

f \L,(s; u)]ds _mj £-3-1 I (13 1) | di.

_J_1
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Now (44) and (45) imply that

r tk-f-z(f \I,(s; u)[ds)<oo,

which in turn implies that

j T a2 L, (8 6| dE < oo,

since
L. (: u)]gjt \I,(s; )| ds.

(See (43) with j replaced by j+1.) This completes the proof of Lemma 1.
If 1< j,<k—1, there are functions u such that

=00 if 0<j<jo—1,

46 rt"-f-‘ I(t;u)dt
(46) [Z,(t; w)) {<°o i< i<k—L.

For example, the function
u(t)=t"% sint

satisfies this condition with j,=1. A rather tedious argument involving repeated
integration by parts shows that the function

u(t)=1"* cos ((log t)**")
satisfies (46) if j;'<a<(j,— D)~
Theorem 2. Let v be an integer in {0, 1, - - -, n—1} and suppose the integrals
@7 [ err-npyar
and
(0%
converge. Suppose also that
48) r POD|L (1 P)|dt<oo  if T>1,

or that
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49) j L t; Qldt<co  if 7<1,
where
(50) O(t)y=r7"YP(¢).

Let a, be an arbitrary positive constant. Then (1) has a solution y, which is defined for
sufficiently large t and satsfies (39).

Proof. For t,>0, let H(z,) be the Banach space of functions /4 in C™-9[¢,, o)
such that

rO@=0@""),  0<r<n—1,

with norm

hl=sup {5 = 1he)),

r=0

and let H,(t,) be as in (18). It is convenient here to write
(51) ut)=-21+h(t),  he Hyt).
vl

Since a,>>0, there are constants M, 2 and T, such that

all

1
52 ut)y>— =2
(52) (1) > 7
and
(53) [uM()| <A, o<r<n—1,

if (51) holds and ¢>#,>T,, which we assume henceforth. As in the proof of Theo-
rem 1, we will show that 9 as defined by (22) and (23) or (24) is a contraction
mapping of H,(t,) into itself if ¢, is sufficiently large; therefore, we first consider the
integral

(54) F(1; h) me 51 P(s)(u(s))ds
£
(recall (51)), which is the appropriate analog of (25). We must consider two cases,

depending upon 7.
Case 1. Suppose 7>1. Then (43) and repeated integration by parts yields..

(55) f " 1P(s) (u(s)y ds

== 5 16 P w0+ [ s Pl oy vds.
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From the formula of Faa di Bruno [3] for the derivatives of a composite function,

6o =g oy (i) () ()

if I=1, 2, - - ., where
NH®=rr—0---r—k+1)

and Y, is over all partitions of k as a sum of nonnegative integers,

57 ki+k,+ -k =k
such that
(58) ki 2k, -+ lk, =1

From Leibniz’s formula for the derivatives of a product
n-p-1 PN B A NP I
(59) [s" > u()] P =2, ; ("7 DY (u(s)) 1D,
=0

From (52), (53), (56) and (59), it can be shown that
(6()) I[sn—u—l(u(s))r](j—l)]gBlsn—j-x-v(r—l), lgjén-—l,

for some constant B,. (To verify this it is important to invoke (57) and (58).) How-
ever, from Lemma 1 and the convergence of (47),

-+ j-v(y-1)
©1) |LyGs; Y < 20O ey
(-t
where
(62) 8(t)=sup U‘w stote-D P(s)ds .

From (60) and (61), we can let i—oco in (55) to obtain
F(t; h)= El I(t; P)t™~(u(t)y]¥ "
(63) =
t

where the integral on the right converges absolutely because of (48) and (60) with
j=n. ‘
Now suppose
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a, ,
ui(t)=-"—ty+hi(t)’ i=1, 2.
v!

By applying the mean value theorem to the function

! k! xF\ [ xke xk
— (B) y7~k A S e S LI I Bhad 2
GG 31y -+ X) = 2y VOXT 2 ( 1!)( 2!) (1!)

(see (56), (57) and (58)), and then using estimates similar to those which led to (60),
it can be shown that

"=~ [ ()) — @)Y | <G |y — s~ 700, 1< j<n,
where C,, - - - C, are constants. This, (61) and (63) imply that

[P 1)~ Bt W< — (Ko@) +C, 500 |1, s P )

where K, is a constant.
Case 2. Suppose 7<<1. Then we rewrite (54) as

F(t; )= f Q) ds

(see (50)), and proceed as in Case 1, to obtain

Pt =55 105 QU= @OV + [ 1,53 Qs o)y} as,

where the integral on the right converges absolutely because of (49), and

(s )= Pt <=l (R0 + €, [ 11,0655 Q)lds),

where K, and C, are constants, and § is as in (62).

Now that we have shown that F(- ; k) satisfies a Lipschitz condition with respect
to 4 for all real 7, the rest of the proof is similar to the part of the proof of Theorem
1 which follows (34).

Remark. If 7 is rational with odd denominator, so that y is real-valued for
y<0, then only trivial modifications of the proofs given above show that the conclu-
sions of Theorems 1 and 2 are also valid if @,,<<0 or @, <0, respectively. A similar
comment applies if (1) is replaced by

Y™ 4P|yl sgn y=f£(t),

without restrictions on (real) 7.



Asymptotic Integration 209

Acknowledgment. 1 thank Professors T. Kusano and M. Naito for their
kindness and patience in reading a draft of this manuscript.

References

[1] Graef, J. R., Grammatikopolous, M. K. and Spikes, P. W., On the positive solutions of
a higher order differential equation with a discontinuity, Internat. J. Math. and Math.
Sci, 5 (1982), 263-273.

[2] Kusano, T. and Swanson, C. A., Asymptotic properties of semilinear elliptic equations,
to appear.

[31 Poussin, Ch.-J. de La Vallee, Cours d’analyse infinitesimale, Vol. 1, 12th Ed., Libraire
Universitaire Louvain, Gauthier-Villars, Paris, 1959,

[4]1 Taliaferro, S., On the positive solutions of y”+ ¢(r)y—-2=0, Nonlinear Anal., 2 (1978),
437-446,

nuna adreso:

Department of Mathematical Sciences
Drexel University

Philadelphia, Pennsylvania 19104
US.A.

(Ricevita la 19-an de octobro, 1982)



