Asymptotic Integration of $y^{(n)}+P(t)y^{r}=f(t)$ under Mild Integral Smallness Conditions

By

William F. TRENCH

(Drexel University, U.S.A.)

This paper gives sufficient conditions for the equation

(1)
$$y^{(n)} + P(t)y^{\tau} = f(t) \quad (n \ge 2)$$

to have solutions which behave like polynomials of degree $\langle n \text{ as } t \rightarrow \infty$. This question has been investigated by many authors, but, to our knowledge, always under integral smallness conditions on P and f which require absolute convergence of all improper integrals in question. Also, most authors have assumed that $\gamma > 0$. (For exceptions to this, see [1], [2], and [4].) Here we allow γ to be any real number. Moreover, our integral smallness conditions require only ordinary (i.e., perhaps conditional) convergence, except for a condition on P in Theorem 2 which does require absolute convergence, but is still considerably weaker than the usual condition.

We assume throughout that P and f are real-valued and continuous on $(0, \infty)$ and that r is real. When we say that an improper integral converges, we mean that it may converge conditionally, unless, of course, it is clear that the integrand is non-negative.

Theorem 1. Suppose ν and m are integers, $0 \le \nu \le m \le n-1$, and let α be a nonnegative number such that

$$(2) v-\alpha < m;$$

moreover, suppose that $\alpha < 1$ if $\nu \neq 0$. Assume that the integrals

$$\int_{0}^{\infty} t^{n-\nu-1+\alpha+m\tau} P(t) dt$$

and

$$\int_{0}^{\infty} t^{n-\nu-1+\alpha} f(t) dt$$

converge. Let

$$q(t) = \sum_{j=v}^{m} a_j \frac{t^j}{j!}.$$

where a_{ν}, \dots, a_{m} are given real constants, with $a_{m} > 0$. Then (1) has a solution y_{0} , defined for sufficiently large t, such that

(6)
$$y_0^{(r)}(t) = p^{(r)}(t) + o(t^{\nu-r-\alpha}), \quad 0 < r < n-1.$$

The following two lemmas will be useful in proving Theorem 1 as well as Theorem 2, which is stated below.

Lemma 1. Suppose $u \in C[t_0, \infty)$ for some $t_0 \ge 0$ and let a and b be constants, $0 \le a \le b$. Suppose also that $\int_0^\infty t^b u(t) dt$ converges, and define

$$\rho_0(t) = \sup_{T \geq t} \left| \int_T^\infty s^b u(s) ds \right|.$$

Then

$$\left|\int_{t}^{\infty} (s-t_1)^a u(s) ds\right| \leq 2\rho_0(t) t^{a-b}, \qquad t \geq t_1 \geq t_0.$$

Proof. Let $U(t) = \int_{t}^{\infty} s^{b}u(s)ds$, and note that

$$(8) |U(t)| \leq \rho_0(t).$$

Now,

$$(s-t_1)^a u(s) = -\left(1-\frac{t_1}{s}\right)^a s^{a-b} U'(s),$$

so integrating by parts yields

$$(9) \qquad \int_{t}^{\tilde{t}} (s-t_{1})^{a} u(s) ds = -\left(1 - \frac{t_{1}}{s}\right)^{a} s^{a-b} U(s) \Big|_{t}^{\tilde{t}} + \int_{t}^{\tilde{t}} U(s) \frac{d}{ds} \left[\left(1 - \frac{t_{1}}{s}\right)^{a} s^{a-b}\right] ds.$$

But

$$\frac{d}{ds} \left[\left(1 - \frac{t_1}{s} \right)^a s^{a-b} \right] = \left(1 - \frac{t_1}{s} \right)^a \frac{d}{ds} (s^{a-b}) + s^{a-b} \frac{d}{ds} \left[\left(1 - \frac{t_1}{s} \right)^a \right],$$

where the first product is nonpositive and the second is positive if $s > t_1$. This enables us to let $\bar{t} \to \infty$ in (9) and infer that

$$\left| \int_{t}^{\infty} (s - t_{1})^{a} u(s) ds \right| \leq \left(1 - \frac{t_{1}}{t} \right)^{a} t^{a-b} |U(t)| - \int_{t}^{\infty} \left(1 - \frac{t_{1}}{s} \right)^{a} |U(s)| \frac{d}{ds} (s^{a-b}) ds$$

$$+ \int_{t}^{\infty} |U(s)| s^{a-b} \frac{d}{ds} \left(1 - \frac{t_{1}}{s} \right)^{a} ds$$

$$\leq 2\rho_{0}(t) t^{a-b}$$

(see (8)). This completes the proof of Lemma 1.

Lemma 2. Suppose $u \in C[t_0, \infty)$ for some $t_0 \ge 0$ and

$$\int_{0}^{\infty} t^{n-\nu-1+\alpha} u(t) dt$$

converges, where ν and α are as in Theorem 1. Define

(10)
$$w(t) = \int_{t}^{\infty} \frac{(t-s)^{n-1}}{(n-1)!} u(s) ds \quad \text{if } \nu = 0,$$

or

(11)
$$w(t) = \int_{t_0}^t \frac{(t-\lambda)^{\nu-1}}{(\nu-1)!} d\lambda \int_{\lambda}^{\infty} \frac{(\lambda-s)^{n-\nu-1}}{(n-\nu-1)!} u(s) ds \quad \text{if } 1 \le \nu \le n-1,$$

and let

$$\rho(t) = \sup_{T \ge t} \left| \int_{T}^{\infty} s^{n-\nu-1+\alpha} u(s) ds \right|.$$

Then $w \in C^{(n)}[t_0, \infty)$,

(12)
$$|w^{(r)}(t)| \leq \frac{2\rho(t)t^{\nu-r-\alpha}}{(n-r-1)!}, \qquad \nu \leq r \leq n-1,$$

and, if $\nu \geq 1$,

(13)
$$|w^{(r)}(t)| \leq \frac{2\rho(t_0)t^{\nu-r-\alpha}}{(n-\nu-1)! \prod_{i=1}^{\nu-r} (j-i)}, \qquad 0 \leq r \leq \nu-1.$$

Moreover,

(14)
$$w^{(r)}(t) = o(t^{\nu - r - \alpha}), \qquad 0 \le r \le n - 1.$$

Proof. From Lemma 1 with

(15)
$$a=n-r-1, \quad b=n-\nu-1+\alpha, \quad t=t_1,$$

$$\left|\int_t^\infty (t-s)^{n-r-1} u(s) ds\right| \leq 2\rho(t) t^{\nu-r-\alpha}, \quad \nu \leq r \leq n-1.$$

This implies that w as defined by (10) or (11) is in $C^{(n)}[t_0, \infty)$ and satisfies (12) and (14) for $\nu \le r \le n-1$. Therefore, the proof is complete if $\nu = 0$. If $0 \le r \le \nu - 1$, then

$$(16) |w^{(r)}(t)| \leq \frac{2}{(\nu-r-1)! (n-\nu-1)!} \int_{t_0}^t (t-\lambda)^{\nu-r-1} \lambda^{-\alpha} \rho(\lambda) d\lambda$$

from (11) and (15) (the latter with $r=\nu$). Since ρ is nonincreasing, we may replace

 $\rho(\lambda)$ by $\rho(t_0)$ here, then replace t_0 by zero in the lower limit of integration (recall that $\alpha < 1$), and integrate repeatedly by parts to obtain (13).

From (16),

$$|w^{(r)}(t)|t^{-\nu+r+\alpha} \leq \frac{2t^{\alpha-1}}{(\nu-r-1)!(n-\nu-1)!} \int_{t_0}^t \rho(\lambda) \lambda^{-\alpha} d\lambda,$$

which implies (14) for $0 \le r \le \nu - 1$. (If $\int_{-\infty}^{\infty} \rho(\lambda) \lambda^{-\alpha} d\lambda < \infty$, this is obvious; if $\int_{-\infty}^{\infty} \rho(\lambda) \lambda^{-\alpha} d\lambda = \infty$, it follows from 1'Hospital's rule. Here again we have used the assumption that $\alpha < 1$.) This completes the proof of Lemma 2.

Proof of Theorem 1. For $t_0 \ge 0$, let $H(t_0)$ be the Banach space of functions h in $C^{(n-1)}[t_0, \infty)$ such that

$$h^{(r)}(t) = 0(t^{\nu-r-\alpha}), \qquad 0 \le r \le n-1,$$

with norm

(17)
$$||h|| = \sup_{t > t_0} \left\{ t^{-\nu + \alpha} \sum_{r=0}^{n-1} t^r |h^{(r)}(t)| \right\}.$$

For M>0, let

(18)
$$H_{M}(t_{0}) = \{h \in H(t_{0}) | ||h|| \leq M\}.$$

Since $\nu \le m$ and $a_m > 0$ in (5), there are constants M, λ , and T_0 such that if

$$(19) t_0 \ge T_0 \quad \text{and} \quad h \in H_M(t_0),$$

then

(20)
$$q(t) + h(t) \ge \frac{1}{2} a_m \frac{t^m}{m!}$$

and

(21)
$$|q^{(r)}(t) + h^{(r)}(t)| \le \lambda t^{m-r}, \quad 0 \le r \le n-1,$$

for all $t \ge t_0$. (From (20), $(q+h)^r$ is defined and real-valued on $[t_0, \infty)$ if (19) holds.) We assume henceforth that h, h_1 , and h_2 are in $H_M(t_0)$ for some $t_0 \ge T_0$. The constants appearing in estimates that follow may depend upon T_0 , but they do not depend upon t_0 , h, h_1 , h_2 , etc.. We assume that $t \ge t_0$ throughout.

We will show that the transformation

$$\hat{h} = \mathcal{F}h$$

defined by

(23)
$$\hat{h}(t) = \int_{t}^{\infty} \frac{(t-s)^{n-1}}{(n-1)!} [-f(s) + P(s)(q(s) + h(s))^{\gamma}] ds \quad \text{if } \nu = 0$$

or by

(24)
$$\hat{h}(t) = \int_{t_0}^{t} \frac{(t-\lambda)^{\nu-1}}{(\nu-1)!} d\lambda \int_{\lambda} \frac{(\lambda-s)^{n-\nu-1}}{(n-\nu-1)!} [-f(s) + P(s)(q(s) + h(s))^{\nu}] ds$$
if $1 < \nu < n-1$,

is a contraction mapping of $H_M(t_0)$ into itself if t_0 is sufficiently large. To this end we first study the integral

(25)
$$F(t;h) = \int_{t}^{\infty} s^{n-\nu-1+\alpha} P(s) (q(s) + h(s))^{r} ds.$$

The convergence of this integral follows easily from Dirichlet's test and the convergence of (3); nevertheless, we will write out the details of the proof, because they will be useful in obtaining estimates that we need below. Let

$$\Phi(t) = \int_{t}^{\infty} s^{n-\nu-1+\alpha+m\gamma} P(s) ds,$$

which exists, because (3) converges. If $\tau \ge t$, then

$$\int_{t}^{\tau} s^{n-\nu-1+\alpha} P(s)(q(s)+h(s))^{\gamma} ds$$

$$= -\int_{t}^{\tau} \Phi'(s)[s^{-m}(q(s)+h(s))]^{\gamma} ds$$

$$= -\Phi(s)[s^{-m}(q(s)+h(s))]^{\gamma}|_{t}^{\tau}$$

$$+ \gamma \int_{t}^{\tau} \Phi(s)[s^{-m}(q(s)+h(s))]^{\gamma-1}[(s^{-m}q(s))'+(s^{-m}h(s))'] ds.$$

Now,

$$(27) (s^{-m}q(s))' = 0(s^{-2})$$

and

$$|(s^{-m}h(s))'| \leq (m+1)Ms^{\nu-m-1-\alpha}.$$

(See (17) and (18).) Since $\Phi(t) = o(1)$, the last two inequalities together with (2), (20) and (21) enable us to let $\tau \to \infty$ in (26) to obtain

(29)
$$F(t;h) = \Phi(t)[t^{-m}(q(t)+h(t))]^{r} + r \int_{t}^{\infty} \Phi(s)[s^{-m}(q(s)+h(s))]^{r-1}[(s^{-m}q(s))' + (s^{-m}h(s))']ds,$$

where the integral on the right converges absolutely.

We will now show that F(t; h) satisfies a Lipschitz condition with respect to h. Applying the mean value theorem to $G(u) = u^r$ and invoking (20) if r < 0 or (21) with r = 0 if r > 0 yields the inequality

(30)
$$|[t^{-m}(q(t)+h_{1}(t))]^{r}-[t^{-m}(q(t)+h_{2}(t))]^{r}| \\ \leq A_{1}t^{-m}|h_{1}(t)-h_{2}(t)| \\ \leq A_{1}t^{\nu-m-\alpha}||h_{1}-h_{2}||$$

(see (17)) for some constant A_1 . With $Q_i(s)(j=1, 2)$ defined by

$$Q_j(s) = [s^{-m}(q(s) + h_j(s))]^{r-1}[(s^{-m}q(s))' + (s^{-m}h_j(s))'],$$

applying the mean value theorem to $G(u, v) = u^{r-1}v$ and invoking (20) and (21) yields

$$(31) |Q_1(s) - Q_2(s)| \le A_2 s^{-m-1} |h_1(s) - h_2(s)| + A_3 |(s^{-m}h_1(s))' - (s^{-m}h_2(s))'|$$

for suitable constants A_2 and A_3 . (Here we have also used (2), (27), and (28) to obtain the first term on the right.) From (17) and (31),

$$|Q_1(s) - Q_2(s)| \le A_4 ||h_1 - h_2|| s^{\nu - m - 1 - \alpha}$$

for some constant A_4 .

From (2), (29), (30) and (32),

$$|F(t;h_1)-F(t;h_2)| \le A_5 ||h_1-h_2|| t^{\nu-m-\alpha}\phi(t),$$

for some constant A_5 , with

(34)
$$\phi(t) = \sup_{T > t} \Phi(T) = o(1).$$

Here we have used (2) again.

The convergence of (4) and (25) imply that the function

$$G(t;h) = \int_{-\infty}^{\infty} s^{n-\nu-1+\alpha} [-f(s) + P(s)(q(s) + h(s))^{r}] ds$$

is defined on $[t_0, \infty)$. Moreover,

$$|G(t;h)| \le |G(t;0)| + |G(t;h) - G(t;0)|$$

= |G(t;0)| + |F(t;h) - F(t;0)|,

so that invoking (33) with $h_1=h$ and $h_2=0$ (and recalling that $||h|| \le M$) yields

$$|G(t;h)| \leq \sigma(t) = A_5 M t^{\nu-m-\alpha} + \sup_{T \geq t} |G(T;0)|.$$

Now Lemma 2 with $u = -f + P(q+h)^r$ implies that \hat{h} as defined by (10) or (11) is in $H(t_0)$, and that

$$\|\hat{h}\| \leq K\sigma(t_0)$$

for a suitable constant K. Moreover, if $\hat{h}_i = \mathcal{T}h_i$ (i = 1, 2), we can apply Lemma 2 with

$$u=P[(q+h_1)^{\gamma}-(q+h_2)^{\gamma}],$$

and conclude from (33) that

(36)
$$\|\hat{h}_1 - \hat{h}_2\| \leq K A_5 t_0^{\gamma - m - \alpha} \phi(t_0) \|h_1 - h_2\|.$$

Since σ and ϕ both decrease to zero as $t \rightarrow \infty$, we can choose t_0 so that

$$(37) K\sigma(t_0) < M$$

and

(38)
$$KA_5t_0^{\nu-m-\alpha}\phi(t_0) < 1.$$

Now (35) and (37) imply that \mathcal{F} maps $H_{M}(t_{0})$ into itself, and (36) and (38) imply that \mathcal{F} is a contraction mapping. Therefore there is a function h_{0} in $H_{M}(t_{0})$ such that $h_{0} = \mathcal{F}h_{0}$. Since (23) or (24) holds with $\hat{h} = h = h_{0}$, the function $y_{0} = q + h_{0}$ satisfies (1). Moreover, Lemma 2 (specifically, (14)) with $u = w = h_{0}$ implies that

$$h_0^{(r)}(t) = o(t^{\nu-r-\alpha}), \qquad 0 \le r \le n-1,$$

and this implies (6). This completes the proof of Theorem 1.

We now consider the case where $m=\nu$ and $\alpha=0$, so that (2) does not hold; that is, we will give sufficient conditions for (1) to have a solution y_0 which satisfies

(39)
$$y_0^{(r)}(t) = \begin{cases} (a_{\nu} + o(1))t^{\nu-r}/(\nu-r)!, & 0 \le r \le \nu, \\ o(t^{\nu-r}), & \nu+1 \le r \le n-1. \end{cases}$$

A digression is needed to formulate this condition.

Lemma 3. Suppose $u \in C[t_0, \infty)$ for some $t_0 \ge 0$ and $\int_0^\infty t^{k-1}u(t)dt$ converges. Define

$$I_0(t; u) = u(t)$$

and

(40)
$$I_{j}(t;u) = \int_{t}^{\infty} \frac{(s-t)^{j-1}}{(j-1)!} u(s) ds, \qquad 1 \le j \le k.$$

Then the integrals (40) converge and satisfy the inequalities

(41)
$$|I_{j}(t;u)| \leq \frac{2\delta(t)t^{j-k}}{(j-1)!}, \qquad 1 \leq j \leq k,$$

where

$$\delta(t) = \sup_{T>t} \left| \int_{-T}^{\infty} s^{k-1} u(s) ds \right|.$$

The integrals

(42)
$$\int_{0}^{\infty} t^{k-j-1} I_{j}(t; u) dt, \qquad 0 \leq j \leq k-1,$$

all converge, and if this convergence is absolute for some j_0 in $\{0, 1, \dots, k-1\}$, then it is absolute for $j_0 \le j \le k-1$.

Proof. The convergence of the integrals (40) and inequality (41) follow from Lemma 1. Since

(43)
$$I'_{j}(t; u) = -I_{j-1}(t; u), \qquad 1 \le j \le k-1,$$

integration by parts yields

$$\int_{t_1}^{t_2} t^{k-j-1} I_j(t;u) dt = \frac{t^{k-j}}{k-j} I_j(t;u) \Big|_{t_1}^{t_2} + \frac{1}{k-j} \int_{t_1}^{t_2} t^{k-j} I_{j-1}(t;u) dt,$$

so (41) and the assumed convergence of

$$\int_{-\infty}^{\infty} t^{k-1} I_0(t; u) dt = \int_{-\infty}^{\infty} t^{k-1} u(t) dt$$

imply that (42) converges, by finite induction. If

(44)
$$\int_{-\infty}^{\infty} t^{k-j-1} |I_j(t;u)| dt < \infty$$

for some j < k-1, then

(45)
$$\int_{t}^{\infty} |I_{j}(s; u)| ds = o(t^{-k+j+1}),$$

and

$$\int_{t_1}^{t_2} t^{k-j-2} \left(\int_t^{\infty} |I_j(s;u)| \, ds \right) dt$$

$$= \frac{t^{k-j-1}}{k-j-1} \int_t^{\infty} |I_j(s;u)| \, ds \Big|_{t_1}^{t_2} + \frac{1}{k-j-1} \int_{t_1}^{t_2} t^{k-j-1} |I_j(t;u)| \, dt.$$

Now (44) and (45) imply that

$$\int^{\infty} t^{k-j-2} \left(\int_{t}^{\infty} |I_{j}(s; u)| ds \right) < \infty,$$

which in turn implies that

$$\int_{-\infty}^{\infty} t^{k-j-2} |I_{j+1}(t;u)| dt < \infty,$$

since

$$|I_{j+1}(t;u)| \leq \int_t^{\infty} |I_j(s;u)| ds.$$

(See (43) with j replaced by j+1.) This completes the proof of Lemma 1. If $1 \le j_0 \le k-1$, there are functions u such that

(46)
$$\int_{-\infty}^{\infty} t^{k-j-1} |I_{j}(t;u)| dt \quad \begin{cases} =\infty & \text{if } 0 \leq j \leq j_{0}-1, \\ <\infty & \text{if } j_{0} \leq j \leq k-1. \end{cases}$$

For example, the function

$$u(t) = t^{-k} \sin t$$

satisfies this condition with $j_0=1$. A rather tedious argument involving repeated integration by parts shows that the function

$$u(t) = t^{-k} \cos \left((\log t)^{\alpha+1} \right)$$

satisfies (46) if $j_0^{-1} < \alpha < (j_0 - 1)^{-1}$.

Theorem 2. Let ν be an integer in $\{0, 1, \dots, n-1\}$ and suppose the integrals

(47)
$$\int_{0}^{\infty} t^{n-1+\nu(\gamma-1)} P(t) dt$$

and

$$\int_{0}^{\infty} t^{n-\nu-1} f(t) dt$$

converge. Suppose also that

(48)
$$\int_{-\infty}^{\infty} t^{\nu(\gamma-1)} |I_{n-1}(t;P)| dt < \infty \quad \text{if } \gamma \ge 1,$$

or that

(49)
$$\int_{-\infty}^{\infty} |I_{n-1}(t;Q)| dt < \infty \quad \text{if } \gamma < 1,$$

where

$$Q(t) = t^{\nu(\gamma-1)}P(t).$$

Let a_v be an arbitrary positive constant. Then (1) has a solution y_0 which is defined for sufficiently large t and satsfies (39).

Proof. For $t_0 \ge 0$, let $H(t_0)$ be the Banach space of functions h in $C^{(n-1)}[t_0, \infty)$ such that

$$h^{(r)}(t) = 0(t^{\nu-r}), \quad 0 < r < n-1,$$

with norm

$$||h|| = \sup_{t \geq t_0} \left\{ \sum_{r=0}^{n-1} t^{r-\nu} |h^{(r)}(t)| \right\},$$

and let $H_M(t_0)$ be as in (18). It is convenient here to write

(51)
$$u(t) = \frac{a_{\nu}}{\nu!} t^{\nu} + h(t), \qquad h \in H_{M}(t_{0}).$$

Since $a_{\nu} > 0$, there are constants M, λ and T_0 such that

$$(52) u(t) \ge \frac{1}{2} \frac{a_{\nu}}{\nu!} t^{\nu}$$

and

(53)
$$|u^{(r)}(t)| \le \lambda t^{\nu-r}, \quad 0 < r < n-1,$$

if (51) holds and $t \ge t_0 \ge T_0$, which we assume henceforth. As in the proof of Theorem 1, we will show that \mathcal{T} as defined by (22) and (23) or (24) is a contraction mapping of $H_M(t_0)$ into itself if t_0 is sufficiently large; therefore, we first consider the integral

(54)
$$F(t;h) = \int_{t}^{\infty} s^{n-\nu-1} P(s) (u(s))^{\nu} ds$$

(recall (51)), which is the appropriate analog of (25). We must consider two cases, depending upon γ .

Case 1. Suppose $\gamma \ge 1$. Then (43) and repeated integration by parts yields.

(55)
$$\int_{t}^{\overline{t}} s^{n-\nu-1} P(s) (u(s))^{\gamma} ds$$

$$= -\sum_{j=1}^{n-1} I_{j}(s; P) [s^{n-\nu-1} (u(s))^{\gamma}]^{(j-1)} \Big|_{t}^{\overline{t}} + \int_{t}^{\overline{t}} I_{n-1}(s; P) [s^{n-\nu-1} (u(s))^{\gamma}]^{(n-1)} ds.$$

From the formula of Faa di Bruno [3] for the derivatives of a composite function,

(56)
$$\frac{d^{l}}{ds^{l}}u^{r} = \sum_{k=1}^{l} (\Upsilon)^{(k)} u^{r-k} \sum_{k} \frac{k!}{k_{1}! \cdots k_{l}!} \left(\frac{u'}{1!}\right)^{k_{1}} \left(\frac{u''}{2!}\right)^{k_{2}} \cdots \left(\frac{u^{(l)}}{l!}\right)^{k_{l}}$$

if $l=1, 2, \cdots$, where

$$(\Upsilon)^{(k)} = \Upsilon(\Upsilon - 1) \cdot \cdot \cdot (\Upsilon - k + 1)$$

and \sum_{k} is over all partitions of k as a sum of nonnegative integers,

$$(57) k_1 + k_2 + \cdots + k_l = k$$

such that

$$(58) k_1 + 2k_2 + \cdots + lk_l = l.$$

From Leibniz's formula for the derivatives of a product

(59)
$$[s^{n-\nu-1}u(s)]^{(j-1)} = \sum_{l=0}^{j-1} {j-1 \choose l} (s^{n-\nu-1})^{(j-l-1)} [(u(s))^r]^{(l)}.$$

From (52), (53), (56) and (59), it can be shown that

(60)
$$|[s^{n-\nu-1}(u(s))^{\gamma}]^{(j-1)}| \leq B_1 s^{n-j+\nu(\gamma-1)}, \qquad 1 \leq j \leq n-1,$$

for some constant B_1 . (To verify this it is important to invoke (57) and (58).) However, from Lemma 1 and the convergence of (47),

(61)
$$|I_{j}(s; P)| \leq \frac{2\delta(s)s^{-n+j-\nu(\gamma-1)}}{(j-1)!}, \qquad 1 \leq j \leq n,$$

where

(62)
$$\delta(t) = \sup_{T \ge t} \left| \int_{T}^{\infty} s^{n-1+\nu(\gamma-1)} P(s) ds \right|.$$

From (60) and (61), we can let $\bar{t} \rightarrow \infty$ in (55) to obtain

(63)
$$F(t;h) = \sum_{j=1}^{n-1} I_j(t;P) [t^{n-\nu-1}(u(t))^r]^{(j-1)} + \int_t^\infty I_{n-1}(s;P) [s^{n-\nu-1}(u(s))^r]^{(n-1)} ds,$$

where the integral on the right converges absolutely because of (48) and (60) with j=n.

Now suppose

$$u_i(t) = \frac{a_{\nu}}{\nu!} t^{\nu} + h_i(t), \quad i = 1, 2.$$

By applying the mean value theorem to the function

$$G_{l}(x_{0}, x_{1}, \dots, x_{l}) = \sum_{k=1}^{l} (7)^{(k)} x_{0}^{7-k} \sum_{k} \frac{k!}{k! \cdots k_{l}!} \left(\frac{x_{1}^{k_{1}}}{1!}\right) \left(\frac{x_{2}^{k_{2}}}{2!}\right) \cdots \left(\frac{x_{l}^{k_{l}}}{l!}\right)$$

(see (56), (57) and (58)), and then using estimates similar to those which led to (60), it can be shown that

$$|s^{n-\nu-1}[(u_1(s))^{\gamma}-(u_2(s))^{\gamma}]^{(j-1)}| \le C_j ||h_1-h_2||s^{n-j+\nu(\gamma-1)}, \qquad 1 \le j \le n,$$

where $C_1, \dots C_n$ are constants. This, (61) and (63) imply that

$$|F(t;h_1)-F(t;h_2)| \leq ||h_1-h_2|| \Big(K_1\delta(t)+C_n\int_t^\infty s^{\nu(\gamma-1)}|I_{n-1}(s;P)|ds\Big)$$

where K_1 is a constant.

Case 2. Suppose $\gamma < 1$. Then we rewrite (54) as

$$F(t;h) = \int_{t}^{\infty} s^{n-\nu\gamma-1} Q(s) (u(s))^{\gamma} ds$$

(see (50)), and proceed as in Case 1, to obtain

$$F(t;h) = \sum_{j=1}^{n-1} I_j(t;Q) [t^{n-\nu\gamma-1}(u(t))^{\gamma}]^{(j-1)} + \int_t^{\infty} I_{n-1}(s;Q) [s^{n-\nu\gamma-1}(u(s))^{\gamma}]^{(n-1)} ds,$$

where the integral on the right converges absolutely because of (49), and

$$|F(t; h_1) - F(t; h_2)| \le ||h_1 - h_2|| \Big(\hat{K}_1 \delta(t) + \hat{C}_n \int_t^{\infty} |I_{n-1}(s; Q)| ds\Big),$$

where \hat{K}_1 and \hat{C}_n are constants, and δ is as in (62).

Now that we have shown that $F(\cdot; h)$ satisfies a Lipschitz condition with respect to h for all real r, the rest of the proof is similar to the part of the proof of Theorem 1 which follows (34).

Remark. If $\tilde{\gamma}$ is rational with odd denominator, so that y^r is real-valued for y<0, then only trivial modifications of the proofs given above show that the conclusions of Theorems 1 and 2 are also valid if $a_m<0$ or $a_v<0$, respectively. A similar comment applies if (1) is replaced by

$$v^{(n)} + P(t)|v|^r \operatorname{sgn} v = f(t),$$

without restrictions on (real) γ .

Acknowledgment. I thank Professors T. Kusano and M. Naito for their kindness and patience in reading a draft of this manuscript.

References

- [1] Graef, J. R., Grammatikopolous, M. K. and Spikes, P. W., On the positive solutions of a higher order differential equation with a discontinuity, Internat. J. Math. and Math. Sci, 5 (1982), 263-273.
- [2] Kusano, T. and Swanson, C. A., Asymptotic properties of semilinear elliptic equations, to appear.
- [3] Poussin, Ch.-J. de La Vallee, Cours d'analyse infinitesimale, Vol. 1, 12th Ed., Libraire Universitaire Louvain, Gauthier-Villars, Paris, 1959.
- [4] Taliaferro, S., On the positive solutions of $y'' + \phi(t)y^{-\lambda} = 0$, Nonlinear Anal., 2 (1978), 437-446.

nuna adreso:
Department of Mathematical Sciences
Drexel University
Philadelphia, Pennsylvania 19104
U.S.A.

(Ricevita la 19-an de octobro, 1982)