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ASYMPTOTIC INTEGRATION OF LINEAR DIFFERENTIAL
EQUATIONS SUBJECT TO MILD INTEGRAL CONDITIONS*

WILLIAM F. TRENCH'

Abstract. Sufficient conditions are given for a linear differential equation of order » to have a solution
which behaves asymptotically like a given polynomial of degree <n. The integral smallness conditions on the
coefficient and forcing functions are stated largely in terms of ordinary (rather than absolute) convergence,
and the manner in which the solution behaves like the given polynomial is specified precisely.

1. Introduction and main theorem. We study the behavior as - oo of solutions of
the scalar equation

(1) xM+P()x" V4P (1)x=f(1), 1>0(n=2),

where P,,---,P,, f, and x may be complex-valued. We regard (1) as a perturbation of
the equation

(2) ym=0,

and give conditions which imply that (1) has a solution x, which behaves for large 7 like
a given polynomial p of degree <n. Although this problem has already received much
attention, we believe that our results are of interest because we specify bounds on the
differences x{”—p'” (0=r=n—1) more precisely than is usually the case, and our
integral smallness conditions on Py, - -, P,, and f are stated largely in terms of improper
integrals which may converge conditionally rather than absolutely, as is usually re-
quired.

The main theorem is stated and proved in §2. Section 3 contains corollaries and
examples. Section 4 is an appendix which contains the proof of a lemma used in §2.

2. The main theorem. Throughout this section, p is a given polynomial of degree
< n. For convenience below, we rewrite (1) as

(3) x4+ Mx=f,
where
n
Mx= 3 Px™h,
k=1
and introduce the new unknown
(4) h=x—p.

Since p™ =0, it is obvious that x is a solution of (3) (and therefore of (1)) if and only if
h is a solution of

5) H=—Mh—g,
where
(6) g=—ftMp=—1+ 2 Pp"™ ",

k=1
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Thus, g may be regarded as a measure of the extent to which p, a solution of the
unperturbed equation (2), fails to be a solution of the perturbed equation (1).

The following is our main theorem.

THEOREM 1. Let P,- - -, P, and f be continuous on (0, o), and let g be as defined in
(6), where p is a given polynomial of degree <n. Suppose the integral [*t" ™ 'g(t)dt
converges, and

) [smmtg(s)ds=0(6(1)),

t

where m is an integer in {0,1,---,n—1} and ¢ is continuous, positive, and nonincreasing
on [T, ) for some T=0. Also, if m#0, suppose t"¢(t) is nondecreasing on [T, o) for
some y<1. Assume also that

(8) f |P(1)]dt< oo,
and that the integrals [* P,(t)dt (2=<k=n) converge and satisfy

(9) mek(s)ds=o(t"“‘), 2<k<n.

|

Finally, suppose also that

(10) 75+ (s)

ff”k“‘”"‘ds:ow(f)). 2<k=n.

Then (1) has a solution x, such that
(11) xP()=p () +0(e(t)t™ "), 0=r=n—1.

Moreover, if (7) holds with “O” replaced by “0”, then so does (11).

Remark. Under the stated assumptions on ¢ it is clear that if lim,_ ¢(7)>0, then
it may as well be assumed that ¢=1. In this case, of course, (7) holds with “0”
replaced by “0,” and therefore so does (11).

By way of motivation, we first outline the proof of Theorem 1.

From the remarks preceding the statement of Theorem 1, x, is a solution of (1)
which satisfies (11) if and only if

Xg=ptho
(see (4)), where h, is a solution of (5) such that
(12) KO()=0(e(e)t™ "), O=sr=n—1.

We will show that (5) has a solution with these properties by exhibiting 4, as the fixed
point of a contraction mapping on the Banach space H(t;) of functions h in
C"=[¢,, 00) such that

(13) KO()=0(e(1)t™ "), 0=r=n—1,
with norm

(14) lwqwhum”ﬁfww%m}

1=t r=0
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The contraction mapping will be obtained by converting (5) to an integral equation
whose form is dictated by the integrability conditions that we have imposed. To
guarantee that the mapping which we define in fact has the contraction property, we
must assume that 7, is sufficiently large, and the fixed point (function) &, is at first
defined only on [t,, 00). However, this presents no difficulty, since our assumptions
clearly guarantee the continuability of any solution of (5) over (0, 00).

With g as in (6), let

(15) G(1)= f )" !g(v)ds it m=0,
or
(16) f ’:)l), f°° ((t“_“;__l)_! g(s)ds ifm=1,--,n—1,

and notice that our integrability condition on g implies that the improper integral in
(15) or (16) converges, by Dirichlet’s theorem for improper integrals,
Now define the transformation L by

(17) (o)== ](Mh)(s)ais itm="0,

or by

09 (o)=L an [ O G it
We will show that the mapping & defined by

(19) Th=G+Lh

maps H(t,) into itself, and is a contraction mapping if ¢, is sufficiently large. It will
then follow that ¥ has a fixed point (function) , in H(t,) such that

(20) ST he=h,.
If m=0, then (15), (17), (19), and (20) imply that h satisfies the integral equation

1) ()= [htn) +(5)] .

If m=1,---,n—1, then (16), (18), (19), and (20) imply that h, satisfies the integral
equation

(22) (r)f _1), f = l),[Mh (s)+(s)]ds

In either case, routine differentiation shows that h, satisfies (5). Since ho€ H(ty), it
automatically satisfies (12).

From thcse observations it should be clear that the proof reduces to showing that
the mapping J is a contraction mapping of H(t,) into itself if £, is sufficiently large,
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and that (12) can be replaced by
(23) R ()=o(e(t)t™™"),  0=r=n-—1,

if (7) holds with “O" replaced by “0.” The following lemma is crucial for this proof.
LemMA 1. Let ¢, m, and y be as in Theorem 1, and suppose w E C[t,, ) for some
=T. Suppose also that [*t"~™ 'w(t)dt converges, and

(24) J7smmtw(s) ds=0(6(1)),

and define ‘

(25) p(1)=sup|(6(r)) ' 757 (s ds|.

Then the function v defined by -

(26) o(t)= f w(s)ds if m=0

or by

27) (1) f “ =k I (}\L)nm)—]w(s)ds =i, Bree 1,

is in C")[1,, 00), and it satisfies the inequalities

p(to)o(0)™™"

(28) |U(r1(f)|£(ﬂ_m )'H'" =) 0<r=m—1,
(29) |u‘""(t)|£-—(:(_?“¢£rl))! ;

and

(30) | “’(r)|<%—-, m+1<r=n—1.
Moreover, if

(31) lim p(1)=0,

then

(32) o(t)=0(ep(t)t™"), O<r=n-—1.

We leave the proof of this lemma for the appendix (§4). Since the lemma would be
essentially trivial under the stronger assumption that [* "™~ '|w(¢)|dt<oo, it is im-
portant to observe that we are not assuming this. Notice that the lemma implies that
the function v defined by (26) or (27) is in H(¢).

Proof of Theorem 1. First notice that, because of (7), Lemma 1 with w=g implies
that G, as defined by (15) or (16), is in H(¢,) for any #,>0. The next step, then, is to
show that Lh (see (17) or (18)) is defined and in H(t,) whenever h € H(t,). We start by
showing that the improper integral in (17) or (18) converges if h € H(t,). To this end,
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we first consider the integral
(3)  Jrn)=[T N M) (s)ds= S [T P()A (s .
t k=171

We will show that the integrals in this sum converge, and estimate them. In the
following, let s=1=1,,.
From (14),

|s"= =Py (s )A "= (s)|= 1Al [Py(s)lo ().

Therefore, (8) and the monotonicity of ¢ imply that the first integral on the right of (33)
converges, and that

(34) [ s o) dsf< o (o) [ 1P as.

If 2=k=n, then integration by parts yields

(3s) j:ms""""Pk(s)k‘”'“(s)ds=r""""'h‘""*’(r)[ka(A)dA

o RO (AN P
[l ([ Pr)an )ds
To justify this, observe that

lim 7=~ R" (1) [ P()ar=0,

{—co

because of (9) and (13), and the integral on the right of (35) converges absolutely
because of the convergence of the integral in (10) and the inequality

(36) |[sm=m "R =D(5)] |< (n—m) Rlls*~2(s),

which follows from (14) and straightforward manipulation.
This proves that J(t; h) converges. Moreover, from (10), (14), (34), (35), and (36),

(37) V(2 h)|<|lkllo(2)a(2),

where

o(1)= lPl(?\)Id?HEzr“"_[ P;—(A)dhl

+n=m(e() " 3 [ (s)

=2

f‘”};.(x)dxjds.

Now we can apply Lemma 1 with w=Mh and v= Lh. (Compare (26) and (27) with (17)
and (18).) Then (25) becomes

p(f)=SL:l_p (¢(7)) "' (r;h)),
which, with (37), implies that
(38) p(t)=|h||supa(r)=0o(1).

=t
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Now (28), (29), and (30) with w= Mh and v= Lh imply that Lh € H(t,) and
I LAl|<K]|A]| sup o(7),

Ty

where K is a universal constant.
Since G is also in H(1,), the transformation J defined in (19) also maps H(1,y) into
itself. Moreover, if h,,h, € H(t,), then

15 &, =T hyfl= "L(hl —h, )"S‘K”hl —h,|l SEP a(7).

Therefore, I is a contraction mapping if ¢, is so large that
supo(1)<1/K,

T=0y

which we now assume. (Recall that o(1)=0(1).) Consequently,  has a fixed point
(function) &, which satisfies
(39) ho=G+ Lh,,

which can also be written out as (21) if m=0, or as (22) if m=1,---,n—1. Since (38)
implies (31), Lemma 1 with w=Mh and v= Lh, implies that

(40) (Lhg)"()=0($(t)t™"), O<r=n—1.
Moreover, if we can replace “O” by “0” in (7), then Lemma 1 implies that
(41) GO(t)=o(e(t)t™ "), 0=<r=n—1.

But (39), (40), and (41) imply (23); that is, in this case we can replace “O” by “0” in
(11). This completes the proof of Theorem 1.

3. Corollaries and examples. There are applications of Theorem 1 in which (8) is
the only integral smallness condition on functions appearing in (1) which requires
absolute convergence. The following corollary illustrates this.

COROLLARY 1. Theorem | remains valid if (10) is replaced by

(42) [ ¥ a=o(s(1).
Proof. 1f (42) holds, then (9) implies (10).

The following corollary is of interest if (42) does not hold.
COROLLARY 2. Theorem | remains valid if (10) is replaced by

(43) et

Proof. Since ¢ is nonincreasing, (43) implies (10).
COROLLARY 3. Theorem | remains valid if (10) is replaced by

me,;(A)d}\lds< w0, 2<ksn.

(44) [T Rdn)ldi<oo,  2<k=n.

Proof. We will show that (44) implies (43). If (44) holds, then the function
Qu(1)=["|Py(s)|ds
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is defined on (0, o¢), and
(45) Qu(t)=o(e™*71).
Integration by parts yields

[542Q,(s) ds= 75 5*~'Qu(s)

h

: Hk—l_f fr:ls"' "Pu(s)|ds.
From (44) and (45), we can let 7, — oo here and conclude that
fms""sz(S) ds<oo.
Therefore, (43) holds, since
|£mPk(A) d)\’ﬂgk(:).

To see that (43) is weaker than (44), notice that the function
P (t)=t"**"2sins

satisfies (43), but not (44).
Example 1. Hartman [1, p. 315) has shown that if P,,- - -, P, € C(0, 0), and

(46) [T (ldi<oo,  1<k=n,

for some a >0, then the homogeneous equation

(47) xM+P()x" V4 .. +P(1)x=0
has a fundamental system x,, x,,- - -, x,_, such that
r{1+o(r=)]/(v—r)!,  0=r=u,
()=
(48) x2(0) {o(r"‘""), ptlsr=n—1,

The author [2] showed that this conclusion remains valid with (46) replaced by the
assumption that

fm:“|P,(:)|dr< 0
and the integrals

fwr"””"P,((r)dr, 2<k=<n,

converge, perhaps conditionally. The same conclusion can be obtained under the still
weaker assumptions that

f'x}PI(r)]dr-coo
and

(49) fka(s)ds=o(t"‘“_“), 1<k=n.
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To see this, let » be any integer in {0,1,---,n—1} and let p(t)=¢"/»!. Then the
function g in (6) becomes
n tv—-n+k
t)= Plt)————,
0= 3 AOG S

and (49) implies that
[sm () ds=o(4(0)),
t

with m=max{0,»—[a]} and ¢(7)=1¢""""" Since (49) implies (43), Corollary 2 implies
that (47) has a solution x, which satisfies (48).

Corollary 2 also implies that if (49) holds only with “O” (rather than “0”) on the
right, then the stated conclusion also holds with “O” rather than “0” on the right of
(48).

Example 2. Consider the equation

(50) . y W+ [ (1)sing] y=1""*'¢(t)cost,

where » is an integer in {0, 1,---,n—1} and ¢ is positive and continuously differentia-
ble on (0, o0), ¢'<0, and lim,_ ., ¢(¢)=0. Here P=---=P_,=0and

(51) [7Bs)ds=0(e " (1)) =o(~),
r
which implies (8) and (9), and the function g defined by (6) is
g(t)=e7""'e(e)[t"p(t)sint—cost],
S0

(52) f "= g(s)ds=0(¢(1))

(and the convergence is conditional if [*¢(7)dr= o), provided p is a polynomial of

degree <. This implies (7) with m=0. Therefore, Theorem 1 implies that if p is any

polynomial of degree <w, then (50) has a solution x, such that
x()=p()+0(e(2)t™"), 0=r=n-1,

provided
(53) J T (s) ds=o(9(1)),

since this implies (10), because of (51) and (52). However, (53) obviously holds for any
nonincreasing function ¢ if »>0. If »=0 it holds, for example, if
¢(1)=(1+logr) *,

witha>1.
Example 3. Consider the equation

(54) Y+ [r*sin(e’)] y=0,
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where a is an arbitrary real number. By substituting s =logu it is easy to verify that
fxs"sin(e‘)d.s:O(r“e"),
]
where the convergence is conditional if a= —1. Therefore, (54) satisfies (8), (9), and
(43). For this equation the function g in (6) is
g(1)=t°p(t)sin(e),
so if p is a polynomial of degree v=n—1, then

[ e)ar=otser i

which implies (7) with m=0 and
$(1)=pmrarrlet,
Therefore, Corollary 2 implies that (54) has a solution x, such that
) =p N (e)+o(trerr—rlet), O=sr=n—1.
Example 4. Corollary 1 implies that the equation

' 2sint

(—R_—W-ﬂ“”logtcosr

y W+ [ 2sint] y=

has a solution x, such that
xO()=[1+0(r7"2logt)|e" ' f(n—=r—=1)1,  O<r=n—1.
To see this, observe that here P,=--- =P,_ ;=0 and

[7B(s)ds=0(172),

so (8) and (9) hold. With p(¢)=¢"""/(n— 1)}, the function g in (6) is

g(t)=—1t"""logtcost,

SO

fmg(s)df=0((_1”logf),

14
(with conditional convergence), which verifies (7) with m=n—1 and
o(t)=1"""?logt.
Since this ¢ satisfies (42), Corollary 1 implies the conclusion.

4. Appendix. Proof of Lemma 1.

Proof. From Dirichlet’s theorem, the convergence of the integral in (24) implies
that the improper integral in (26) or (27) converges. Therefore, v is well-defined on
[£5, o0) by (26) or (27), and
(55) v"‘(r)=fx(—f:~s—)"—r—1w(.f)df m<r<n—1

¢ (n=r=1)! ' T
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With
(56) 0(0)=["s""m"w(s) ds,

i

(55) can be rewritten as

(57) o(1)= - — 1 )!f”(g—n)"_"'sm--rg'(s)dg, PR —1,

(n—r—1

If m=r=<n-—2, integrating (57) by parts yields

(s8) v"‘(r)=———(nﬂ‘_,),[“Q(s)%[(§~:)"_’_'sm—r]¢

(D

if s=¢ and r=m. Since

(60) 10(s)I=p()8(0) ifs=r

(see (25) and (56)), (58) implies (30) for m+1<r<n—2. If r=n— 1, integrating (57) by
parts yields

But

(59)

m-r d __'r N o m=r=|
<t ds(l s) +(r—m)s

(61) o) = IQ(1) + (m=nt 1) [Fsmn0(s) ds.

If m<n—1, this and (60) imply (30) with r=n—1. Setting r=m in (58) and (59) and
invoking (60) yields (29) if m<n—1. If m=n—1, then (60) and (61) imply (29). If
0<r<m—1, then we can differentiate (27) and substitute (55) with »=m into the result
to obtain

m=—r—|
(= fU=N"" _
v'"(¢) j;o (m—r—l)!v (A)dA,  O=r=m-—1.
Therefore, from (29),
(62)

1
(n=m—=1)(m—r—1)!

|o"()|= f‘(z»A)“""p(A)¢(A)da, 0<r<m-—1.

Since p is nonincreasing and 17¢() is nondecreasing, this implies that

|o"’(r)|£(n__:?;’))fzf‘;)_ti_1)!_[:(r—)\)”'_'ql)\_"dz\, O<r<=m—1.

Replacing ¢, by zero and integrating repeatedly by parts now yields (28). (Here we need
the assumption that y<1.)

From (29) and (30), (31) implies (32) for m<r=n—1. If 0<r<m— I, then (62)
and the monotonicity properties of p and ¢ imply that

tm*r—-l+7¢(r)
(n=m=1){(m—r—1)!

(63)  |o"(1)|< f P(MAYAA,  Or=m—1.
fo
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But
f’p(a)rvd;\=f"p(a)A—vdmf’p(x);\—vd;\
ty o fn

l_'f_r} =Y

| _ 4
Sflsp(?\)?& "d?\+p(f1)_1_7—'

if t,>1,. This and (63) imply that

fim m“(¢(r))"Iv"’(‘ﬂs(m—r-1):(2(113«— D-v)’

r=—=oc

Since this holds for all #,=¢,, (31) implies (32) for 0<r=m— 1. This completes the
proof of Lemma 1.
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