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A GENERAL CLASS OF DISCRETE TIME-INVARIANT FILTERS*
WILLIAM F. TRENCH{}

1. Introduction. In this paper we consider the problem of smoothing
and prediction for sampled functions consisting of a polynomial plus
stationary noise. Specifically, we consider real-valued sampled signals of
the form

yi=Ji +N; 0=j< =),

where f; is the value of a polynomial f(¢) at { = jh, and {N ;] is a stationary
(wide-sense) noise sequence of zero mean and known autocorrelation func-
tion, ¢; . In all that follows, f({) is assumed to be a fixed, but arbitrary
polynomial of degree not exceeding P. We will investigate a certain class
of time invariant filters for which the output {x;} is obtained from the
input by means of the convolution

w0
xj‘ = =0 wry_f—f .

A problem which has received much attention in the recent literature is
that of choosing the weighting sequence {w,} so that

(1.1) z; = U0k + 1),

for some fixed integer » and delay =, provided N; is identically zero. In
addition, other conditions are placed on the weighting sequence to control
the output standard deviation in the presence of noise. For instance,
Blum [1], Johnson [5], and Lees [6] have considered the finite memory
case, where w, = 0 for r 2 N + 1, N being an integer not less than P. In
this case, the variance of the output noise is given by the quadratic form

2 N
¢ = Zr.#—ﬂ ¢r—a Wy Wy ]

(provided ¢y = 1), and methods are given for choosing the vector
(wo, wi, +++ , wy) from the class of vectors such that (1.1) is satisfied, so
that ¢® is minimized. In addition, Blum [2] has considered the infinite
memory case, where it is required that the weighting sequence {w,} be a
solution of a linear, homogeneous difference equation with constant coeffi-
cients, the arbitrary constants being chosen to minimize the output vari-
ance subject to the constraints arising from (1.1). Filters of this type can
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406 WILLIAM F. TRENCH

be implemented conveniently by means of recursion formulas, provided the
difference equation satisfied by {w,] is stable.

In these approaches, the filter design is performed in the time domain.
It is the purpose of this paper to show that these methods are special cases
of a more general technique in which it is convenient to consider the filter
as being defined by its transfer function. From this point of view, it be-
comes possible to impose additional conditions on the behavior of the filter
in the frequency domain.

2. Preliminary Considerations. Let the polynomial A(z) be defined by
(21) A(2) = 1 —m2)(1 —m2) - (I —wm2) = 2n-oan2"
where the 4’s are real or occur in complex conjugate pairs, and
(2.2) 8 = maxicick |vi | < 1.

Let Ky, K, , - -+, Ky be arbitrary real numbers, and define
K(z) = > 1 K"

Then the operation which transforms the sequence {y;} into the sequence
{a;} according to

(2.3) Zfﬁ:o AT jem = Z‘Lo Ky;. (j =2 max [k, N]),
with arbitrary initial conditions, defines a linear, time invariant filter. If
y1 = v+ =y = 0, then (2.3) is a finite memory filter, while if this is

not true, it is an exponential filter similar to those studied by Blum [2].
In either case, if we define the generating function, or z-transform of a
sequence {s;} to be the formal power series

8(2) = X rossi

then (2.3) can be solved in the z domain to obtain, by means of the con-
volution theorem [4],

_ K(2) I(2)
(2-4) X(?J) - A(Z) Y(z) + m ’
_ where I(z) is a polynomial which depends on the initial conditions.
DerintrioN. Two formal power series, P(z) and Q(z), are said to satisfy
the relation

(2.5) P(z) ~ Q(z),

provided the difference P(z) — Q(z) is analytic for |z| < 1/8, where & is
defined by (2.2).

An elementary consequence of this definition is

LemMA 1. If p. and g, are the nih coeflicients of two power series satisfying
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(2.5), then
(2.6) lim 2» "% _ o

new A"

for any A > 4. Thus, since § < 1, we can say that p, — ¢, tends to zero
exponentially. We will write (2.6) more compactly as

Pn = gn + 0(3").

(Often in the following presentation, it will be convenient to write the
relation P(z) ~ @Q(z) even in cases where P(z) — Q(z) is obviously a
polynomial, so that p, = g, for n sufficiently large).

The function

_K() _ <

2.7) T(z) = o " mE-EI W 2
is regular in | z| < 1/6, and we can write (2.4) as
(2.8) X(z) ~T(2)Y(2),

or

(2.9) Tn = Dore0 Wilhnr + 0(8"),

which exhibits the fact that, for large n, the solution is essentially inde-
pendent of the initial conditions.

T'(z) will be called the transfer function of the filter (2.3).

LemmMa 2. Let {N;}, (7 = 0), be a real stationary random process with zero
mean and autocorrelation function

¢ = E[N;N ) (90 = 1),
and define

(2.10) B(z) = 2wt

"Let {M ;| be the output of the filter (2.3) when the input is {N;}. Then
E(M}) = o' + o(3)),

where

(2'11) 0-2 = i Wy, ¢r—a o 2i1'l"i ﬁﬂ:l T(Z)T(l/z)(b(z) d—: < o0,

r8=0
The proof of this lemma can be obtained from (2.9) and the fact that
T(z) is regular in |z | < 1/5. For a related result, see Brown [4].
Thus, ¢° is a “steady state variance.” In the rest of this paper, it will
simply be called the output variance.
The following lemma can be verified by straightforward manipulation,
using (2.9).
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Lemma 3. Let the input to (2.3) be of the form
Y = Z.:LD B“gi"au,

where 8, is real (p = 0, 1, ++- , M). Then the output is given by
& = 2o BT (¢ )e™" + o(8).
Hence, if T(z) = 0 for z = ¢ (p =0, 1, -+, M), x, tends exponentially

lo zero as v approaches infinity.

3. The statement of the problems. Let ¢(t) be obtained by applying
an arbitrary constant-coefficient differential or difference operator to the
polynomial f(t), and g(jh) = g;. Then, if deg f(z) < P, we can find
constants ¢y, ¢;, - -+ , ¢p such that

(3.1) gi = 20 Cif i (= P),
or, in terms of z-transforms
(32) G(z) ~ C(2)F(2),

where G(z) = D 20gu", F(2) = D 2 ofn2", and C(2) = D.h_yeca2”

Problem 1. Given the polynomial A(z), (2.1), characterize the class of
polynomials K(z), such that if the input to (2.3) is y; = F;, then the
output is given by

(3.3) x; = g; + o(8).

Problem 2. Given R(z), a known real polynomial such that R(1) = 0,
characterize the class of polynomials S(z) such that, if K(z) = R(z)S5(z),
then K(z) still meets the requirements (3.3), when y; = f;.

Problem 3. From the class of polynomials of a given degree which satisfy
the requirements of Problem 1 or 2, find the unique polynomial for which
o* is minimized.

Thus, Problem 1 is a requirement that (2.3) provide an asymptotically
unbiased estimate of {g,}, while Problem 3 requires that this estimate be
the best of its kind in the least squares sense.

The motivation for Problem 2 requires more explanation. First, in cases
where the solution of Problem 3 is not feasible from a practical standpoint,
it may still be possible to decrease ¢° by choosing R(z) suitably. Further-
more, in a situation where the detector itself introduces an extraneous
periodic component to the signal, one may exploit Lemma 3 to remove if.

4. The solutions of problems 1 and 2. In several of the references cited,
the constraints which arise from the requirements of Problem 1 are treated
in the time domain, giving rise to a set of P + 1 relationships of the form

(41) f—l]Krr’=ua (3=01 l;ap)
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If N < P, (4.1) generally has no solution. If N = P, the solution is unique,

while if N > P there are N 4+ 1 — P linearly independent solutions. The

procedure developed below has the advantage of exhibiting the relationship

between the form of K(z) and the constraints in a more explicit fashion.
Equation (3.3) requires that

G(z) ~ T(2)F(2),
and from (2.7), (2.8) and (3.2) it follows that

Pe)
A(z)
Now, this relationship must hold whenever F(z) is the generating function
of a polynomial sequence of maximal degree P. But

! S
(z — 1)PH

(4.2) [K(z) — A(2)C(2)] 0.

F(z) =

is such a generating function. This, coupled with (4.2) leads to the con-
clusion that the function

K(z) — A(2)C(z)

(z — 1)P+1
is regular in |z | < 1/8(> 1). Hence K(z) is of the form
(4.3) K(z) = A(2)C(2) + (z — 1)""'D(2),

where D(z) is a polynomial. Conversely, and K(z) of the form (4.3) is a
solution of Problem 1, because then

D(2)(z — 1)™M'F(2)

T(2)F(2) = C(2)F(2) + ~ C(2)F(z) ~G(2),

A(2)
by virtue of the fact that (z — 1)"™F(2) is a polynomial, since
& (P +1 :
Z;(—l)( f fin =0 (72 P+1).

This completes the solution of Problem 1.
For Problem 2, it follows from (4.3) that if K(z) = R(2)S(z), then

L R@SE) — AR m =0 (=0,1,-+-,P).

This may be considered as a (P + 1)-square system in the unknowns
S(1), 8P(1), ---, 8®(1), which, if R(1) # 0, has the unique solution

S(’}(l)‘:bv (e =0, 1, vy P,
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where by, by, -+, bp are defined by
A(2)C(2) _ x~ba/, _ 1yn
(4.4) —Im)—ﬂ-—'ga(z 1)"

Since no conditions are placed on S (1) for » > P, we conclude that a
solution of Problem 2 is of the form
P

K(z) = R(2) [Zf‘-;, (e —1)" + (s — 1)*’*‘E<z>],

n=0
where F(z) is an arbitrary real polynomial. Conversely, any K(z) of this
form is a solution of Problem 2.

6. The minimization of o°. Let K(z) be a solution of Problem 1 or 2.
That is

(5.1) K(z) = R(2)[B(z) + (2 — 1)"V'E(2)],
where

B() =X (z = 1),

n=0
and by, by, -+, bp are defined by (4.4). Assume that deg B(z) = M = 0.
The solution of Problem 3 consists of finding the polynomial K(z) of
degree N, which is of the form (5.1), and minimizes ¢°. Clearly, no solution
exists unless N = M + P, and if equality holds, the solution E(z) = 0 is
the only one. f N — (M + P + 1) = V = 0, then deg E(z) = V, and
the choice of K(2) has V + 1 degrees of freedom Ey, E,, - -+, Ev , where

E(z) = D wEz2.
Substituting (5.1) into the contour integral (2.11), and defining
R(2)R(1/2)

H(z) = d’(z) W )
one obtains
d=21 [ HEBEBOHE
27t Jizjet 2z
P
(52) e 2% f|=|==1 H(2)B(2) (% — 1) E(l/z)d—:

P41
+ %@ Ll:lH(z)(z ) s (% — 1) E(2)E(1/2) %,

where we have made use of the fact that H(z) = H(1/z) in combining two
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integrals to obtain the second term. The condition for a minimum is that

9o’
{IE‘,=O (V=O,1,“';V)!
which leads to
1 1 o P4l dz o

§=0,1,---,V).

There are two methods which suggest themselves for solving (5.3) for
the optimum transfer function. The first leads to a result which is similar
in form to those obtained in some of the previous works cited above. One
defines

(5.4) L(z) = B(2) + (z — 1)"VB(2) = 205" LZ,
and expands (5.3) to obtain
< (P +1\ 1 dz
(5.5) r;o (1) ( v )27?, |2]m=1 H(2)1z) prtetl T L
(s=0,1,---, V).

This implies that

1 I dz . P
(5.6) Z_ﬂﬁﬂ-i H(z)L(z) prs S N+ M Ao Npr
(r=01---,N - M),

since (5.5) is the homogeneous difference equation satisfied by polynomials

of degree at most P. The quantities (Ao, -- - , Ap) play a role analogous to
that of the Lagrange multipliers which are introduced in the conventional
approach.

Expanding (5.6), we obtain
(57) 2 arsli=M+Mr+ - +2x" (r=0,1,--- ,N— M),
where

1

O = —
% 2w |z]=1

dz
H(z) 5‘_‘_1 .

By using the transformation z = 1/¢, it is easy to show that a, = a_, .
It can be shown that

2 N—M
g = r8=0 ar—gLrLs )

which is positive for every nonvanishing choice of Ly, - -+, Ly_y . Hence
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the matrix
I'= (ars) (r;8=0;1; ++« N — M),
is nonsingular. Defining
Ly Mo |
wlft |, aw B
Ly_u Ap
1 0 0
1 1 1
Av—u =11 2 2 ,
1 (N—=M) - (N—-M)
the solution of (5.7) becomes
(5.8) L == P_IAN_MQ..

The unknown vector A can be obtained by noting that (5.4) implies:

LPY1) = B”(1) = b, (»=0,1, ---, P).
Hence,

(59) Zf;@‘ L = Z'l:l=ﬂ B,m’ (v =0,1; -+, P),

(where B(z) = D¢ o B,2™), since for any power series

d ¥ o0 " _ 0 ’
(z(?z) (mzoﬁnz) 1'—'"‘;0’3“”!

and the differential operator ( —‘E) can be expanded in the form

dz
d » » o dm
— = — >
( dz) m;;am.yz T (» 2 0).
Letting
By
Bt |
Br
we can write (5.9) as
Av_xL = Ap"B,

where the superscript 7' denotes matrix transpose. From (5.8) it follows
that

AF T 'Ay_ah = ALB.
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Now, it can be shown that the (P + 1)-square matrix is positive definite,
and has an inverse. Hence
%= (Ap=ae D An-e) A" B,
which may be substituted in (5.8) to yield
(5.10) L= T Nl Av-uX Aica) AT

For the case where V + 1, the number of degrees of freedom, is small
compared to N — M, it is convenient to obtain an alternate solution which
does not require the inversion of the high order matrix I'. We deduce from

(5.3) that £y, By, --- , By is the solution of
D raBrsB, = =T, (s=0,1,--+,V),
where
1 1 P+1 dz

U =g b1 (L - 1) B@) &,
and

= 1 1 gL P+l dz

fgn = é;l‘_l: o H(ﬁ) (; — 1) (Z — 1) zﬂT‘H-'

6. The behavior of ¢° as a function of (y;, ---, v;). In the previous
section, we solved Problem 3 under the assumption that the k-tuple
(v1, -+, ve) is fixed. The transfer function of the optimum filter with
deg K(z) = N is given by

where the coeflicients of L(z) are obtained from (5.10). If v; = 0,
(0 =7 = k), then A(z) = 1, and we have the optimum finite memory
filter, of specified length, which meets the requirements of Problem 2.
If v; # 0 for some 7, the filter (2.3) has an infinite memory, the influence
of past history being determined by the positions of (y1, --- , v¢) within
the unit circle. For suitable choices, it is possible to exploit the infinite
memory to advantage in reducing o°. However, it is also possible for this
quantity to become arbitrarily large for improperly chosen (vy, ---,
vi). For instance, the filter

z; — (v + 72)2jm1 + yvexie = (1 — y1) (1 — 72)y;

provides an asymptotically unbiased estimate of a constant, with output
noise variance

(6.1) g ltnrd— 71— )

I P 1+ v)d 4+ 7)) °
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provided the input noise is uncorrelated. In (6.1), if v, and . tend to
nonreal conjugate points on the unit ecirele, or if one of them approaches
—1, them o* tends to infinity. On the other hand

. 2
My, yes1 0 = 0.

In general, the behavior of ¢° as a function of (v, vz, -+ ,v:) seems to
be quite complicated. However, we conjecture that the most useful choices
of the y’s for noise reduction are those for which they are all positive reals
in (0, 1). Along these lines, we have the following theorem.

TrrorEM 1. Let ®(z), defined by (2.10), be analytic in the annulus p
<|z| <1/p,with0 = p < 1, and C(2), (3.1 and 3.2), have the property that

(6.2 a) c¥1) =0 (v < 1),
(6.2 b) (1) # 0,

where 0 £ r < P, while A(z) = (1 — v2)*, with 0 < v < 1. Then, the
output variance, o°(v), of the optimum filter obtained in § 5 is of the form

(63)  &*(1) = 0:(¥)(1 = 1) + Ou(y) (1 — y)*H

i p <y < 1. The functions O,(v) and Oy(y) remain bounded as v increases
toward unity.

Proof. We first consider the case where the degree of K(z) is required to
be M + P, which leads to E(z) = 0. Let o:°(y) be the output variance for
this case. Then

2 _ I ®(z)R(2)R(1/2) : dz
(64) oar(y) = '?gm-l i — Pl = /5 B(z)B(1/2) =

Recalling that

where

]
zw=l

_d"[A(2)C(2)
bn(?) = dz“l: R(Z) :’

we can write (6.4) as

0_2( ) — L - bp('}’)bv('}’)
W= o plwl

d(2)R(2)R(1/2) _ “(1 B )"dz
A R

i (C(z))
o= e \RG)

H
2=1
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we have

bn(?) Z (= y)m( )eu—m(l _ 7)k—m (n = 0,1, ---, P)

From ( 6.2&),

ba(y)
n!

b (‘}‘) (1

=0 (n <),

V)8 () (r=n = P),

where B,(y) is continuous (and possibly vanishes) at ¥ = 1. From this,
and the fact that ®(z) is analytic in p < | 2| < 1/p, we can write (6.5) as

wila) = Z ﬂu(‘Y)ﬁv(‘Y) (1 — )2t

B Py

. Yur(2) (1 — 2)**
L 55.,,-1,1 (@~ — v

-Su('}’)ﬁV('Y) 2% 2r—p—v ‘1&#‘»(3)(1 = 3)““
+ 2 = e, 0~ PG — 7P

for p < ;g < 7y < 1, C, being a small circle about z = v, contained in
p < |z] <1, and

Yun(2) = (—1)277'8(2)R(2)R(1/z2).

The integrals in the first sum of (6.6) are continuous functions of y near
v = 1. Hence, the first sum can be written in the form of the second term
of (6.3). For the second sum, since ¥, ,(z) is regular in C\ ,

Yuo(2) (1 — 2)*7 dp = 1 d! l:%,y(Z)(l = Z)W:l
ey (1 — v2)¥(z — 7)) (k — 1)!dz+ (I — 7z}
which can be shown by simple differentiation to be of the form
(1 — )" 0a(7);s

where J, ,(v) is continuous in p < v < 1/p. Substituting this result in the
second sum of (6.6), we conclude that it is of the form given by the first
term of (6.3), which proves the theorem for E(z) = 0.

For the general case, note that (5.3) implies that

LR (O G— 1)”‘ B(2) + (z — 1)™ME(:)E ()d" 0,

2 z

)
=7

and now, from (5. 2)

) = oln) =g b H@E - (L-1) B (D)E.
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But the integral is positive, and we conclude that

o*(v) ” o1’ (7)
(L —4)t — {1 =)
for any ¢; in particular, ¢ = min[2r 4 1, 2k + 2r — 2P], which completes
the proof of the theorem.

As a necessary condition for the variance to approach zero, we have:
TaEoREM 2. Let o*(y1, vz, ** - , vs), defined in the sel

0< 0<y<1),

R=f(‘}’1:"':7k)||'}’s|<1, a; real, (3=111k)}:
denote the output variance of the optimum filler obtained in §5, for A(z)

gtven by (2.1). Let (§1, - -+ , &) be a point in the closure of R such that
lima!('h;”';'n)=0 _
as (yi, ***,v) approaches (91, -+ ,4:) over some path in K. Then

A(z) = (1 = $2) -+ (1 — $42) is of the form

A(z) = (1 — z)”"“ﬁ(z).

Proof. Let (yin, -+, Ya), (n = 0,1, ---), be a sequence of vectors in
R, tending to (1, - -+, 9x), such that lim,_., ¢°(y1n, **+, 74n) = 0. From
(2.11) we can write

1 2x i ‘_
0'2(71‘01, Kt :Ticn) = 2_1;-/; "I’(e 9) | T(e E; Yiny ***, Tkn) 12 dﬂ:

where T(z; Yin, *** , Ykn) 18 the transfer function of the optimum filter
associated with (yin, -+, Y&a). Since ® is positive on the unit circle
(being essentially a power spectral density), it follows that
(67) limﬂ—'ﬂﬂT(e{e;'Yln y " Ticn) =0
almost everywhere. Let f; be an arbitrary polynomial of degree not exceed-
ing P, and g; be defined by (3.1). For every n, we can write
(68} E:::l) am(?ln y "y 'Yfm)g.f—m o Z‘:‘Lﬂ Kr(‘}’lﬂ y T 'Ykn)f}'—r H
for § = max [k, N]. Holding j fixed, but arbitrary, and noting that (6.7)
implies that lim,.e K:(Y1n, *** , ) = 0 forr = 0, 1, --- , N, we can
pass to the limit in (6.8) to obtain

Dm0 @m(fu, ey F)gim =0 (j Z max [k, N]).

However, g; can be an arbitrary polynomial of degree P — r, so that the
conclusion of Theorem 2 follows from the fact that

PIRCI] Gl PR

ve=0

is the irreducible equation satisfied by the class of such polynomials.




DISCRETE TIME-INVARIANT FILTERS 417

A word of caution is in order. As (y1, * -, v&) approaches the boundary
of R, the recursion formula (2.3) becomes less desirable from two points
of view. First, the transient error may not die out rapidly enough, and
secondly, the growth of computational errors becomes more bothersome,
despite the fact that the overall computational error remains bounded,
provided the totality of individual errors has a finite bound.

For instance, suppose one attempts to design a filter of the form

P+1 N
> (—1) (P i 1) g = 2 Kt frs,
p=0 v r=0

to perform a smoothing operation on a polynomial of degree P or less. (For
an example of a filter of a type similar to this, see Blum [3]). It is easy to
show that round off errors committed at each step can excite an error which
grows in order of magnitude like a polynomial of degree P + 1. In many
cases, this error will completely mask the desired solution.

7. Examples. In this section we develop some examples to illustrate the
techniques given above. Unfortunately, even in the simple cases to be dis-
cussed, the expressions for the filter coefficients are cumbersome in form,
although they can be easily computed for specific values of the parameters
involved.

Ezample 1. As a first example, we derive coefficients Ko(v), Ki(y), -+,
Ky () such that if

(7.1) y; = f(sh) + N;,

where f(¢) is a polynomial of degree one and {N,} is uncorrelated zero-
mean noise, then the sequence {z;}, defined by

(7.2) 25 — 2% + YT = Doreo Ko(¥)Yier

~ is an asymptotically unbiased, minimum-variance estimate of {g,}, defined
in §3. It is to be understood that the variance is minimized for that class
of filters of the form (7.2), and that it is a function of v and N. The
parameter v is assumed to lie in the interval 0 <y = 1.

Since second and high order differences of a first degree polynomial vanish
we can write

gi = Cofi + Ci(fi — fi).
Hence, the most general form of C'(z) for this example is
C(z) = Cy + Ci(1 — 2),
while
A(z) = (1 — ¥2)’,

8(z) = R(z) = 1.
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The function B(z) required in (5.1) is
B(z) = (1 — v)’Co — [(1 — ¥)°Cy + 2v(1 — ¥)C4l(z — 1).
The elements of the matrix I' = (a,-,) are given by

Y 7 9wt Nielmt (I — 7220 — v/2)2 7—+H

This matrix can be inverted by inspection, as follows. If the polynomials
Bi(2) = LmeaBrw2™ (r=01,---,N)

(r,s = 0,1, -+, N).

are defined by
Bo(z) = (1 — v2),

Bu(z) = 2(1 — 2v/2)(1 — v2)’,
Br(z) = zr(l — 'YXz)z(l . 'Yz)z (?' = 2’ 31 oy N - 2)7
Bu-a(z) = 2" (1 — v/2)*(1 — 2y2),

Bu(z) = 2"(1 — v/2)",
it is easy to show that

& 1 B:(2) dz
rm®m—s = 5 T ars
mz=:a Reisd 2me ﬁ:lnl (1 — v2)%(1 — v/2)? &1
and this, coupled with the fact that ¢n—s = as;—n , implies that
(F_I)r.a=.8r,a (?‘,S=0, 1; ;N)

Referring to (5.7), and noting that M = 0, and L, = K,, we obtain,
after some manipulation,

K! = Al31l3’(1) + Klﬁr,(l) (?" = 0: 1: Tt N)

(The “prime” indicates differentiation with respect to z.) The quantities
o and A\ are determined by requiring that K(1) = B(1) and K'(1)
= B'(1), where

K(z) = D ru K.

This leads to a pair of simultaneous linear equations, whose solution is
(7\0) _ (1 — ) ( Sa(7) —Sl('}’))
N SeM8(r) — 82 \=S8i(v)  Soly)
((1 —:y) 0 (Cu
N\ =2y == 'r)) C;),
where

Hili= és,(n (N LAY =yl =
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Si(y) = 2 8, (1) = ;ﬁrf(].) = ALNzﬂ (1 = ) + 2Nv(1 — 9)},

r=0
N

Salv) = 218/ (1)
_NWADEN 4D
_ ; .

+ 2v(1 — IN*(1 — 4)* + N1 — +*) + v(1 + )].

The expression for ¢’(y) is quite complicated. However, Theorem 1
guarantees that ¢°(y)/(1 — v) remains bounded as y approaches unity,
while if Cy = 0, ¢°(y)/(1 — %)” remains bounded. On the other hand,
setting v = 0 yields a finite-memory minimum-variance filter of the type
studied in [3] and [5].

Ezample 2. For this example, we derive a filter of the form

z; = Do Kefir

which provided the unbiased, minimum-variance estimate of {g;} when
{y;} has the form (7.1), with {f;] being sampled values of a first degree
polynomial and

E(N;) =0, E(N;Njin) = p'™

where 0 < p < 1. This type of noise spectrum would arise from sampling
a Gaussian-Markoffian process with zero mean and unit average power.
We have

A(z) = R(z2) =1
&(z) = 1— ¢
(I — p2)(1 — p/2)
B(z) = C(z).
In a manner similar to that of Example 1, we find that
(r_l)!‘.s = B,
where the polynomials {8.(z)} are given by
_1—p
Bo(2) = m
Br(z)=zr(l—pz)(l—‘p/z) (?‘=1,2,"',N—1)’
1L —p
Bu(z) = M .

1 —p
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The required coefficients are
K, = NbBr(1) + MB'(1),

(?\o B 1 S:(p)  =Si(p)\ [/Co
N/ S)Se(p) — Si2(p) —8i(p)  Solp) C

Sie) = (W + 1) 124 22,

_NWN+1)1-p Np
2 14+p 1 +4+p’
_NWN+1)CN+1)1—p , N Np
Sa(p) = 6 1+p+1+p+1—p"

Ezample 3. This example illustrates the synthesis of a digital filter which
annihilates an undesirable sinusoidal oscillation. Specifically, suppose

y(¢) = 1) + B sin (ot + ¢),

where f(2) is a second degree polynomial, w is a known, nonzero frequency,
and B and ¢ are arbitrary, but fixed numbers. Let 4, = y(nh). We will
derive a filter of the form

where

and

Sl(P)

I = Z:ul] Kryn—r
such that
(73) Tn = fﬂ—a .

Thus, the filter will pass the polynomial component with a lag, and destroy
the unwanted sinusoid.
The second requirement will be satisfied if K(z) is of the form

K(z) = (1 — 2z cos wh + 2°)L(2)

from Lemma 3. The operation denoted by (7.3) results in the transfer
function C(z) = 2"

For this case, we see from the arguments in §4 that L(z) = B(z), and
L(z) is equal to the first three terms of the Taylor expansion

2
2

1 — 2z cos wh + 2°

_ 1 oy (z—1)
= Tad D) [I‘Hz Y= teomm * ]
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Then
(z —1)
16 sint (wh/2)’
from which the coefficients Ky, ---, K4 can be obtained by expansion
about z = 0.

K(z2) = R(2)B(z) = 2* —

REFERENCES

1. M. BrumM, An extension of the minimum mean square prediction theory for sampled
input signals, I. R. E. Transactions on Information Theory, Vol. IT-2,

No. 3, (1956), pp. 176-184.
2. M. Brum, On exponential digital filters, J. Assoc. Comput. Mach., 6 (1959), pp.

3. M. Bruwm, Fized memory least squares filters, I. R. E. Transactions on Information
Theory, Vol. IT-3, No. 3, (1957), pp. 178-182.

4, W. M. Brown, Analysis of discrete linear systems, this Journal, 5 (1957), pp. 206-
224.

5. K. R. Joanson, Optimum linear, discrete fillerings of signals conlaining a nonrandom
component, I. R. E. Transactions on Information Theory, Vol. IT-2,
(1956), pp. 49-55.

6. A. B. Legs, Interpolation and extrapolation of sampled data, I. R. E. Transactions
on Information Theory, Vol. IT-2, (1956), pp. 12-17.



