SIAM J. MATH. ANAL. © 1985 Society for Industrial and Applied Mathematics
Vol 16, No. 4, July 1985 007

FUNCTIONAL PERTURBATIONS OF SECOND ORDER
DIFFERENTIAL EQUATIONS*

WILLIAM F. TRENCH'

Abstract. Conditions are given which imply that the functional differential equation

(r()x"(1)) +q(0)x(1)=1(r.x(8(1)))

has a solution X which behaves for large ¢ in a precisely defined way like a given solution y of the ordinary
differential equation

(r(0)y'Y +q(t)y=0.

It is not assumed that g(r)—1 is sign-constant, and f(7, u) need only be defined and continuous on a subset of
the (1, ) plane which is near the curve u=7(g(¢)) in an appropriate sense for large ¢. The integral smallness
conditions on f(,u) permit some of the improper integrals in question to converge conditionally. Separate
treatments are given for the cases where the unperturbed equation is oscillatory or nonoscillatory. The results
are new even in the case where g(7)=1¢.

1. Introduction. We present conditions implying that the functional differential
equation

(1) (r(0)x(2)) +q(1)x(1) =1(1,x(g(1)))

has a solution X which behaves for large ¢ like a given solution 7 of the ordinary
differential equation

(2) (r(1)y’Y +4q(t)y=0, t>a.

We give specific estimates of X—y as 1— co. We do not require g(1)—¢ to be sign
constant, and the perturbing function f=f(,u) need be defined and continuous only
on a subset of the (z,u) plane near the curve u=y(g(r)) for large 1, in a sense made
precise below. We believe that our results are new even if g(r)=r¢. Our integral
smallness conditions on the function f(7,7(g(7))) require only ordinary (i.e., perhaps
conditional) convergence; however, we do impose conditions which imply absolute
convergence of certain integrals involving differences

(3) S, x(g(£))) /(1. 7(g(2))),

where x is a function near y in an appropriate sense. Since forcing functions (i.e., terms
in f(t,u) which are independent of u) obviously cancel out of (3), this means that our
integral smallness conditions on them always allow conditional convergence; however,
this is not the only way in which possibly conditional convergence enters into our
hypotheses. Accordingly, all integrability assumptions below should be interpreted as
allowing conditional convergence, except when the integrands in question are obviously
nonnegative. Moreover, to avoid repetition, it is to be understood that whenever we
write an improper integral in stating an assumption, we are assuming that it converges.
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742 WILLIAM F. TRENCH

Since the asymptotic theory of (1) depends critically on whether (2) is oscillatory
or nonoscillatory, we consider these two cases separately in §§2 and 3. Some of our
results in §3 are related to results of Kusano and Naito [3] and Kusano and Onose [4].
Hallam [2] obtained related results, valid when (2) is either oscillatory of nonoscillatory,
for the case where r=1 and g(1)=1.

To avoid repetition, we state here that three proofs below demonstrate the ex-
istence of a solution ¥ of (1), with prescribed asymptotic properties, as a fixed point of
a mapping 7 defined on a closed convex subset D of the Frechet space Cl 7y, 00) (for
some 7,2 a), with the topology of uniform convergence on compact intervals. In this
context we write

(4) D lim x,=x
k=00
to mean that {x, } is a sequence of functions in D which converges uniformly to x on
compact subintervals of [ 7, ).
The proof in each case consists of establishing the following:
(i) 7(D)cD.
(ii) Zis continuous; that is, (4) implies that

D lim 9x,=5 x.
k—cc
(iii) There is a continuous positive function ¢ such that

(5) [(Zx)()lsy (1), x€D, 127

The last inequality implies that the function in J (D) are equicontinuous on
compact intervals. Since it will be clear in all cases that the functions in D are
uniformly bounded on compact intervals, this and (i) imply that 7 (D) has compact
closure, by the Arzela-Ascoli theorem. The Schauder—Tykhonov fixed point theorem
will then imply that %=X for some X in D, and routine differentiation (which we
omit) will show that ¥ satisfies (1) on some interval (1, %), with 7,2 7,. We will call
such a function a solution of (1).

All quantities are assumed to be real. The following assumption applies throughout.

Assumption A. The functions r, g, and g are continuous on [a,0), r>0, and

(6) g(t)za,  lim g(r)=co.

The functions y, and y, are solutions of (2) such that

’ ’ 1
(7) NI =NNh=0
and
(8) y=c,y+cy,  (c,¢,=constants)

is a given solution of (2). The function ¢ is positive, continuous, and nonincreasing on
[, ), and either

(9) lim ¢(t)=0 or¢=1.

=00
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2. Perturbations of an oscillatory equation. In this section,
(10) z=(y2+y3)"

Our proofs here make no use of the assumption that (2) is oscillatory, so our results
apply even if it is nonoscillatory; however, in the latter case, better results are obtained
in §3.

THEOREM 1. Suppose

(1) Tm (o) 7| [ ()1 (s.5(8(s)) de|=a,< 0
and
(12) Tim (6(0) ™ [ buls)lo(s) ds=B,< o0

for i=1,2, where o is positive and continuous on |a, o). Suppose further that there are
constants T> a and

(13) M>K=[(e;+B,)"+(a,+B,)"”
such that f is continuous and
(1) f(t,0) 1, 5(8(1))|0(1)
on the set
(15) Q= {(u)|r2 T, lu=3(g(1))l Mo (8(1))2(g(1)))}.
Then (1) has a solution X such that
(16) Jim [o(1)2(0)] 7% () =3 (0)|s K.
Proof. Let
a7 0= [ buo)loCs)ds+sup | [ 5 ()1(5,5(s(5))ds
and
(18) v=(v2+»2)"%
then (11), (12), and (13) imply that
(19) Jim (¢(1)) "o(1) 5K,
and that there is a 7,> T such that
(20) v(t)sMe(r), 127,
Let
(21) D={x€ C[m,o)|[f(r)-5(r)|sMé(r)z(r), 721
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(recall (10)), and choose ¢4 > 7, so that
(22) g()zm, 121

(recall (6)). Then (21), (22), and our assumptions on / imply that f(7,x(g(z))) is
continuous on [7,, 00) if x is in D. Moreover, since

[ o) x(a (D) ds= [ 3 ()fs,7(5(5))) s
+ [T x5 D) 5,58 ()] s

(14) and (17) imply that

(23) "2 sx (s dsfsn(o). 21, xeD.
Now define Zon D by
(24)
7O+ [N -1 nO)f(s.x(g(s))ds, 1216,
(7x)(1) = ’

f(f)"'j:m [)’2(-"‘))’1(’)_)’1(3))’2(‘)]f(fsx(g(s)))d‘, TosSI<lIp.

(The second line is vacuous if 75> #,.) From (23) and Schwarz’s inequality,

(25) I(Zx)(1)=p()|gz()o(t), tz7

(to see this for 7,<r<t,, note that v is nonincreasing), which, with (20), implies that
T (D)c D.
If Dlim,_, _ x,=x, then

|7 5.0l 8 (D)~ A x(8()]
[ DO x g~ x(alsWds, 1210,

where the integrand on the right converges pointwise to zero as k — oo, and is bounded
for all k by 2|y,(s)|o(s) (recall (14)); hence, (12) and Lebesgue’s dominated conver-
gence theorem imply that the integral on the right approaches zero as k — co. There-
fore, if e > 0 there is an N such that

<g, t=t,, k=N,

(26) Ij:wy.-(s)[f(s,xk(s(S)))*f(s,x(g(-?)))]dS

for i=1,2. From this, (24), and Schwarz’s inequality,
(Tx )= (Tt)(x)|sev22(2), 127, kzN.

This implies that Dlim, , 7 x, =9 x.
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By differentiating (24), we see from (18), (20), (23), Schwarz’s inequality, and the
monotonicity of ¢ that (5) holds, with

o=+ (50 + 05)]* Mo,

and this completes the verification of (i), (ii), and (ii) of §1. Therefore, 7 has a fixed
point (function) X in D. From (24),

(27) f(f)=y(f)+ffw [yz(s)yl(f)—yl(s)yz(.r)]f(s.f(g(s)))ds. t21tg,
so X satisfies (1) on (74, 00). Setting x =X in (25) and recalling that X=.7%, we see that

X(6)=y(0)|<z(t)e(r), 121,

so (19) implies (16). This completes the proof.

Taking ¢=1 in Theorem 1, so that obviously a,=pB,=0, yields the following
corollary.

COROLLARY 1. Suppose the integrals

28) [T nrs(g()dr, =12,
converge, and

(29) fm z(t)o(t)dt< o0

with o positive and continuous on [ a, o). Suppose also that there are constants T> a and
M >0 such that f is continuous and satisfies (14) on the set

(30) O={ (tw)l=T,lu-y(g(1))|= Mz(g(1))}.
Then (1) has a solution X such that
(31) %(1)=5(1)+o(2(1)).

Remark 1. Although (9) was not used in the proof of Theorem 1, it imposes no loss
of generality, since Theorem 1 without (9) is easily shown to be equivalent to Corollary
Liflim,_ _¢(t)>0.

Remark 2. If, in addition to the assumptions of Corollary 1, the stronger integral
conditions (11) and (12) hold (with i=1,2), then it is routine to verify that the solution
X which satisfies (31) actually satisfies the stronger condition (16). However, this does
not mean that Theorem 1 is only a trivial extension of Corollary 1. The hypotheses of
Theorem 1 with lim,_,  ¢(1)=0 do not imply those of Corollary 1, since the set § in
(15) on which (14) is required to hold in Theorem 1 is then smaller than the set Q in
(30). Put another way, the hypotheses of Theorem 1 in this case imply the hypotheses of
the Schauder-Tykhonov theorem for the subset D of C[ 7, %) as defined by (21), but
not for the larger subset D which would result if ¢ were replaced by one in (21).
Example 2 below will illustrate this point.

Remarks similar to these apply to other results which follow.

THEOREM 2. Suppose (11) holds with i=1,2. Let A be nonnegative and continuous on
[a, ), and

(32 Tm (o) 7 (ORG)2(8(5)8(g(s)) ds=b,, =12,
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where

(33) b2+bi<1.

Suppose further that there are constants T2 a and M >0 such that
(34) (a,+Mb,)* +(a,+ Mb,)’ <M?
and f is continuous and satisfies the inequality

(35) f(2,u)=£(2,7(g(0))=A (1) = (g(1))]
on the set @ in (15). Then (1) has a solution X such that
Tim [6(0)2(0] IR0 ~5(0)ls [0+ b)Y + (e M) ]

Proof. (Note that (34) holds if M is sufficiently large, because of (33).) If f satisfies
(35) on £, then it also satisfies (14) on &, with

o(r)=MA(1)z(g(1))¢(g(1))-

This and (32) imply (12) with 8,= Mb,, and then (34) implies (13). Hence, Theorem 1
implies the conclusion.
COROLLARY 2. Suppose the integrals (28) converge, and

f"" 2N (1)z(g(1))dt< o0,

where \ is continuous and positive on [ a, ). Suppose also that there are constants T>a
and M >0 such that f is continuous and satisfies (35) on the set Q in (30). Then (1) has a
solution X which satisfies (31).

We now apply our results to the equation

(36) (r(0)x'(2)) +q()x()=p(1)(x(g(1)))"+h(2),

which has the form of a generalized Emden-Fowler equation, but is unusual in that (2)
may be oscillatory. (In §3 we consider (36) in the case where (2) is nonoscillatory.)

THEOREM 3. Suppose p, h€Cla, ), and y is positive and rational, with odd
denominator. Suppose further that the integrals

(37) [T non(yar, =12
converge, and that

(38) 7 20lp(Dl(2(8(1)) " dr< co.

Then (36) has a solution X such that
x(1)=y(1)+o(z(1)).
Proof. For (36), the function fin (1) is
(39) f(1,u)y=p(t)ur+h(1),
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which is continuous on & in (30) for any T'> a and M > 0. Moreover, if (1,u)€ Q, then

(40) lul< |7 (g(0)) |+ Mz(g(1)) = (C+M)z(g(1)),
where C=(c}+¢3)"/% (See (8) and (10).) Since obviously

f(t,1)~7(1.5(g(e))]s )11l + (7(&(1))]
<lp ([ 1"+ c(z(g(1)))"].
(40) implies (14) for (t,u)€ Q, with

o(t)=lp()|(2(g(1)))[(c+M)"+C7],

Therefore (38) implies (29). Since (37) and (38) also imply that the integrals (28)
converge, Corollary 1 implies the conclusion.

THEOREM 4. Suppose p, h€ Cla,o0) and Y21 is rational, with odd denominator.
Suppose also that

(41) lim ¢(1)=0,

T (6(0) | [T 5P ) E) +hls)] dsma<o0,i=1.2
and
@) Tm (+() " [ ()p@I(=(() 0 (8(s)) ds=Bi<o,  i=1.2

Finally, suppose that
ycr-\(Bi+B2)* <1
and M > 0 satisfies the inequality
(ay+MyCT'B,) + (ay+ MyCY~'B,) < M.
Then (36) has a solution X such that
z] 172

T [6(02(0] () 5015 (e MYCT 8, + (a4 My 15

Proof. Again, f as in (39) is continuous on £ in (15) for any Tzaand M>0. As in
(40),

ulz[C+Mo(g(1)]z(g(1)),  (r,u)El.

Therefore, the mean value theorem implies (35) with A(2)=y|p(1)[C+ M¢(g(1))]"" 3
This, (9), (41), and (42) imply (32) with b,=yC* 'B,, and this for any M. Now
Theorem 2 implies the conclusion.

In the following examples, we take y,(#)=cost and y,(7)=sint.

Example 1. Suppose p, h€[a, ) and v is as in Theorem 3. Suppose further that

(43) lim h(r)=0, f°° W(1)\dt < o0,

=
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and [*|p(t)|dt < co. Then Theorem 3 implies that the equation

x"(t)+x(e)=p(t)(x(g(1)))"+h(1)
has a solution X such that
(44) X(1)=c,cost+c,sint+o0(1)

for any given constants ¢, and c,. (Notice that (43) and Dirichlet’s theorem imply the
convergence of the integrals (37).)
Example 2. 1t is straightforward to verify that the equation

(45) X"+ x=—

satisfies the hypotheses of Theorem 4 with g(t)=1¢, ¢(1)=1/t, and B,, B, <1. There-
fore, (45) has a solution X such that

B . 1
x(:)=clcos:+czs1n:+O(T).

provided ¢f+¢3<4. Notice that even though its conclusion would only be of the
weaker form (44) anyway, Theorem 3 does not apply here, since (45) does not satisfy
(38). This illustrates the point raised in Remark 2.

3. Perturbations of a nonoscillatory equation. If (2) is nonoscillatory, then it has a
fundamental system which satisfies the following assumption on some semi-infinite
interval, which we take—without loss of generality—to be [a, ).

Assumption B. The functions y, and y, of Assumption A are also positive on [a, o)
and, if

Y2
46 ===
(46) =
then
(47) lim p(t)=oo0.
=00

Also, in all of the following, either (a) i=2 and j=1, or (b) i=1 and j=2. In Case (b)
there is a number p <1 such that ¢p* is nondecreasing,

Assumptions A and B apply throughout the remainder of the paper.

Note that

(48) pmtsg,

ryt

from (7) and (46).
The following lemma will be used to prove Theorem 5.
LEMMA 1. Suppose FE C[t, o0) for some to=aand [*y,(1)F(t)dt converges. Let

v(t)=sup
Tz

7 n()F(s) s

T
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Then

sv()n(1), s,

@) |7 Da) () 0)] F(s)s
and

=2(1)/p(1), 124,

(50) ux y(s)F(s)ds

Proof . With U(t)= [*y,(s) F(s)ds, integration by parts yields

(51) ff [72(5) 2(6) =3 (s) yo(1)] F(s) ds

p(t,) o

et = p'(s
=U(f,)y1(r)[ ——‘J]m(r)f ) 15 s,
n (3)
where the integral on the right converges absolutely because of (47), (48), and the
boundedness of U. Since [U(s)|=w(t,) if s=1,, (51) and the monotonicity of p imply
(49).
We obtain (50) by writing
p'(s)

[”yl(s)ﬁ(s)ds=u(:)/p(r)—[” ROk

and applying a similar argument. This completes the proof.
THEOREM 5. Suppose (11) and (12) hold and there are constants T2 a and M > 0 such
that f is continuous and satisfies ( 14) on the set

(52) 2= {(Luw)lz T |u=5(g(1)|s Mo (g(1)) y,(g(1))}.
Then: (a)ifi=2,j=1, and
(53) M>a,+B,,

then (1) has a solution ¥ such that
(54) ‘]_lglc [¢'(f)}’1(f)] _1|f(f)‘j(f)|éﬂz+ﬁz-
(b)Ifi=1,;=2, and

(55) M>(“1+B:)/(1‘#)s

then (1) has a solution X such that

(56) T (60 (0] R0 -5(0)]s HEE
Proof. From (11) and (12),
(57) T (6(0) (1) s+ B,




750 WILLIAM F. TRENCH
(See (17).) If 7= T, let

D= {x& Cln,0)|IR(r)=5(r)[2 Mo (r)y,(1), 727}

We now consider Cases (a) and (b) separately.
(a) Choose 1,2 T so that

(58) n()sMe(1), 1z,

which is possible because of (53) and (57) with i=2. Then choose ¢, > 7, to satisfy (22).
As in the proof of Theorem 1, (23) holds with i=2, and, with S as defined in (24),
Lemma 1 implies that

(59) (ZTx)()=F(Dlsva() (1), tz7m, x€D,.

This and (58) imply that 7 (D,)c D,.
If D\lim,_,  x,=x, then the argument given in the proof of Theorem 1 implies
that for each £> 0 there is an N such that (26) holds with i = 2. This and Lemma 1 with

F(s)=f(s,x.(g(5)))~1(s5,x(2(s)))
imply that
(Tx ) ()= (Tx)(0)|sen(e), 127, k2N,

soD lim,_, Jx,=Tx.
Since (23) holds with i=2, Lemma 1 (specifically, (50)) implies that

2u,(t) o
Bl

p(t) " 7

Therefore, differentiating (24) and applying routine estimates verifies (5), with

¢=w*|+v2[|y;l+zl’fl].

|f° »(s)f(s,x(g(s))) d.s'g

Now we conclude that Jhas a fixed point (function) X which satisfies (27), and
therefore (1), on (r,, 00). Setting x=X in (59) and recalling that I x=X yields the
inequality

[x(e)=y(e)|< v, (1) yi(2), [>1g,

so0 (57) with i = 2 implies (54). This completes the proof in Case (a).
(b) Choose 7, = T so that

(60) () sM(Q1-p)é(1), 127,

which is possible because of (55) and (57) with i=1. Then choose 1,2 7, to satisfy (22).
Now define Zon D, by

5O -1 [ o [T n s x(gD)s)dr, 1z,

P(l)s TOé‘é‘l]!

(61) (Fx)(1)=
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where the second line is vacuous if 7,> Z,- (See (46) and (48).) Then

(62) (Zx)(1)=5(1)=0, m=ts1,,
while (23) with i =1 implies that
(63) (T3 Olsn() ["o(In(r)dr, 124,
Ift>a, let
(64) #(t)=supr,(7) /(7).

Tl

Then, if t>1,>a,
J e (m(n)dr<on(n) [ p(r)o(r)dr
h n
=(1)(p(0) 9 (1) [* () (p(r)) *dr,
since ¢p* is nondecreasing. Since #<1and p’ >0, this implies that

(65) [ Pm(n)drsa(@)e(n 2L

Setting ¢, =1, here and recalling (60), (63), and (64) shows that

(Tx)(0)-3()|sMe(1) ys(1), 1215, xeD,,

which, with (62), implies that 7' ( D,)c D,.
If Dlim, _, , x,=x, the argument used in the proof of Theorem 1 again implies
that for each e> 0 there is an N such that (26) holds with i =1. This and (61) imply that

f(.?'xk)(r)-(fx)(r)]gsyz(r), 21y, k=N,

which implies that D,lim, ,  Jx,=Tx.
Differentiating (61) and recalling (23) with i=1 shows that

(T x)(0)|=|y(1)]+ ly{(r)lf p'(T)pi(7)dr+y(1)p(1)w,(1)

if x€D, and 1> ¢,. Since 7x=7 on [70.20] for every x in D,, this is enough to imply
the conclusion of (iii) in §1, so Zhas a fixed point (function) X in D,. From (61),

=3O [ o) [T 7 (s s )dr, 121,

fo

This function satisfies (1) on (29, 0), and, from (63) with x=%(=7 %) and i =1,
L _ f .
KO =5(Dlsn () [ () v, (7)dr.
o
This and (65) imply that

(66) rf(:)—y(rJ[gyl(r)["p*(T)».(T)dﬂrm(rl)w:)h(r)/u—p.)
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if 1< 1, <t. From (47), (48), and our assumption on ¢p¥, lim,_,  ¢(#)p(t)= oo; hence,
from (66),

Tim [o(0) 52 (0] 7R () =5(0)|s51(12) /(1= 1)

for every 1, > t,. Letting ¢, — oo and recalling (57) (with i =1) and (64) therefore implies
(56). This completes the proof.

Setting ¢ =1 in Theorem 5, and noting again that this means that a;= 8,=0, yields
the following corollary. (Here we reemphasize that Assumption B applies; specifically,
that eitheri=2and j=1ori=1andj=2)

COROLLARY 3. Suppose [©y,(1)f(t,7(g(t)))dt converges and [y, (t)o(t)dt< o0,
where o is positive and continuous on [a, ). Suppose also that there are constants T=a
and M >0 such that f is continuous and satisfies (14) on the set

%={(t,0)|r2 T, lu=5(5(1))ls My, (3(1))}.

Then (1) has a solution X such that X(t)=y(t)+o(y/(1)).

COROLLARY 4. Suppose h€ Cl a, »), F is continuous on [ a, ) X (0, ), and | F(t,u)|
is either (i) nondecreasing in u for each t, or (ii) nonincreasing in u for each t. Suppose also
that

(67) |7 n()n(eyar
converges, and
7 nO|F (1,85, (8(0)|dr< o

for some 8> 0. Then the equation

(r()x'(1))' +q(e)x(t) = F(1,x(g(1))) +h(r)

has a solution X such that

. x(¢1)
(68) ’]_1__1'20 }’j(f) Cj»
provided 0 < ¢, <8 in Case (i), or ¢;> 8 in Case (ii).

Proof. 1t is straightforward to verify that the present assumptions imply those of
Corollary 3 with y=c,y,, f(t,u)=F(t,u)+h(t), and 0(!)=2|F(f.8}§-(g(r))|. In Case
(i), choose M <min{c,,8—c,}; in Case I, M <c;— 8. In either case, let T=a.

Kusano and Naito [3] have given necessary and sufficient conditions for the
equation

(69) (r()x"(0)) =1(1,x(g(1)))

to have nonoscillatory solutions with specific asymptotic behavior, under the assump-
tion that (69) is sublinear or superlinear (see [3) for definitions of these terms), where
g(t)<t and lim,_,  g(t)=co. Kusano and Onose [4] have obtained analogous results
for the case where g(1)> 1. Corollary 4 essentially contains the sufficiency halves of [3,
Thms. 1,2] and [4, Thms. 1,2, 5, 6). The reader who wishes to check this should let

(=1, y)=[(r(s)"as it [T (r(e) M dr=0o,




—
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or
yl(f)"j:m(f(s))_ldf- »n(1)=1 iffx(r(f))'ldmoc.

The next corollary follows easily from Corollary 4. It is perhaps noteworthy in that
it deals with the generalized Emden—Fowler equation without the usual assumption
that y > 0. (For other results concerning such equations with arbitrary v, see [1], [5), [6],
[7]. and [8).) This observation applies also to Theorems 7 and 8 below.

COROLLARY 5. Suppose p, h€ C[a, o0), y is any real number, and c, is any positive
constant. Suppose further that (67) converges, and

[ 3l 0I(5,(21))) dr < 0.

Then (36) has a solution X which satisfies (68).
This corollary essentially contains the sufficiency halves of [4, Corollaries 1,4].
Theorem 5 implies the next result in much the same way that Theorem 1 implies
Theorem 2. We omit the proof.
THEOREM 6. Suppose (11) holds. Let X be nonnegative and continuous on [a, o0), and

2 T (6(0) " [ ns ) gD o(s()) ds=b,

Suppose further that there are constants T=a and M such that f is continuous and satisfies
(35) on the set Q, in (52). Then (1) has a solution X such that

(@) lim,_ [¢() 3 (D] IR =P(O)| S ey + Mb, if i=1, j=1, b,<1, and M>
a,/(1—b,); or

(b) lim, _, [¢(2) ()] 1%(1)—F(2)| < (ay+ Mby) /(A —p) if i=1,j=2, b, <1—p,
and M>a, /(1 —p—b,).

We close by applying Theorem 6 to the generalized Emden—Fowler equation (36).

THEOREM 7. Suppose p, h€ C[a, ), y is any real number, and

) Tm () [T ()l (9)l(5(8(5)) " (8(s) ds =B < 0.
Suppose also that

[my,-(s)h[s)ds=0(¢a(r))
and
(72) [ 52 (5)((8(s7) " ds=0(8(0)),

and let

=ay,

T (s(0))

[ 3@ p() e (8(0) " +h(s)] s

where ¢, is a given positive constant.

(a) If i=2 and j=1, suppose also that

lyler B, <1
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and
(73) M>ay/(1=Ivlel™'B,).
Then (36) has a solution X such that
Tim [6() (0] TE(D) —eon (1) sar+ Mlyley By,
(b) If i=1 and j=2, suppose also that
lyle}~'By <1—p
and
(74) M> e (1—p=lvle}~'By).
Then (36) has a solution X such that
Tim [o(0)(0)] IR0 o) (e + Mlyle '8,)/(1=p).
Proof. Since Corollary 5 implies the conclusions if ¢ =1, we assume that
(75) lim ¢(z)=0.
t—co

Choose M to satisfy (73) or (74), whichever is appropriate, and then choose T so that
M¢(g(1))<c,if 1= T. (This is possible because of (6) and (75).) With this M and T and
y=c;y it 15 easy to show that if (¢,u) is in ©; as defined in (52), then 0<[c}-

Mo(g(1)]y(g(t)susc;+ Mp(g(1))]y;(g(1)). Therefore, the function f in (39) is
continuous on £;, and, by thc mean value theorem, satisfies (35), with

(76) (1) =lvp (0)|[c,+ Mo (g(1))] " (5 (g(1)))" ",

where the plus applies if ¥ > 1, the minus if y <1. In either case, (6), (71), (75), and (76)
imply (70) with b;=|y|c]~ 1B,. Now Theorem 6 implies the stated conclusion.
THEOREM 8. Suppose P, h € C[a, o), v is an arbitrary real number, and

= p'(g(1))
(77) f %]g(!”dfﬁ 00.
Suppose also that

(78) E(«#(r))"lf,w 7()p()|(12(8(5)) " "y (g(s))(g(s)) ds=B, < oo,

(19) [ r()n(s)ds=0((0)),
and
(80) E(r)=[”yz(s)p(s)(yz(g(s)))*ds=ow(r)).

Let ¢, be a positive constant such that

|Y1C;' 182 < Is
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andlet y=c, y +c, Y2 Where ¢, is arbitrary. Then the quantity

(81) az=ji?n;(¢(r))"[”yz(sJ[p(sJ(y(g(s}>)*+k(s)]ds]

exists and is finite; moreover, a,=0 if (79) and (80) hold with “0» replaced by “o.”
Furthermore, if

(82) M>ay,/(1-lyle;~1B,),
then (36) has a solution X such that
Jim Lo (O] E(0) = (1) sy (1) sy Mlylcy~'5,.
Proof. From (80) and integration by parts,
(83)
212 ()(3(8()

- _f°° Ef(s)(i(_&(_‘_)_)_) Ya:,

t )’2(8(3))
B ZED ) e e i
E(‘)(yz(g(:))J v E(”(yz(g(s») P (s(s)) 5 )%

(see (46)), since lim, ,  E(1)=0 and

lim 2(8(0) _

i~ 3, (g(1)) ~

The integral on the right of (83) converges because of (77). From this and (79) it is easy
to verify that a, in (81) has the stated properties.
Now choose M to satisfy (82), and then choose T so that

H(8(0)2 Mo (g(1))y,(5(1)), s>,

(This is possible even if $=1, because of (), (47), and the assumption that ¢,>(.)
With this M and T, it is casy to show that if (,u) is in Q, as defined in (52), then

0<)“’(g(f))~M¢(g(f))y1(g(r))éugy‘(g(r))+M¢(g(r))y;(g(r))-

Therefore, the function fin (39) is continuous on &, and, again by the mean value
theorem, satisfies (35) with

f\(f)=lvp(r)![ﬁ(g(r))i-M¢(g(=‘))y1(g(f)]H‘

where the plus applies if y> 1, the minus jf Y <L In either case, since the quantity in
brackets behaves asymptotically like

(f'z)’z(g'(f)))rh],

(78) implies (70) with ;=2 and b,=|y|c}~'B,. Now part (a) of Theorem 6 implies the
stated conclusion,

N—'_
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Remark 3. Since p’>0 and lim,_ p(1)=0c0, (77) is automatically satisfied if
g'(1)> 0 for ¢ sufficiently large.

Remark 4. Theorems 7 and 8 show that integrability conditions involving other
than forcing functions may permit conditionally convergent integrals, since (71) does
not imply that the integral in (72) converges absolutely if lim,_, , ¢(¢)=0, and (78)
does not imply that the integral in (80) converges absolutely, even if ¢=1.
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