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Formulas are given for the characteristic polynomials { p,(1)} and the eigenvectors of the
family { T,} of Toeplitz malrices generated by a formal Laurent series of a rational function
R(z). The formulas are in terms of the zeros of a certain [ixed polynomial with cocflicients
which are simple functions of 1 and the coeflicients of R(z). The complexity of the formulas
is independent of n.

1. INTRODUCTION .
We consider the eigenvalue problem for Toeplitz matrices
) T.= {‘_j—.’?.;:lo
generated by rational functions; thus,

i Clz)

J Pt ——ee . =
,;_m L7~ @B ~ ke ()
where “~" is explained below,
Alz) = )i az', (2)
n=0
Be) = ¥ b,2, o)
v=0

KXY
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and
P
Cz)= Y ¢ (4
" j=-q
We take the underlying field to be the complex numbers, and assume
throughout that no two of the polynomials A(z), z*B(1/z), and z°C(z)
have a common lactor. We also assume that

aga,bobyc,c_ . #0  and p+q>0;

however, we do not assume that p and q have the same sign.j]'o describe
our results, it is convenienl lo denote

M = max(p, r), N = max(q, s), (5)

and
k=M+N.

We will assume that M > 1and N > |, which is not a serious restriction,
since T, is triangular if MN =0, and the eigenvalue problem for
triangular Toeplilz matrices is essentially trivial. Now let

P(z;2) = 2Y(C(2) — AA(2)B(1/2)), (6)

which is a polynomial of exact degree k in z for all except at most one
vialue of A. Our main result is an expression for the characteristic

polynomial
pa(A) = det[Al, — T,] )

in the form
Pa(A) = K, (cy — Aay,bo)" det Q,/det V, (8)

where ey =0 il M =r>p, ay=0il M =p>r, K, is a specilically
defined constant, Vis a k x k Vandermonde matrix involving the zeros
{z;} of P(z;4), and Q, is a k x k matrix with elements of the form
27 A(z;) in rows i=1,...,N and Z}*""'B(l/z;) in rows i=
N + 1,..., k. (If dissuch that P(z; ) has repeated roots, then V becomes
a generalized Vandermonde matrix and the entries in some columns of
Q, involve derivalives of these [unctions, as defined precisely below.)
Thercefore, (8) provides a representation of p,(1) with complexity
essentially independent of n. We also give an explicit formula for the
cigenvectors of T, corresponding to a given eigenvalue 4. The formula
depends upon k coellicients which can be obtained by solving a
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homogenecous system of k equations in k unknowns; again, the
complexity of this computation is essentially independent of n.

The results of this paper extend those obtained in [10] for the case
where

A(z) = B@) =1, ©)

so that T, is a Toeplitz band matrix. They are also related to results
obtained in [11].

There is an extensive literature on Toeplilz matrices generated by
rational functions, devoted mainly to studying the asymptotic dis-
tribution of the eigenvalues of T, as n — 0. For example, Widom [12]
considered the case where (9) holds and

! Clz) = i ;2!

J==p

withe; = ¢_;, so that T, is Hermitian. Schmidi and Spitzer [9] extended
his result’s by assuming (9), but allowing C(=) to be of the general form (4),
so that 7, need not be Hermitiun. Formuluas obtained by the author in
[10] for the characteristic polynomials of Toeplitz band matrices can be
viewed as generalizations of formulas obtained by quite diflerent
methods in [9] and [12].

Day [3] extended some of the results of Widom and Schmidt and
Spitzer, by eliminating the restriction (9). He represented p,(4) as a
determinant of order and form depending only on the zeros of A(z), B(z),
and C(z), and not on n. His results are quite different from those
presented here, and his assumptions more stringent. Recently, Bottcher
and Silbermann [2, Theorem 6.28] have obtained a formula which
generalizes Day’s, but does not seem to be dircctly related to ours. They
also mention the existence of a formula for the determinant of T, in an
apparently unpublished manuscript of Gorodeckii [ 7], which, from their )
description, may be related to our formula (49) (below) with 1 = 0.
However, they also indicate that Gorodeckii imposed conditions on the
locations of the zeros of A(z) and B(z) which imply that the series in (1)
and (I 1)converge in an annular region containing |z| = 1, while we make
no such assumption.

Dickinson [4] has devised an efficient method for solving the system
T.X = Y, where T, is a Toeplitz matrix generated by a rational function,
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2. PRELIMINARY CONSIDERATIONS

The rational function in (1) is written in the form shown so that we may
conveniently draw on results from [6], and because it is the natural form
for applications to stationary time series. We use “~ " rather than “="in
(1) because we do not assume that the series on the left converges for any
z, but only that it is a cerlain formal Laurent series generated by R(z).
The coefficients {¢;} in any such series are of the form -

fj='z; adj-n (10)
where )
Y @2 ~[A@)B(1/2)] 7" = Ro(2); (1)

j=-wo

therefore, to define {;} we must specifly which formal expansion of Ry(z)
is being considered. To this end, and because of its usefulness below, we
present the following lemma, which is a convenient restatement of part of
the results obtained in [6]. Here and throughout the paper, we write

ADB(/z) = T 0,2, (12)
and define i
a;=0 ifj<Qorj>r; bj=0 ifj<0orj>s; (13)
;=0 ifj<—qorj>p; 0;=0 ifj<—sorj>r; (14)
and

Yol 42 - (15)

i

With these definitions, we can write, for example,
5 r
0) = Z aj{.'b' = E a"bg_j, — o0 <J < 00. {16}
v=0 p=0 3 )
Lemma 1| (Greville-Trench) Let A(z) and B(z) be as in (2) and (3), with
agbo # 0 and A(z) and z°B(1/z) relatively prime. Then there is a unique
sequence {¢;}=, such that - )

Y ad;,=b5',

r=0

A\
o
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and
2 bboye,=a5'd).
n=0
Moreover, if m > r + s, then the Toeplitz matrix
®,= {¢j—i 'i'.'j;lo

is invertible, with inverse

o' = {’!ijm];'.‘j;lth (17)
where
hijm =Dj—:' = Z ﬂj-u.bv e Z bi-;v,.ﬂ,.: (18)
=i+l n=m=i

O0<ijjsm-1L

Greville [ 5] has given a particularly clear presentation of the precise
manner in which the sequence {¢,} is generated by R,(z), as follows.
Since A(z) and 2*B(l/z) are relatively prime, there are unique poly-
nomials f(z) and g(z) of degrees less than s and r, respectively, such that

I = [(z)A(2) + g(2)z*B(}/2).
Dividing this identity bly. A(2)B(1/z) yields
Ro(2) = f@)[B(1/2)] " + g(2)2[A@)] " (19)
Substituting the convergent expansions

;% [A@2)]) ! = )E 6,2, |7 <R,
e

o0

(B(1/2)] ' = Y nz™", |2d>R,

. . =0
into (19) yields the series in (11). Whether the series converges in some
annulus depends upon the relative locations of the zeros of A(z) and :
B(z); however, convergence is irrelevant to the problem that we are
considering. In any case, [ormal manipulation yields

A@B(/) Y =1,

e

so the series is a formal reciprocal of A(z)B(1/z).
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From (4), (5), and (12), the polynomial defined in (6) can be written as

M
P ="Y (c;—20,)2*N. (20)
J==N
Since C(z) and A(z)B(1/z) have ng common zeros, P(z; 4) is irreducible,
Therefore, the equation
P(z;1)=0 (21)

defines z as a multiple-valued analytic function of the complex variable A.
(See, e.g. [ 1], pp. 300-306.) Since our results can be established without
function-theoretic arguments, we make little use of this theory here. (It is
to be hoped that function-theoretic arguments will be useful in devising
computational procedures [rom the theoretical results given here, but we
cannol justify any such claim as yet.) We make only the following
observations, which are used below: '

(1) As afunction of z, P(z; 4) is a polynomial of exact degree k, unless
¢ — 40, =0, (22)

which obviously occurs for at most one value of 4, and then only if
M=r.

(i)} For all values of A which do not satisly (22), (21) has k roots,
counting multiplicities, and they are all nonzero unless

c_y—A0_y =0, (23

which occurs for at most one value of A, and then only if N = s.

(iii) If A does not salisly (22), then the k roots of (21) are distinct unless
the resultant of P(z; 1) and P,(z; A) vanishes ([1], p. 301). Since this
resultant is a polynomial in A, this occurs for at most finitely many values
of 4.

The following definition has been used previously in [10] and [11].
The notation of this definition applies throughout the paper.

Definition 1 For afixed 2 which does not satisfy (22), let z,, .. . , z, be
the distinct roots of (21), with multiplicities m,, ..., m,; thus,

L<k, m21 (I<j<L),; my 4+ m =k,
IrQ(z),..., Qulz) are given polynomials, let
w(z) = col[Qy(2),. .., Qul2)],

SR A, o 155
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and let Q be the k x k matrix constructed as follows: its first m, columns
are w'(z,) (0<I<m, —1); its next m, columns are wi(z,)
(0 <! < mjy; — 1); and so forth. Let V be the generalized Vandermonde
maltrix resulting from this construction when

Qi(z) =21, I i<k,
and define
det Q
If (21) has k distinct roots Zyy..., 2, then V is the ordinary

Vandermonde matrix, and (24) becomes

=1
Ad) = [ [l @- 2:)] det[Qi(z))]};=,.
I<i<igh
The function A(4) is well defined in any case, since it can be shown in
general that V is nonsingular [8]; moreover, the numbering of the roots
Zy,...,2, does not affect the value of A(1), since renumbering them
would affect only the signs of the numerator and denominator in (24),
and in the same way.
We will sometimes find it convenient to write

AQA) =1Q:(2),. .., Qu(2)I(2) (25)

when we wish to make the choice of Q, (2),. .., Q. (z) explicit. (The reader
should not be misled by this notation, which appears to suggest that A(1)
is also-a function of z; it is not.)

3. THE MAIN RESULTS

In the special case where

271 A(2), Il <i<N,
Z*IB(lfz), N+1<i<k,

Qilz) = {

we will denote the matrix Q and the function A(2) of Definition | by Q,
and A,(2). Thus, il the roots of (21) are distinct, then
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’_ Alzy) Alz, Alz) :
Y P
|_2’|'|“":13{11'21) z'i““':B(l/zll z:“":B[lfz,)_
Whether the roots are distinct or not,

=1A(2),..., 2" A@), 2N B(l/z),..., T BU/2IA). - (27)

Clearly, Q, is singular if and only if A,(1) = 0.
In the following,

(x) =1{; () =x(x=D---(x=v+1), v21

and E,(A) denotes the eigenspace of T, corresponding to a given

eigenvalue 1. . ]
"“-L‘\ z C1 (l(l C 4 “ I-:’
TueoreMm | Suppose that See - Ty

n>max(r+s—k0) (28)

and 2 does not satisfy (22) or (23). Then A is an eigenvalue of T, if and only
if Q, is singular. In this case, E,() consists of the vectors

U =col[ug,...,t-] (29)
of the form
i'; my= 1
=Y & (2 A@BI/] ., (30)
j=1 r=0

0 gisn-— I!
where the vector

X = col[ttgqe o v Oy yeee s @ogee s Oy 12 ] (3n
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satisfies the equation

QX =0. (32)
Proof A vector U as in (29) is in E,(4) if and only il
n—1 '
Z’J—f“j*—"l"n OSI'SH—L (33}
j=0
From (10), this can be rewritten as
P
Z Cre = Auy, 0<isn-—1, (34)
I=-q
where
n-1
o=y ¢y —-N<ig<n+M-1. (35)
i=0

Actually, (34) is equivalent to (33) if v; is defined by (35) only for
—q <i<n+p-— 1; however, it is convenient to extend the definition
(35) for —N <i<n+ M — 1. We can rewrite (35) in the form of an
(n + k) x (n + k) system by simply defining

;=0 il —N<i<—-! or n<igsn+M-1. (36)
Doing this, letting i’ = N + i and j' = N + j, and then dropping the
primes yields

n+k
v-m,=z¢j_,u,~”. 0<i<n+k-1.
J=0

The matrix of this system is @, , ,; therefore, (17) and (18) withm = n + k
imply that if n + k > r + 5, then

ntk 5 r
Uopsi = Z ':01‘--" D, Myeeby b bi~j+,.“u]”—~+j.

i=0 v=itl p=ntk=i
0<is<n+k-1

Letting i’ = —N + iand j' = j — N — i’ and then dropping the primes
yields

n+p =i 5 r
w= Y [Ojﬁ Y aib - % b-m,aﬂ]uju, (37)
J=—N=i vaNiitl pend M-

—-N<igsn+M-1.
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(Henceforth we use (13), (14), and (15) without explicit citations.) Now
(37) implies that '

=Y 0wy 0<i<n—L (38)
I= -3

From (16), (36), and (37),

r N+i
2 (Z a”_b,)u,-” =0, -N<gigs—|, (39)
j==N=i\v=0 '
and

ntpM=I mEM—i-1

) ( Z b_ﬂ,‘u,,)u“i:O, n<is<n+M-—1. (40)

j=-s p=0
Changing the order of summation in (39) and performing the first
summation of the result on | = j + v yields

N+i r
Z b' Za,l},‘,”=0, —Néf-ﬁ_ _1. {41)
v=0 1=0
Changing the order of summation in (40) and performing the first
summation of the result on [ = —j + p yields
nta—i-li E}
Y a Y bwis,=0, n<isn+M-L 42)
p=0 1=0

Since aghy # 0, (41) is equivalent to

Y aw-;=0, 1 <i<N, T(43)
I=0
and (42) is equivalent to
Z b,U,|+i_;-1=0, I <isM. (44}
=0

After substituting (38) into (34), we can summarize the results thus far
as follows: an arbitrary complex number 1 is an eigenvalue of T, if and
only if there is a nonzero veclor

Vi [0 gyysess Dpanr=1]
such that

M
Y ;= A0)wjsi=0, O0<ig<n—1, 45)

J==N

AR e S

At Ve

Moz o8 S8

Pt T R
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and (43) and (44) hold. In this case the vector U defined by (29) and (38)is
in E,(4). To put it another way, we have reduced the eigenvalue problem
for T, to finding values of A for which the dilference equation (45) has
nontrivial solutions which satisfy the boundary conditions (43) and (44).

Thus far we have not used pur assumption that A does not salisly (22)
or (23). Now let us invoke this assumption. Then the general solution of
(45) can be written as

L m-1 *
=Y ¥ a;(N+0)VA CN<i<nt ML, (46)
j=1 v=0

Substituting (46) into (43) and then summing first on [ yields

M-..

m, =1 r
S oay Y aNV+ -t o0, 1 <igN,
1 v=0 =0

J
which can be rewritten as

L m=1
s o,z '4@)]",-,, =0, 1<igN. 47)

Jj=1 v=0

By a similar argument, substituting (46) into (44) yields

L m~-1

¥ 5: a, [ UB(1/2)]N,. ., =0,  1<igM. (48)
J=1 v=0 '

Since (31), (47), and (48) are equivalent to (32), A is an eigenvalue ol T, il
and only if (32) has nontrivial solutions; i.e. if and only if , is singular.

Substituting (46) into (38), summing first on [, and then recalling (12)
yields (30), which completes the proof.

Since (21) can have repeated roots for alt most finitely many valuesof A,
it seems worthwhile to state the following corollary of Theorem |.

CoroLLary | Inaddition to the assumptions of Theorem 1, suppose A is
such that (21) has distinct roots z,, . . . , z,. Then A is an eigenvalue of T, if
and only if there are constants a,, . . ., a, not all zero, which satisfy the
k x k system '

k
Y 07 ') =0, I1<igN,
j=1

k
Yooy "tTB(l)z;) =0, 1<i<M.
j=t
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In this case the eigenvector (29) is given by
k
u= Y o;zf *'A(z;)B(1/z;), 0<isn-—L

j=1
From (26) and (27), Theorem | implies that there is a connection
between A,(4) and the characteristic polynomial p,(3) of T,. The
following theorem makes this connection precise. The proof of this
theorem is presented in the form of a sequence of lemmas, some of which
extend results from [10] and [11], and may be of interest in their own

right. Fcc: e o J({A.n c‘uml

Turorem 2 If n satisfies (28), then the characteristic polynomial (7) is
given by ; :

pa(A) = (= )™ "R (agho) "(cp — A0y )"A,(A), 49
where R is the value of the nonzero k x k determinant with rows

i=1,...,k as follows:

(a) For I <i <N, there are i — 1 zeros, then ay, ..., dy, then N — i
Zeros. :

(b) ForN + | <i < k,therearei — N — | zeros,thenby, . .., by, then
k — i zeros.

4. PROOF OF THEOREM 2

In this section the assumptions of Definition 1 apply, the polynomial
p = 0 has degree — o, and ((4") denoles a polynomial of degree <v,

Lemma 2 If Q,(2),...,Qi-(2), Qisyl2),... , Ou(2) are polynomials
and y is a nonnegative integer, then

IQI{Z}O vy Qi- 1 {2), z"PiZ; A}t Qii- 1 (.2'}, et | Qﬁ(z)lu'} = 0 (50]
Jor all 2 # 0y, [cy,. S ;

Proof Under the assumptions of Definition 1,
[Pz )", =0, O<I<m—11<j<L.

Hence the ith row of the matrix Q in Definition | (with Q(z) = 2'P(z; A))
consists entirely of zeros. Therefore, (24) implies (50).
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Lemma 3 If

deg Q;(z) < m, 1 <i<k,
then

(cw = A0, )" 731124 (2), ., Qul2I(A) = 0A™TFHY). &)

Proof First suppose that
Qi(z) = 2", 1 <i<k, (52)
where n,, ..., n, are nonnegative integers. We will show that il

max{ng,...,n} <m, (53)
then
(ey — A0y )" 442, .., 22 (R) = 0A™ ). (54)

If 0<m<k—1 and (52) holds, then Q (cf. Definition 1) has two
identical rows or its rows are a permutation of the rows of V; hence, (24)
and (25) imply that

2™, ..., 2"(1)=0,1,0r —1.
This proves (54)if 0 < m < k — 1. Now suppose we have established (54)
for any set of nonnegative integers n,, ..., n, satisfying (53), and let
max{n,...,m}=m+1.
Without loss of generality, we may assume that
m=m+l and n; <m, I<jsk-1L

We can complete the induction by showing that
(6 = A0, 443, 27| (Q) = OAmE ),

where “..." denotes “z™,...,z"'" [or the rest of the proofl. From
Lemma 2,

..., 2" %*1p(z; D|(A) = 0.

This and (20) imply that

M-1
(Cu=A0 s 2 R) = = T (c;=A0)..., 2=~ ¥*Y@).  (59)

J==N
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Our induction assumption implies that
(¢ = 20,741 2P MR ) = 0am Y,
~-NgjsM-1,
which, with (55), yields
'['CM - JIUM)”_'H]], Sk zn+ ”('U o= qu—k-tl).
This completes the induction, proving (54). To obtain (51) from this, we
observe that il

Qi2) = i a;zl, 1<i<k
=0
then :
10:(2)- .., Q@A) =T ayj, -~ aylzh, ..., 24| A), (56)

where the sum is over all j,..., Jjx such that 0<j, ..., jysm
Multiplying (56) by (c,, — A0, )""** " and invoking (54) yields (51).

LemMA 4 For a given complex number 4, - !

1Qs(2), - .., Qu(2](A) =0 57)
if and only if there are constants yy, . .., Vi, not all zero, such that the
polynomial

Q(z) =71Q:(2) +- -+ nG(2) (58)

is divisible by P(z;A). In particular, if m <k — 1, so that A(A)=C
(constant, from Lemma 3), then C = 0 if and only if Q,(2),..., Q.(z) are
linearly dependent. :

Proof From (24) and (25), (57) is equivalent to the existence of a
nontrivial solution Y = col[y,,..., 7] of the system

QY=0 ("= transpose). (59)
From the definition of Q, (59) is equivalent to
Q"(z)=0, O<Ii<m—11<j<L, (60)

with Q(z) as in (58). But (60) holds if and only il P(z; ) divides Q(z). This
completes the proof.

e
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In particular, Lemma 4 implies that the function
4u(A) = (cy — 20 )"AA) (. 27) (61)
is a polynomial of degree <n.
Lemma 5 The polynomial g,(A) in (61) is of the form
2,() = (= 1™~ "(agho)"RA" + 0A"~Y), (62)

where R is the constant introduced in the statement of Theorem 2.
Maoreover,

R #0. o (63)

Proof To evaluate the constant go(4), we may without loss of
generality choose A so that (21) has distinct roots z, . ..., Ze. Then it can
be seen that Q, = WV, where

V= (Z}-I ?.j=l

and W is a constant matrix with rows as described in the statement of
Theorem 2; therefore, det W = R. This and (61) imply (62) with n = 0. If
R = 0, then Ag(4) = 0, and the last sentence in Lemma 4 implies that

A2), ..., Z7'Alz), Z'Bl/fz), ..., Z"'B(1/2)

are linearly dependent. (See (27) with n=0) Therelore, there are

polynomials f(z) and g(z), not identically zero, such that deg f(z) < N,
deg g(z) < M, and '

B S(2)A(z) = g(z)2" B(1 /2).

This implies that A(z) and z°B(1/z) have a nonconstant common factor,
contrary to our assumption. This proves (63).
We now complete the proof of (60) inductively by showing that

Gn i1 (A) = (= V¥ aghodg.(A) + OA"),  n=0. (64)

By adding appropriate multiples of the last M — 1 rows ol Q, to its
(N + 1)st row, we see from (26) that

AA) =ag'l..., 2" (A(2) — a,z)B(1/2),
PHNYUB(L2), ..., 2T B(L/2)|(A), (65)

where the first . . " denotes “A(z), . . ., z¥ ~ ' A(z)" throughout the rest of
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the prool, and “2"*N*1B(1/z),...,2"** ' B(1/z)" is 10 be omitted if
M = [. From (6),

PN(A2) - ay 2M)B(1/2)
= 1"Y*NC(2) - 2'P(z; 1) — a,, 2" B(1/2)
= (cy — Aay bo) (Abo) ™" 2" **B(1/2) + A~ (g.(2) = Z'P(z; ),

(66)
where
gn(2) = 2"*NC(2) — ¢\, bg ' B(1/2),
and therefore
deggo(z)<sn+k~1. (67)

Recalling that a, b, = 0, (see (16)), substituting the last member of (66)
into (65), and multiplying the resulting equation by ‘Aayb, yields

Aagbod,(A)
= (= D" ey — A0y )80 41 (A)
+ byl. .., 2"P(z; A), e 'B(l/z2),..., 2" B(1/2)l(4)
+ bol. .., galz), 22N 1B /2), ..., 2T B(12))(A). (68)

Lemma 2 implies that the second term on the right vanishes identically,
while (67) and Lemma 3 imply that the last term is of the form
(eyy — 204 ) "O(A"). Therefore, multiplying (68) by (cy — 40y )" and
recalling (61) yields (64). This completes the proof. i

Proof of Theorem 2 Let Q,(1) denote the right side of (49). By 8
Lemma 5, Q,(4) is a monic polynomial of degree , as is the characteriste 4
polynomial p,(1). Therelore, Theorem 2 implies that

Pa(4) = Q,(4) (n
if p,(A) has n distinct zeros 4,, ..., 4, such that
L#cyl0, and  L#Ec [0y, 1<i<n (M

Now suppose p,(4) does not have this property, and let £ > 0. Then we
can choose

Alz) = Z a7, Bw@)=Y b2,
n=0 v=0
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and

a P
C(z) = ): éjz*‘,
j=-q

with

r s' P .
E |&.Il - aﬂlz + Z [bv — brIz + Z ch - lez < Elt (7”
v=0

n=0 J=-q

so that A(z), B(z), and C(2) satisly our hypotheses and the characteristic
polynomial p,(4) of the corresponding Toeplitz matrix T, has n distinct
roots which satisly the counterpart of (70). Then, if Q, (1) is related to
A(2), B(z), and C(z) as Q,(A) is related to A(z), B(z), and C(2), it follows
that p,(4) = Q,(4). Since the coeflicients of pa(d) and_Q,(1) are
continuous functions of the coeflicients of A(z), B(z), and C(z), we can
now let £¢— 0 in (70) to conclude that (69) holds in general. This
completes the prool.
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fThe requirement that

n>max(r+s— k0 (28)

iin Theorem 1 of [1] is superfluous, since (5) and the immediately
following definition of k obviously imply that the quantity on the right is
" always zero; therefore, Theorem 1 holds for all n 2 1. The same is true of

Theorem 2.

1
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