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EXPLICIT INVERSION FORMULAS FOR TOEPLITZ BAND MATRICES*

WILLIAM F. TRENCH+

i

Abstract. Explicit formulas are given for the elements of T,' and the solution of T, X = Y, where T,
is an (n+1) x(n+1) Toeplitz band matrix with bandwidth k = n. The formulas involve k X k determinants
whose entries are powers of the zeros of a certain kth degree polynomial P(z) which is independent of n,
or simple related functions of these zeros if any are repeated. It is shown that T, is invertible if and only
if a certain k x k determinant involving these zeros is nonvanishing.

AMS(MOS) classification numbers. 15, 65F

1. Introduction. We consider Toeplitz band matrices, i.e., matrices of the form
T =(dr-s)rsens
where there are nonnegative integers p and g such that
(1) ¢,=0 ifv>porv<-—gq.

We use the notation of [13] and [15]. Notice that T, is of order n+1, with rows and
columns numbered from 0 to n. We write

T;! = Bn . {brsn):s=ﬂ'
It is assumed throughout that
(2) ¢pd_o#0 and p+tg=k=n

Our main results are explicit formulas for the elements of T,,' and for the solution
of the system

(3) T.X =Y,
in terms of the zeros of the polynomial
P
(4) P(z)= ¥ ¢,2"""
Br=—gq

These formulas involve determinants of order k, the bandwidth of T,.

Many authors (e.g., [1], [3], [6], [7], [9], [10], [12], [15]) have given formulas and
algorithms for inverting Toeplitz band matrices. Efficient methods have also been
developed for solving (3) (e.g., [2], [4], [11], [14]). Since a survey of results along these
lines is given in the introduction to the recent paper [9], there is no need to review
earlier work here. We believe that the results presented here are new, and more general
and explicit than others heretofore published. We treat the general Toeplitz band
matrix, without assuming that T, is symmetric or hermitian. Our formulas are explicit
(i.e., not recursive with respect to n), and we do not have to assume that any matrix
other than T, is nonsingular; however, we do give a method for computing T,
efficiently in the case where T,_, is also nonsingular.

The idea motivating our approach is that if n is large compared to k, then T, is
“nearly triangular” in an obvious visual sense, which need not be defined precisely.
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TOEPLITZ BAND MATRICES 547

Therefore, it is not surprising that the elements of T,' are closely related to those of
(T5H)™', where T is the lower triangular Toeplitz matrix
T:;: (¢r—s—q):s=0'

The inverse of this matrix is the lower triangular Toeplitz matrix

(5) (Tf;}_lzfar—s :s=0 (ﬂ,=0if p<0),
with elements independent of n, defined by
(6) (P(z))'= ¥ a,2"

v=

It is easy to find an explicit formula for a, in terms of the zeros of P(z). Moreover,
we will show that the differences

brsn_ar—v.l-'Q! Oér,.fén

can be found easily and explicitly in terms of the zeros of P(z). This leads to explicit
formulas for T,' and the solution of (3).

We also give analogous formulas based on the inverse of the upper triangular
Toeplitz matrix

Tr?: (¢'r—s+p) ::=0-
The inverse of this matrix is
(7) (T '=(Bs-)rszo (B, =0if ¥<0),

with elements independent of n, defined by

(o) - E0

2. Preliminary results. The following assumption applies throughout. (Recall (2)
here.)

Assumption A. The distinct zeros of (4) are z,,'--,z, with multiplicities
Ky * 'y s thus, m=k, p; =1, and

ikt =k

DeriNiTION 1. If j), - - -, j, are integers, let
C(Z;jh L ;jk) =col [zj" Y, zjt]!
and let C"(z;j,, - -,jx) denote the Ith derivative of this column vector. Now
define the kxk determinant D(j,, ---,jx) as follows: Its first w, columns
are C(zy1jy, ik )(O=I=p,—1); it next u, columns are C'"(z,:j,,+,jx)(0=

I=p,—1); and so forth.
For example, if (4) has k distinct roots, then

D(ji, " "+, ju) = det (z) femr.

There is an ambiguity in Definition 1, since the m zeros of P(z) may be numbered in
any order; however, our results involve ratios of the form

D(jy, =+, ji )/ DGty + =+ 5 ks

which are left invariant if z,, - - -, z,, are permuted. Because of (2), z;#0 (1=j=m),
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so D(j,,* -, Jjx) exists for all j,, - - -, ji. It can be shown that
D(0,1, -, k-1)=K [l (z-2z)%
ISi<j=m

where K >0 and the r;’s are positive integers. If m = k, then D(0,1,- -+, k—1) is the
Vandermonde determinant, so K =r;=1.

LEMMA 1. Suppose 1=I=k and j,,* ", i1, J1+1»* * * , Jx are fixed integers. Then
the sequence

(9) E,_—'D{jl,' . 'sjf—'ls rvj!+1s' : ‘)jk)s —0<r<o

satisfies the difference equation
P
(10) r ¢..,=0.
yseq

Proof. Because of Definition 1, expanding the determinant in (9) in terms of
cofactors of its /th row yields

m k-1 i .
(11) e=3 ¥ anz”,
Jj=1 i=0
where
(NO=1,  (NO=r(r=1)-(r=i+1), iz1,
and the a;’s are constants. But if 1=j=m and 0=i=u;—1, then
P J
Y o (v+r)Wzti=0, —00< r< o,
p==q
since z; is a zero of z~9P(z), with multiplicity u; for every . This and (11) imply (10).
LEMMA 2 a) The sequence {a,} defined by

(a) a =0, r<o,

P 1 D(-r1,--+,k—-1)

(b) a,=$—q DO.L- . k=1)’ rz-k+1,
satisfies
(13) 5 b.aj g ,=8o,  —O<j<00.

r==q
b) The sequence {B,} defined by
) (a) B, =0, r<o0,
1 D0,1,---, k=2, r+k—1)

(b) Br:‘ﬁ_p D(0, 1, -, k—1) ) r=z-k+1,

(14

satisfies
P
{]5) z ¢vﬁj-p+y=6j0) —004;'{00.
v=—q

( Note. The definitions (12) and (14) are redundant, but consistent, for —k+1=j=
—1. They are stated this way for convenience.)



TOEPLITZ BAND MATRICES 549

Proof. (a) If j <0, then (12a) implies (13). If j =0, then (13) reduces to
¢—qa0 = I:

again because of (12a). This is consistent with (12b) with r=0. If j=1, then (12b)
and Lemma 1 imply (13).

(b) Similar proof.

Notice that the sequences {a,} and {B,} can be computed recursively from (13)
and (15), or explicitly from (12) and (14).

Lemma 2 implies (5), (6), (7), and (8). Therefore, (12) provides an explicit formula
for T,' if g=0 (T, is lower triangular), while (14) serves the same purpose if p=0
(T, is upper triangular). Of course, the inversion of triangular Toeplitz matrices—
banded or not—is very simple, as was observed in [15]. We assume henceforth that

(16) p=1 and g=1.

3. The main results. The next theorem follows from a result in [16] concerning
the eigenvalues of Toeplitz band matrices; however, since the proof in [16] utilizes a
more involved argument than is needed here, it is convenient to prove Theorem 1
directly.

THEOREM 1. If (2) and (16) hold, then T, is invertible if and only if

(17) D(0,1,---,g=1,n+qg+1, -+, n+k)#0.

Proof. We prove the equivalent assertion that the system

(18) T, X=0 ("=transpose)
has a nontrivial solution X =col[xy, - - -, x,] if and only if
(19) D(0,1,---,q—1,n+q+1,--- , n+k)=0.

Easy manipulations show that (18) holds if and only if the finite sequence
Xog " s X1y Xy " " 7y Xy Xpg1y " 7, Xn+p
satisfies the boundary value problem
P
(@) ¥ éx4r,=0, 0
=g
(b) x,=0 if—g=r=-lornt+tl=r=n+p.

A
1A

r=n,

(20)

However, because of Assumption A and the fact that z; # 0 (1= = m), the elementary
theory of constant coefficient difference equations implies that a solution of (20a) must
be of the form

m =l )
(21) x=Y 3 aj(g+r)Pzftrt, —g=r=n+p,
=1 i=0
where
A =col [aUI! e By ap.—l.h Tt loms T au,,,—l,m}

is a constant vector. On recalling Definition 1, it can be seen that (21) is consistent
with (20b) if and only if A satisfies the k X k system

(22) HA=0,
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where
det H=D(0,1,---,g—1,n+q+1,-- -, n+k).

Therefore (22) has a nontrivial solution, and the same is true of (18), if and only if
(19) holds. This completes the proof.

Henceforth, we assume that (17) holds.

DEeFINITION 2. Let

U,={0,1,' -, g=1,n+q+1, -, n+k}.
If we U, and [ is an arbitrary integer, define
D(jl]’ t rjg-bjn-o-q-t-l' e ajrn-k)

I =
bl =551, g1, b gt T, ey n e B’
where
._{i ifie U,—{u},
=N iti=p
For example,
L1, -+, g=1,n+q+1,-+ -, n+
an(01f1=D('l’ ,g-l,ntg+l, -+, ntk)
D(0,1,-++,g-1,n+g+1,- -+ ,n+k)
and
= .
ainrgeify=2ltt gl intges, o, ath)
D(0,1,+::,q-1,n+q+1,- -, n+k)
Lemma 1 and Definition 2 imply the following lemma.
LEMMA 3. If p is a fixed integer in U,, then
P
Z q&,a,,(y.iv'i‘r}—-‘ﬂ, —0<r<om,
v=—q
and

a.(ulr)=8,,, rel,:
Le, e = a,,{,u.| r) is the unique solution of (10) which satisfies the boundary conditions
e =35,, 0=r=gq-1, n+g+1=r=n+k

The uniqueness assertion of Lemma 3 follows from (17), as can be seen from the
proof of Theorem 1, since the difference of two solutions would satisfy (20).

The next two theorems give explicit formulas for b,,,, the general element of T".
The formula in Theorem 2 is more convenient if g < p, while the formula in Theorem
3 is more convenient if p>gq.

THEOREM 2. The general element b,,, of B,= T, is given by

g-1
(23) br.m il T Z “r—ﬂn“lfri's),
1=0

where {a,} is as in (12).
Proof. The condition B,T, = I, is equivalent to

n
Z brjn¢j—s ™ 6rs; 0 = ns =n
j=0
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which can be rewritten as

n+p
{24) Z bdn¢j-s = 5,,, 0§ ns = n,
j=—q
if we define
(25) by =0 when —gs=s=-lorn+i1ss=n+p.

Shifting the index of summation in (24) and recalling (1) yields

p
(26) 2 ¢ubr,u+;,u . ar.” 0= nLs=En
vem—g
Now let
(27} brsnzar-s-q"'“nm Osr= n, —qu§n+p,

where u,,, is to be determined. From (13) with j=r—s,

P
Z ¢var—x—q~y=80,r-s=arn 0= r,sén;

v=—gq

hence, substituting (27) into (26) and recalling (25) shows that for each rin {0, - -, n},
the sequence {u,,};-2, satisfies the difference equation

P
2 ¢yur‘v+:,n :'0, Oés'_—:n,
B

and the boundary conditions
Upn = ~0t,_, =0, ntl1=s=n+p (cf (12a)),
Uy = =0y ~g=s=-1.

This and Lemma 3 imply that
g=1
Upsn = '_"2 ar-!“n(” q + S'),
=0

which, with (27), implies (23).
THEOREM 3. The general element b,,, of B, = T,' is given by

p=1
(28) br.m = ﬁs-—r-—p_lz ﬁx—p+!+lan(n+q+l+ IJ"""?_")s
=0

with {B,} as defined by (14).
Proof. The condition T,B, =1, is equivalent to

E ¢r-—jbjsn = 6m 0§ s = n,
j=0

which can be rewritten as

n+g

(29) Z ¢r—jbjm = sr_” 0= rs= n,
Jj==p
if we define
(30) b =0 when —p=r=-1or ntl1=r=n+gq.
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Changing the index of summation in (29) and recalling (1) yields

P

(31) Y obvin=8s O0=rs=n
v==q

Now let

{32) brsn — ﬁ:—r-p T Ursm

where v,,, is to be determined. From (15) with j=s—r,
P
Z ¢~‘81—r—p+v=8m 0= l',.§'§l'.l;
r=—q

hence, substituting (32) into (31) and recalling (30) shows that for each s in {0, - - -, n},
the sequence {v,,,}r=9, satisfies the difference equation

P
Z ¢rvr—u,n| o 0; 0=r=n,
v=—gq
and the boundary conditions
vm=-p,_,_’=0, n+l1sr=n+gq,
Upsin = =Bocrap -p=r=-1.

This and Lemma 3 imply that
p=1

Vun=— L Bupsini@n(ntg+i+1ntg=r);
I1=0

which, with (32), implies (28).
The next theorem provides explicit formulas for the solution of (3) when T, is
invertible. Here we write

X=c°l[x€h"°|xn] and Y=C0|[J’o,"'.}'-]
and adopt the convention that
Y=0 ifv<p
I
THEOREM 4. If T, is invertible, then the solution of (3) is given by
r=q q-1 n
(33) x= 73 a,_,_,y,—fzn a,; Xoy,a,.(!]q-l-s), 0=r=n,
s=0 - =
and by
n p—1 n
(34) X, = Z ﬂ.—r-p}’s" Z ( ﬂ:—puu)’:) an("+q+l+ll"+q_r)| O=r=n
s=r+p =0 \s=0
Proof. Since
%= Y BrenVn 0=r=n,
s=0

(23) implies (33) and (28) implies (34).
Since convolutions can be implemented efficiently by means of fast Fourier
transforms, (33) provides an efficient computational method for solving (3). The
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quantities

M= Y ya,(llg+s), 0=l=q-1

5=0

(each of which can be expressed as the ratio of two k Xk determinants) would be
computed first. Then, from (33),
x,=—3 Ma,_, O0=sr=q-1,
1=0
and
r—q q-1
X, =Y @ g¥s— 2 Ma,_,, g=r=n.
s=0 I=0

It is easily verified that (33) and (34) remain valid if p=0 or g =0.

The next lemma follows trivially from the last four equations of [13].

LEMMA 4. Suppose T, is an arbitrary (not necessarily banded) Toeplitz matrix, with
inverse T;,' = (b, )rs=o, Where

(35) boon # 0.

Then the elements b,.,(1=r,5s=n) are determined in terms of b,,,(0=r=n) and
bysn(0=s=n) by the recursion formula

(36} brsn =br—},s—l.n+(b00n]_l(br0ubosu_bn-s+1,l],nb0,n—r+l,n)-’ lér, s=n

Since bgo, =det T,_,/det T,, (35) implies that T,_, is also invertible. Since T, is
persymmetric (i.e., symmetric about its secondary diagonal), it is only necessary to use
(36) for r+s=n, and then take

D=0y sicin 1=r,5=n, r+s>n

Lemma 4 was rediscovered and presented in a useful matrix form by Gohberg
and Semencul [5]. In most applications (e.g., [3], [8], [13], [15], [16]), it has been
coupled with recursive procedures for obtaining the elements of the zeroth row and
column of T,'; however, these methods usually require that other matrices in the
sequence {T,, T,, - - - } be nonsingular. Since Theorems 2 and 3 provide convenient
explicit formulas for the zeroth row and column of T,', we can dispense with this
additional assumption here. Thus, from (12) and (23),

(37) Bow=—(6_g) 'a,(0lg+s), O0=s=n,
while from (14) and (28),
(38) bion=—(d,) 'a,(n+kln+g-r), 0=r=n

If evaluating the k X k determinants in (37) is inconvenient, then it is only necessary
to use (37) for 0=s=p; define

bOer:Ol '_q+1§.g§‘_l,
and compute recursively:

p—1
bom==(#,)" ¥ &.bosss-pns PHISs=n
v=—q
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(See Lemma 3.) Similarly, we can use (38) for 0=r = gq; define
b!Drl:O! -P+1§r§'—l,

and compute recursively:

g=1
br0!|=*(¢—-q]_] Z ¢’—-vbr+v-q.0.m q+l§r§n.
p=—p
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