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ABSTRACT

Most known conditions implying that a nonlinear differential equation ™ + {1, y) = 0 has solutions
such that lim, , , 1% y(f) = ¢ # 0 are local in that the solutions are guaranteed to exist only for sufficiently
large 1. This paper presents conditions ensuring that the solutions exist on a given interval and have the
prescribed asymptotic behaviour. Some of the integral smallness conditions on f permit conditional
convergence.

There are many known sufficient conditions for a nonlinear scalar equation

YO +Aty)=0 n

to have solutions which behave like solutions of x(™ = 0 as t — co. However, in almost
all results of this kind it is required that f'satisfy certain conditions on a given interval
[2,, c0), while the solution with the desired properties is guaranteed to exist only on
an interval [T, c0), where T is some sufficiently large number in [7,, c0). The following
is a typical theorem of this kind.

THEOREM 0. Suppose that
S [tgs ©) x (0, 0)——(—c0,0) and F:[t,, ) x (0, 0)—[0, c0)

are continuous, that F is non-decreasing with respect to y for each t, and that
|1, ¥)| < Kt,y). Let k be an integer, 0 < k < n— 1, and suppose that

o0
.[ (k-1 F(t, arf)dt < o0

ty

for some constant a > 0. Then (1) has a solution y, which is defined on some interval
[T, ), with T 2 t,, and satisfies the asymptotic condition

lim r*y,(H=c,
t—+o0
where ¢ is a positive constant.

This is a ‘local’ existence theorem in that y, is guaranteed to exist only for
sufficiently large 7; that is, in a *small’ neighbourhood of infinity. By a global existence
theorem for (1), we mean a theorem which guarantees the existence of a solution of
(1), with specified properties, on a given interval [1,, c0).

Nehari [1] and Noussair and Swanson [2] have considered the question of global
existence of solutions of the semilinear second order equation

Y'+ygt,y) =0,
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and have given, for example, conditions which imply that this equation has a bounded
positive solution on a given interval [t,, o0). The question of global existence of
solutions of higher order equations with specified asymptotic behaviour appears to
have been virtually ignored.

Here we let n be arbitrary (but at least 2), and give two main theorems, one of
which includes more specific estimates of the order of convergence in (2), and permits
conditional convergence of some of the improper integrals that occur in the conditions
on f. Both proofs use the Schauder-Tychonoff theorem to obtain y, as a fixed point
of the operator T defined by

C+Jm ((— )]”)I'f(s ¥(s))ds ifk=0,
v t r k 3)
T |
o o (k=1)! drj. (n—k—1)! S, y(s)ds ifl<k<n-—1.

In each case the domain of T is an appropriate closed convex subset Y of C[t,, o),
which is given the standard topology of uniform convergence on finite intervals. (We
write y; — y to denote this convergence.)

In the following we assume that ¢, > 0 and ke{0,1,...,n—1}.

THEOREM 1. Suppose that f is continuous and satisfies an inequality of the form

A, y)| < @) F(y) for (1, y)e[t,, o0) x (0, 00), (C))

where ¢:[t,, ) = [0, c0) and F:(0, co) — [0, 00) are continuous,
and 1 K1) =1, )
= 1)|_[ k=1 g(1) F(1*)dt = M < co0. (6)

Suppose also that F satisfies one of the following conditions:

(C,) F is non-decreasing and lim,_ o+ F(y)/y =0,
(C,) F is non-decreasing and lim,,_, . F(y)/y =0,
(C;) F is non-increasing.

In addition, if | <k < n—1, let
F(yz2) < F(y)F(z) ify,z>0. @)

Now let 8 and ¢ be positive constants, with 0 < 8 < 1. Then (1) has a solution y,
on [t,, ov) which belongs to

Y ={yet, ©): |W()—ct*| < cbt*, 1 = 1,} (8)
and satisfies (2), provided c is sufficiently small if (C,) holds, or sufficiently large if (C,)
or (C,) holds.

Proof. Restrict ¢ as follows.
(1) If (C,) holds, let ¢ be sufficiently small so that

F[(146)c] < cBk!/M. 9)
(ii) If (C,) holds, let ¢ be sufficiently large so that (9) holds.
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(iii) If (C,) holds, let ¢ be sufficiently large so that
F[(1—6)c] < cOKk!/M. (10)

If ye Y, then (4), (5), (7) (if 1 < k < n—1), (8), and the appropriate choice of ¢ as
in (9) or (10) imply that

AL, p() | < (1) F(t¥) cOk! /M, 12 1. (1

From this and (6), the improper integral in (3) converges; hence Ty e C[t,, o0).
If 1 <k <n-1, then

f (t—s)frds < r*/k (12)
(since t, = 0); therefore, (3) implies that
!k = 4] Tn-—k-—l
| Ty()—ct*| < &), k=D [z, y()dr, 121, (13)
which is also valid if £ = 0. Now (6), (8), (11) and (13) imply that Tye ¥; that is,
nYy)cy. (14)

Now suppose that {y;} = ¥ and y; = y. From (3) and (12),

L (-]
ITHO=TY01 < gy | o M@ -Reslde, 1> 6. A9

The integrand on the right-hand side converges pointwise to zero as j — oo, and is
e 2011 () F(z¥) cOK)/ M (16)

(recall (11)); hence, (6) and Lebesgue’s dominated convergence theorem imply that
the integral in (15) approaches zero as j — co. This implies that Ty; — Ty; hence, T
is continuous.
Routine estimates based on (3), (4), (5), (6) and (11) show that if ye ¥, then
oo n—2
B PP s Wk,
@y @1<{ M =2 a7

ke(1+6) tk2 ifl<k<n-—1;

hence, the family {(Ty)": ye Y} is equibounded on finite intervals. This implies that
T(Y) is equicontinuous on finite intervals, and since it is obviously uniformly bounded
on such intervals because of (14) and the definition of ¥, the Arzela—Ascoli theorems
imply that 7(Y) has compact closure. Now the Schauder-Tychonoff theorem
guarantees that Ty, = y, for some y, in Y, and it is routine to verify that y, satisfies
(1) and (2). This completes the proof.

ReMARK 1.  Only minor modifications of this proof are required to show that the
conclusions of Theorem 1 remain valid for k£ = 0 if the stated monotonicity conditions
on F hold only for sufficiently small y if (C,) holds, or for sufficiently large y if (C,)
or (C;) hold.

ExampLE 1. Consider the equation
Y™ +q(1) ylog(1+y)P siny =0, >, (18)
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where y and ¢ are constant such that § > 0 and y+ # 1. The function f{z, y) in (18)
satisfies (4) with ¢(f) = | ¢(f)| and F(y) = y’+4. Theorem 1 therefore implies that if

w0
J‘ f“'1+k(?+‘s“1)|q(t)|dt < o0,
to

then (18) has, for suitably chosen ¢, a solution y, which is defined on [z, 00) and
satisfies (2).

ExaMpLE 2. Consider the equation
Am™u+g(|x|)ut =0 (19)
in an exterior domain O, = {xeR% x| > a},

where @ > 0, A is the Laplacian in R?, m > 1 is an integer, y (# 1) is a constant, and
g:[a, 00) = R is continuous. If z is a solution of the ordinary differential equation

[r* % r ﬂ"”q(r)zr =0, t>qa (20)

then the function u(x) = z(| x|) is a spherically symmetric solution of (19) in ,. But

(20) can be rewritten as din

i
t df‘lm

(12)+q()z" =0
which, with y = tz, is equivalent to

Y 417 (1) 7 = 0. @1
Theorem 1 implies that if

oo
{ ppm—ktik-1 | a(1) | dt < o0
a
for some k in {0, 1, ...,2m—1}, then (21) has a solution y, on [a, c0) which satisfies
(2) for suitable positive ¢. Hence, (19) has a spherically symmetric solution «, on Q,

such that
lim u(x)|x|*"1 =c.

|z)—c0
REMARK 2. Theorem 1 can be generalized, for example, by assuming that
ALy < igl #(0) F(y) for (1, y)€[t, ) x (0, 0)
where, for each i (1 < i < N), the functions ¢; and F, satisfy the hypotheses imposed

on ¢ and F in Theorem 1. (However, either (C,) must hold for all i, or (C,) or (C,)
must hold for all i.) A prototype of such equations is

N
y®+ )y =0, (22)
-1
where all y; < 1 or all y; > 1. If this is so and
o0
J. k1t g |dt < 0, 1<i<N,
to

then (22) has solutions on [¢,, o) which satisfy (2) for suitable positive c.
16 w31
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The next theorem applies in some situations where Theorem 1 does not.

THEOREM 2. Let y be continuous and non-increasing on [t, ). If | <k < n—1,

suppose also that

sup (Fy(n))! J1 (t—s) ey{s)ds =a/k < o0,

t=to to
Let ¢ and p be constants, with p > 0. Suppose that f is continuous on the set

S={ty): 1t 2 1, |y—ct*| < py(1) ¥}
and there satisfies the inequality
. IRt y) =St ct¥)| < wlt, | y—ct¥]),
where w(t, 1) is continuous and positive on the set
S, ={(t,A): 121, 0< A< py(n) ik}

and non-decreasing in A for each t. Suppose that the integral

o
j fﬂ_k_lﬂf, C!k) dr
t,

converges (perhaps conditionally), and

Jw mE=Lyw(t, pyr(0) 1¥) dt < 0.
t

Finally, suppose that the function

J‘G0 sPRL [T, es®) ds

T

ao
om=fﬂ+wmwmmmﬂm
t =t

satisfies the inequality
o(t) < Ap (),

where
As{m—nw ifk=0,
kKn—k—Dlp/oe ifl<k<n-—1.
Then (1) has a solution y, on [t,, ) which belongs to
Y ={ye(ty, 0): | p(t)—ct*| < py(t) 1*},
and satisfies the asymptotic condition
yo(t) = (c+ 0w (D) .
If lim,_, ,, w(1) > O, then (31) can be replaced by (2).

(23)

249

(25)

(26)

27

(28)

(29)

(30)

€1y

REMARK 3. Before proving Theorem 2, we comment on the role of . There are
situations (see Example 3, below), where (26) may fail to hold with w = 1, but (26)
and (28) hold for some y such that lim,_, ., () = 0. In these cases (31) is more precise
than (2), but a comment is in order concerning (23), which is needed for technical
reasons if 1 <k < n—1: it is, roughly speaking, a reasonable restriction on how
rapidly w(¢) — 0 as t — co. Thus, it is easy to show that (23) holds if #'y(¢) is eventually
non-decreasing for some y < 1, but not if #/y(1) is eventually non-increasing for some
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y = 1. However, if the latter is the case, then it would be reasonable (although not
always possible if y = 1) to restate the theorem with k and () replaced by k—1 and

v (1) = ty(1), respectively.

Proof of Theorem 2. If yeY and 1, 2 t > t,, we can write

r’ $nE=1 fls, 9(s)) ds = [ " k-1 s, cs¥) ds + j " ke [ s, /) —Ais, cs*)] ds.
t t t

(32)
Since (25) and (30) imply that

| s, ¥()) — s, cs¥) | < w(s, py(s) s¥),

our integrability conditions imply that we can let ¢, - co in (32) and infer from (27)
that

f $7k=1 (s, y(5)) d

<o(l), =1, (33)

where the integral may converge conditionally. If F(r) denotes this integral, then
integration by parts shows that if 0 < k < n—2, then

fo (t—5)"*-11{s, y(s)) ds = L * Rs) dﬁg G _I)n-k_i M

and it is easy to see from this, (33), and the monotonicity of ¢ that

< a(1). (34)

|[7 e—mersis o as

This inequality also holds if k = n—1, since then it reduces to (33).
From (3), (28) and (34),

at) _ Ay

Ty —cl < oy < Gy k=0 (35)
or,ifl<k<n-1,
k| < ! d k-1 ds
| Ty()—ct*| < m J;o (t—s5)"1a(s)
A t
< k=D (n—k—1) -I.tg (r"'_‘f)t_l w(s)ds
Aotk

< W:_:_:,_(:)l)' (see (23)). (36)

Therefore, (29) and (30) imply that Tye Y (see (30)), which verifies (14).
The proof that T is continuous is the same as in Theorem 1, except that the
majorizing function (16) is now replaced by

207K w(z, py(7) )
(see (25) and (30)). It is straightforward to verify from (3) and (34) that if ye ¥, then

olt,) ]:H, 1<ty ifl<k<n—1. (37)

[(Ty) (D] < [Hﬂ%‘m

16-2
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If k = 0, then differentiating (3) yields
—1 (=
d p— — =2 o—n+l
(Tyy () = w=2) J: (1—=95)" 25" F(s) ds,

where F{(?) is the integral in (33). Integrating by parts yields

R G E

-1
(Tyy (n = =2 (t—s)* 257+ F(s)

( (38)
But
’ dfft \**1 1 1d r\n-2
a[(r‘) ;] <gtia(i-y) - e
From this, (33), (38), and the monotonicity of g,
; 20(1) ;
PRl L > , = (.
1(Ty) OISGgp 12t ifk=0 (39)

Now (37) and (39) enable us to complete the verification of the hypotheses of the
Schauder-Tychonoff theorem, as (17) did in the proof of Theorem 1. This proves that
(1) has a solution y, on [t,, o) which satisfies (31). Of course, if lim,_, ., w(z) > 0 (so
that we may as well assume that y = 1), then (31) does not imply (2); however, in
this case we may still invoke the first inequalities in (35) and (36), and these imply
(2), since obviously lim,_, ,, () = 0. This completes the proof.

As an application of Theorem 2, we improve on a local (near o) result obtained
in [3], under more restrictive assumptions on y, for the equation

YW+ P(t)y7 = 0. (40)

THEOREM 3. Suppose that Pe(Clty, ), y # 1, and that v is as in Theorem 2.
Suppose also that

o
J sh—1+k(y—1) P(s)ds = O(w(1)), t— o0, (€3]
t
and -
I sIHEO=1| P(s) | w(s) ds = O(y(1)), - o0, (42)
t
where the convergence in (41) may be conditional. Let 6 and ¢ be given, with ¢ > 0 and

0 < @ < 1. Then (40) has a solution y, on [t,, ) such that

| Vo) — et | < eyt w(OFF, > 15,
provided that ¢~ is sufficiently small.

Proof. Here fit,y) = P(1)y", and the mean value theorem implies that if y > 0,
e R )~ et) = yP() 7=} y—ct¥), @3)
where J is between y and ct®. Let

p = Oc(y(ty))™; (44)
then, if (¢, y) € S (see (24)), the monotonicity of y implies that
(1=0)ct* < < (1+8)ct*,
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so (43) implies (25) with
w(t,2) = |y|[(1£0) P~ | PO 4,
where the + is plus if y > 1, minus if y < 1. Now a(f) in (27) becomes

o0 = o[ K [ sr10k0-91 P y6) ds sup [ srmiemo-v g s,
t =t T

K=[y|(1£0y~ 1 0(y(t))™"

(recall (44)). Therefore, (41) and (42) imply that o(f) < K, ¢?, where K, is independent
of ¢. This verifies (28) with 4 = K, ¢’, and we see from (44) that (29) holds if ¢’ is
sufficiently small. Now Theorem 2 implies the conclusion.

where

REMARK 4. Suppose that (41) holds. If
og
J’ sho1HEG =1 | P(s) | ds < oo, (45)

then (42) holds for any non-increasing w, and the conclusion of Theorem 3 can be
obtained from Theorem 1 and trivial estimates. Therefore, it is important to observe
that if lim,_, ., w(t) = 0, then (41) and (42) do not imply (45); hence, Theorem 3 yields
conclusions which do not follow from Theorem 1.

ExaMpLE 3. Suppose that #, > 0, and consider the equation

YW (7" sing) y7 = 0. (46)
Here

a0 o0
j‘ el |P(r)|dr:J t~1|sint|dt = o,

so we cannot apply Theorem 1 with k = 0. However,

[= #] =+

I stsinsds = 0O(1/1) and J. s %|sins|ds = O(1/1), t— o;

t t
hence Theorem 3 (with w(r) = 1/¢) implies that if 0 < # < 1 and ¢ > 0, then (46) has
a solution y, on [#,, co) such that

[yo()—c| < Bety/t, 121,

provided ¢~ is sufficiently small.

EXAMPLE 4. We now consider the equation
y® 4+ P(t)e¥ =0, 47)

where Pe Clt,, o0) for some t, > 0 and
oo
J. 1 P(1) | et dt = T < o0
to

for some real a. Theorem 1 does not apply to (47); however, we shall now show that
if p > 0, then there is @, < a—p such that if ¢ < a,, then (47) has a solution y, on
[#5, o0) which satisfies the inequality

[yo(O)—ctk| < pt*, 121,
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and the asymptotic condition (2). To this end, observe that f{z,y) = P(f)e¥ in (47),
and therefore the mean value theorem implies that

e, y) =1L, ct¥) = P(1) eV(y—ct¥), (48)

where j is between y and ct*. Therefore, if (1, y) is in S as defined by (24) with y = 1,
then (48) implies (25), with w(t, 1) = | P(1) | P 1,

If ¢+ p < a, then o(r) in (27) satisfies the inequality

a(t) < p‘[ s"“‘lP(s)le"""P”*dr-i-I s"k=1| P(s) | e°s* ds
t

to 0
< pe(c-ajt,," [ep:§+ pMFM I (49)
Now choose a, < a—p such that
el @0 5 (oot 4 p—14-K] [ < k(n—k—1)!

and suppose that ¢ < a,. Then (49) implies (28) and (29) (withx = 1 and y = 1), and
Theorem 2 implies the conclusion.
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