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ON THE EIGENVALUE PROBLEM FOR A CLASS OF BAND MATRICES
INCLUDING THOSE WITH TOEPLITZ INVERSES*

WILLIAM F. TRENCH*t

Abstract. We study the eigenvalue problem for a class # of band matrices which includes as a proper
subclass all band matrices with Toeplitz inverses. Toeplitz matrices of this kind occur, for example, as
autocorrelation matrices of purely autoregressive stationary time series. A formula is given for the characteris-
tic polynomial p,(A) of an nth order matrix H, in #, with bandwidth k+1=n, as the ratio of kx k
determinants whose entries are polynomials in the zeros of a certain kth degree polynomial which is
independent of n and has one coefficient which depends upon A. The formula permits the evaluation of
Pn(A) by means of a computation with complexity independent of n. Also given is a formula for the

eigenvectors in terms of these zeros and k coefficients which can be obtained by solving a k x k homogeneous
system.

AMS(MOS) subject classification. 15A18

1. Introduction. We consider the eigenvalue problem for the class % of matrices
{1} Hn=(h|'_ju):":j_=10a
defined as follows. Let

A(z)= Y az2", B(z)= ¥ b,z
v=0 w=0

where

(2) anbo#O and r+s=k< n,

and {h;,} are defined by the generating functions

Z'A(z) ¥ b,z7%, 0=i=s-1,

o
H,.,,(z)='g hynt! = z"A(z).;(uz), sstsnor-t,
J z"B(l,?‘z)"-Z:I a,z", n—-r=isn-1.
Explicitly,
3) Ryn = €1 — jTH By iy~ ui-; bijesa,, O0Sij=n—1,
if we define
(4) a=0if I>rorl<0, b=0ifI>so0rl<0, £=0ifq>p,
q
(5) c,=0 ifv>rorv<-s,
and
(6) C(x)=A()B(1/2)= T cz"

p=—g
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168 WILLIAM F. TRENCH

The class J is connected with Toeplitz matrices; i.e., matrices of the form
In= (¢;_f)1}='o-
From (3) and (4),
Osiss—-land r=sj=n-—1,
(7) hjn=c¢_; if{orssis=n—-r-1,
orn—r=i=n—-land0=j=n-s5-1;
thus, H, is quasi-Toeplitz (a term used in [7]) in that hi;, is a function of j—i alone
except in the s X r submatrix in the upper left corner of H, and the r X s submatrix in
the lower right corner. Moreover, H, is banded; ie.,
(8) hjyn=0 if j—i>rori—j>s,

from (3), (4), and (5).

Matrices in the class # have been encountered by the author [10] in connection
with prediction of stationary time series, and by Greville [4], [5], [6], in connection
with a smoothing problem. Greville and the author studied them in [7], and obtained
results which can be summarized as follows.

THeoRreM 1 (Greville-Trench). The matrices H, (n> k) are invertible if and only
if A(z) and z°B(1/z) are relatively prime, in which case their inverses are the Toeplitz
matrices

Hi'=T,=(¢ 00k n>k

where {¢;} is determined as follows: Obtain [¢,_,, ¢, 5, " -, ¢._.] as the (unique)
solution of the k x k system

r

(a) E au¢j p:bo_iajn, Oéjés—l,
v=0
(9) .
(b) ¥ b ;..=0 1=j=r,
=0

and then compute

(10) $=-a;' ¥ ad;_,, Jj=s,
ve=1

and

(11} "b J'=_b0I E bﬂ¢—1'+w j}r-
w=1

Moreover, if H, (n> k) is a matrix of the form (1) such that (8) holds and H.' is a
Toeplitz matrix, then H, € %,

Greville continued the investigation of these matrices in [2] and [3].

The main result of this paper reduces the evaluation of the characteristic poly-
nomial p,(A) of H, to finding the zeros of the polynomial

(12) P(z;A)= ¥ ¢,z =iz’
p=—x

(which are obviously independent of n) and evaluating a kth order determinant whose
entries are polynomials in these zeros. The complexity of this representation of p,(A)
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depends only on k (cf. (2)), and is independent of n. Moreover, we give an explicit
formula for the eigenvectors of H, corresponding to a given eigenvalue, which depends
on k coefficients that can be obtained by solving a kth order homogeneous system
with complexity independent of n. The results are analogous to those obtained in [11]
for Toeplitz band matrices

(13) Trx:(cj—i :‘;:101

where {c,} satisfies (5) and r+s=k<n However, the arguments needed here are
considerably more complicated than those in [11].

Our results here are not restricted to the case where A(z) and 2z*B(1/z) are
relatively prime, so that H, is invertible; however, this case is especially important,
since Theorem 1 implies that the eigenvalue problems for invertible matrices in % and
for Toeplitz matrices with banded inverses are equivalent. Although there is a large
body of literature on inverting Toeplitz matrices and solving systems with Toeplitz
matrices, little has been published on approaches to the eigenvalue problem for these
matrices which take full advantage of their simple structure. (For examples, see
Grunbaum [8], [9]; Dini and Capovani [1]; and Trench [11].)

2. Preliminary definitions and lemmas. We take the underlying field to be the
complex numbers.

It can be seen from (7) and (8) that if r or s is zero, then H, is a triangular
Toeplitz matrix. Since the eigenvalue problem for such matrices is trivial, we assume
henceforth that (2) holds, and also that

(14) rsa,b, # 0.

Then rsce_; #0, so P(0; A) #0.

It was shown in [11] that there are at most k values of A for which P(z; A) has
fewer than k distinct zeros. We call such points critical points of P(z; A). All other
values of A are ordinary points. For completeness, we phrase all definitions so as to
include the case where A is a critical point; however, for notational convenience we
illustrate the definitions only for ordinary points.

DeriNITION 1. For a fixed A, let z,, - - -, z, be the distinct zeros of (12) with
multiplicities m,, - - -, m,; thus,

g=k, m=z1(1=j=k), m+---m,=k
If Qy(2), -, Qu(z) are given polynomials, define the k-vector function

w(z) =col [Qy(2), Qx(2), - - -, Qu(2)],

and let () be the kx k matrix defined as follows: its first m, columns are w'’(z,)
(0=I=m,~1); its next m, columns are w”(z,) (0=/=m,—1); and so forth. Let V
be the matrix resulting from this construction in the special case where Q,(z)=z"",
1=i=k, and define

det

1 A(A) = :

3 () det V
Thus, if A is an ordinary point of P(z; A), then g=k, m,=-+=m, = I;

Q= (Qi{zj})i.kj=l
and V is the Vandermonde matrix

Wil s
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It can be shown in general that

det V=K; [l (z—2z)% ( K;; = constant # 0),
isi=j=gq
where the r;’s are positive integers (all ones if g = k); hence, det V # 0.

We refrain from using the functional notation z;(A) for the root z; since this would
necessitate an irrelevant appeal to the theory of multiple-valued algebraic functions.
Note that there is an ambiguity in the definitions of ! and V, since the numbering of
the roots is arbitrary; however, since renumbering z,, -+ -, z, would simply permute
the columns of both matrices in the same way, the ratio of the determinants in (15)
is uniquely defined for each A.

To avoid cumbersome two-dimensional displays in proofs which follow, we also
denote the function A(A) defined by (15) in the form

(16) AA) =]Qu(2), " -+, Qe(2)[(A);
thus, if A is an ordinary point of P(z; A), then

det (Qi(zj)}tjni
det (z;™ ,ffJ:, ’

(7) |Qu(2), " -+, Qu(2)I(A) =

There is an abuse of notation here, since (17) is not a function of z as the symbol on
the left appears to indicate; however, the convenience of the notation outweighs this
drawback.
In the following we adopt the convention that the polynomial p = 0 has degree —co.
LEMMA 1. Letny, - - -, n, be nonnegative integers, and m =max {n,, - - -, ni}. Then
the function

(18) 2%, « >+, 2™|(A)

is a polynomial of degree=m—k+1.

This lemma was proved in [11], where the function in (18) was denoted by
q(A; ny, - -+, m). The main result in [11] is that the characteristic polynomial of the
Toeplitz band matrix T, in (13) is

det[AL-T,]=(-1)""""cM1, 2,2, 2", - - -, 2" (A).

We will obtain an analogous result here for H,.
LEmMMA 2. Let Q,(z), -+, Qu(z) and A(A) be as in Definition 1, and let m =
max,; ==, {deg Qi(z)}. Then A(A) is a polynomial of degree = m — k+ 1. Moreover, A(A) =

0 for a given complex number A if and only if there are constants c,, - - -, ¢x (not all zero)
such that the polynomial
(19) Q(z)=¢,Qy(2) + - -+ aQu(2)

is divisible by P(z; A). In particular, if m=k—1, so that A(A)= C (constant), then
C =0 if and only if Q,(z), - - -, Q«(z) are linearly dependent.
Proof. If

Q(z)= ﬁ a2, 1sisk

then
A(A ) 22 al_n S akjklzjls Ry z-"kl(A),

where the sum is over all j,, * - -, jx such that 0=j,, - - -, j, = m, so A(A) is a polynomial
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of degree=m —k+1, by Lemma 1. From (15), we see that A(A) =0 if and only if the
system

(20) Q'Y=0 ('=transpose)

has a nontrivial solution Y =[¢,, - - -, ¢k]. From the definition of £, it can be seen that
(20) is equivalent to

(21) Q"(z)=0, o0=l=m-1, 1=j=gq,

with Q(z) as in (19). But (21) holds if and only if P(z; A) divides Q(z). This implies
the stated conclusions.
LEMMA 3. With the assumptions of Lemma 2, suppose that

Q(z)=az™+:--
for some m=kandiin {1,---.k}, and that
(22) deg Q(z)<m ifj#i.

Then A(A) as defined in (16) can be written as
(23) A(A)=arc;'|Qy(2), "+, Qiy(2), 27", Qua(2), -+ -, Qu(2)I(A)+ O(A™ "),

where O(A™ %) denotes a polynomial of degree = m — k.
Proof. From elementary properties of determinants,

(24) AA)=|--,az" e (M) +] -, Qz) — ez, - - (D),

where the first - - - denotes “Q;(z),- -, Q,_;(z)” and the second *: - denotes
“Qi+1(2), "+ +, Qu(2)” throughout this proof. From (22) and Lemma 2, the second term
on the right of (24) is O(A™ ) hence,

(25) AN)=al -+, 2" - [(A)+ 0™,

Now we use the identity

r—1
zm =} [Az"‘"— Y cz*t"T+zm P A)]

p=—y

(see (12)) to write

[weny2® s [A)mAGT v, 2™ e o [(A)
(26) S
ms Z_ fpc:ll — _,thm-r,_ W [(’\)
+ei'| s, 2" P(z, 1), - - [(A).

From Definition 1, the ith row of the determinant in the numerator of
|-+, 2" *P(z, 1), - - - |(A)

consists entirely of zeros, so the last term on the right of (26) vanishes. Lemma 2 and
(22) imply that the sum on the right of (26) is O(A™ ). Therefore,

SRR R 0 o Vs LRI L R O o s

This and (25) imply (23).
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We now establish a useful connection between the eigenvalue problem for H,
and a boundary value problem for a related difference equation. Let

U =col [u(h nETE Il‘I'-‘—l]
and
(27) V=H,U=col[vg," " ", 0]
Then,
n=1 n—i—1
v, = z hijnu = Z h,-‘j...,-.,,u_,-...,-, 0§i§ﬂ_l.
j=0 j==i

Therefore, from (3),

n=—i=—1 5 F

(28) = Y I:q,— Y a..b.— Y b_j,,“a,,il U, 0=i=n-—1.
J==i p=it] m=n—i

If s=i=n-r—1, then the sums with respect to u and » both vanish, and (28) reduces

to

(29) v;= Y Cljss
j=-s

For our purposes it is convenient to have this equation hold for 0=i=n—1, but this
is impossible as things stand, since (29) would then involve the undefined quantities
U g+, u_yand u, -, t,4,-;. This defect can be remedied by defining extrapolated
components for the vector U, as in the following lemma.

LEMMA 4. The components of V in (27) are given by (29) for 0=i=n—1 if and
only if the extrapolated componentsu_, + - -, u_, and u,, * * * , U,.,_, satisfy the equations

(30) 2 auy ,=0, 1=p=s,
I=0
and
(31) Y by =0, 1=p=r.
=0

Proof. The extrapolated components are uniquely defined by u,, ", u,_, and
(30) and (31). They can be computed recursively from the equations

(32) u_,=-a,' ;i:. -, I1=sp=s,
and
(33) u,,w_,=—b§1ril Bihnspis, 1Spsr.
We have already verified (29) fors=i=n—r—1.If0=i=s—1, then (28) reduces
to
(34) 0= }i_i (c,-—v ): . ajﬂ,b,) i
because of (2), (4), and (5). From (6),
¢ f: a;..b,, —s=Ej=E-i-1,
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(since g;,, =0if j+ v <0); hence, we can change the lower limit of summation in (34)
to j=—s for any choice of u_, -+ -, u_,. Therefore,

(35) =Y Gli— X ( Y aj”b,) Uiviy 0=i=s-1.

j=—x j==5 \r=i+l

The double sum in (35) can be rewritten as

v+r

5 r 5
Y 5 ¥ QG lii= Y b, Y au,

v=ji+] j=—s pe=ji+] I=p—5

= Z b., z Qi (), O=si=s—-1
v=j+] 1=0
(since @,=0 if I <0 or I>r). From this it can be seen that (29) holds for 0=i=s—1
if and only if (30) holds.
Now suppose n—r=i=n-1. Then (28) reduces to

n—i—1 r
(36) o= Y (c}— i _b_,“a,,) Uy
j==s woen—i
Since (6) implies that
= 3 bj..a, n—isj=r
[T B

(recall that b_;,, =0 if —j+u <0), we can change the upper limit of summation in
(36) to j=r for any choice of u,, - -, #,,,-,. Therefore,

r r r
vu= Y U= ¥ ( L b—i+uau) Yytis n-rsisn-1

J==s J=—5 \p=n=i

The double sum on the right can be rewritten as

r r r pts
X a Y buu= % a, X bu,
p=n=i j=-sx p=n—i I=p-r
r 5
= Y a, Y bu, 1, n—-r=i=n-1
m=n—i I=0

(since b;=0if I <0 or I>s). From this it can be seen that (29) holds forn—r=i=n-—1
if and only if (31) holds.

Lemma 4 obviously implies the following lemma.,

LEMMA 5. A complex number A is an eigenvalue of H, if and only if there are
complex numbers

(3?} U_gy* " "y Unir—1s

not all zero, which satisfy the difference equation

(38) Y qu=Au, 0=i=n-—1,

J=—s
and the boundary conditions (30) and (31). In this case the vector
(39) U=col[ug, -, ty]

is an eigenvector of H, corresponding to A.



174 WILLIAM F. TRENCH

It is important to observe that if the sequence (37) satisfies these hypotheses, then
U in (39) is nonzero, since if uy="---=u,_, =0, then (32) and (33) imply that the
remaining elements in (37) vanish.

3. The main results. In the following (x)' is the factorial polynomial:
X)P=1,  X)P=x(x=1)---(x=1+41), I=1.

THEOREM 2. Let A satisfy the assumptions of Definition 1, and let ), be the k x k
matrix which results from the construction specified in Definition 1 when

_zi"A(Z)s 1siss,
Q"(Z)_{z'***-‘s(lxz), s¥1sizl;
thus
[ AG) Al) e A
(40) 0| FAG) A - A

AVB(/z)  #TB(/zm) - Z7B(/z)

ZIB(1/z) BUB(z) - 2B z)

if A is an ordinary point of P(z; A). Then A is an eigenvalue of H, if and only if Q, is
singular, in which case the components of the eigenvector (39) are given by

m;—1

q :
(41) u; = Z r avj{s'i'f}(ﬂzjﬂ Y
i=1 v=0
for 0=i=n-—1, where the vector
(42) X =col[ap, -, X105 Xo2s " " "y By 2, " "y Bogy " " 7, amq—l‘q]

is a nontrivial solution of the k X k system
(43) Q,X=0.

( Note that (41) and (42) can be written more simply as
=Y azj", 0=i=n-1,

and
X =col[a,, ay, - - -, ay]

if A is an ordinary point of P(z; A).)

Proof. We use Lemma 5. The general solution of the difference equation (38) is
of the form (41) for —s=i=n+r—1.(See the proof of Theorem 1in [11].) Substituting
(41) into (30) and summing first on / yields

q m~—1 ”
Y Y oa,; Y a(s+l-p)Vztrr=0, 1spss
j=1 v=0 1=0

This is equivalent to

(44) Y T a,l(zPAGE)P),]=0, 1=pss.

i=1 v=0
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By a similar argument, substituting (41) into (31) yields

q m~—1
(45) Y ¥ e,z B(1/2)*)...]=0, 1=p=r
=1 w»=0
Since (44) and (45) together are equivalent to (43), the conclusion follows.
If we let =1, in (15), then A(A) in (16) becomes

(46) A (A)=|A(2)," +, 2" "A(2), 2" B(1/2), - - -, 2" ¥ 7' B(1/2)|(A),

which is a polynomial of degree =n, by Lemma 2. Since (1, is singular if and only if
A,(A)=0, Theorem 2 clearly implies that there is a connection between A,(A) and the
characteristic polynomial

(47) pa(A)=det[AL,— H,].

The following results make this connection precise.
THeoreM 3. If A(z) and z°B(1/z) are relatively prime, then

(48) pa(A)=(=1)""""R7'cfA,(A),  n>Kk

where R is the (nonzero) value of the k X k determinant with rowsi=1, - - -, k as follows:
(a) For 1=i=s, there are i—1 zeros, then a,, " - -, a,, then s —i zeros.
(b) Fors+1=i=k, there are i—s—1 zeros, then b, - - -, by, then k—i zeros.
Proof. Although p,(A) has meaning only if n>k, A,(A) is defined for all n=0.
We first prove by induction that

(49) A, (A)=(-1)""""Re,"A"+g,(A), n=0,

where deg g,(A) < n. It suffices to consider only the case where A is an ordinary point
of P(z; A), since there are at most k critical values of A, and we already know that
A,(A) is a polynomial of degree =n.

From (40), O, = WV, where V is the Vandermonde matrix of Definition 1 and
det W= R. This implies (49) for n =0, with g,=0. To see that R # 0, suppose R =0.
Then (40) with n =0 and the last sentence of Lemma 2 imply that

A(z), -, 2*"A(2), 2°B(1/z2),- -+, 2" ' B(1/2)

are linearly dependent. Therefore, there are polynomials f(z) and g(z), not identically
zero, such that deg f(z) <s, deg g(z) <r,and f(z)A(z) = g(z)z*B(1/z). By an argument
in [12, § 27], this implies that A(z) and z°B(1/z) have a nonconstant common factor,
which contradicts our assumption.

We now complete the proof of (49) by showing that

(50) B, 0(M)=(=1)""c;"AA,(A)+0O("), n=0,
where O(A") denotes a polynomial of degree = n. From (46) with n replaced by n+1,
Apar(A)=]- -+, 2" B(1/2), - -+, 2" *B(1/2)|(A),

where the first ““: - - denotes “A(z), -+ -, z* ' A(z)” throughout this proof. The poly-
nomial of highest degree appearing in the definition of A, ,(A) is z"**B(1/z); hence,
Lemma 3 implies that

(51) Api(A)=bAc;'| -+, 2" B(1/z2), - -, 2" ' B(1/2), 2" |(A )+ O(A™),
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where 2"V B(1/z), - - -, z"*"1B(1/z) is absent if r=1. We rewrite (51) as

A, (M) =(=1)Ac]Y - -, boz™*, 2" B(1/2), - - -, 2" B(1/2)|(A) + O(A™)
(52) =(=1)""A¢;'[A,(A) +T.(A)]+O(1"),
where
(53)  Ta(A)=|--+, 2" (bo—B(1/2)),z"**'B(1/2), - -, 2" ' B(1/2)|(A).
(See (46).)

We will now show that
(54) r,(A)=0(A"").
If r=1, then k=s+1 and (53) reduces to

Fa(A)=]-", 2" (by— B(1/2))|(A):

so Lemma 2 implies (54). If r> 1, then successively applying Lemma 3 to (53) r—1
times yields

r”(A}={bD‘\C:l)r—l| cee zn-l-s(bo_ B(l;‘rZ)), zn+s—r1 1’ e zni—s--ll(A]

:(bo)lc,—i)r_l z b,.gl cee Zni's—p,, zn+s—r—i-:|, cee Z”+S-II(I\).
r=1
The terms in this sum are identically zero for 1=p =max (s,r—1) (since they are
essentially determinants with two identical rows),and O(A"" ") forr=p =s (by Lemma
2). This implies (54). Since (52) and (54) imply (50), this completes the proof of (49).
Now (49) implies that the polynomial

Pa(A)=(=1)""""R7'c}AL(A)

is monic and of exact degree n, as is the characteristic polynomial p,(A) in (47). From
Theorem 2, p,(A) and p,(A) have the same zeros; therefore certainly Pa(A)=pa(A) if
H, has n distinct eigenvalues. There remains the possibility that H, has only m (<n)
distinct eigenvalues and

Pr(R)=(A=2)" - (A= Am)™, Pa(A) = (A = A1) -+ = (A = Ap)™

with r,#s; for some i; however, this possibility can be excluded by a continuity
argument of the kind given in [11].

Theorems 1 and 3 yield the following result, which makes explicit the connection
between our results and the eigenvalue problem for Toeplitz matrices with band
inverses.

THEOREM 4. Suppose A(z) and B(z) satisfy (2) and (14), and A(z) and z’B(1/z)
are relatively prime. Let T, and {¢,} be as in Theorem 1. Then the characteristic polynomial
of T, is given by

det [AL,— T,1=[A.(0)]"A"A,(1/A).

Moreover, if A is an eigenvalue of T,, then the corresponding eigenvectors (39) can be
obtained as in Theorem 2.
Our results have specific applications to statistics in the case where

B(z)=A*z)= ¥ az",

=0

so that the matrices H, (n> 2r) are Hermitian. Greville [3] has shown that in this case
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H, is positive definite for all n> 2r if and only if the zeros of A(z) are all outside the
unit circle, or positive semidefinite if and only if none are inside the unit circle. He
also obtained results on the spectral radii of the matrices {H,}.

If the roots of A(z) are all outside the unit circle, then A(z) and z"A*(1/z) are
relatively prime. It can be shown in this case that the sequence {¢,} defined by (9),
(10), and (11) (with b,=a,) is proportional to the autocorrelation sequence of the
purely autoregressive weakly stationary time series {y,,} defined by the stochastic
difference equation

al]ym+alym—-l+' . '+arym--r=xmf —m<m<w!

where {x,,} is uncorrelated and weakly stationary.

The formula (48) is clearly invalid if A(z) and z°B(1/z) have a nonconstant
common factor, since R is the resultant of z"A(1/z) and B(z), which would also have
a nonconstant common factor, and therefore R =0 [12, § 27]. In this case we have the
following result.

THEOREM 5. Suppose A(z) and z°B(1/z) have greatest common divisor

(55) D(2)=(z-¢)  +(z—&n) (mz1),

and let

(56) LA)EZ=A,{Z)=%+- etz
z"B(Uz)=

(57) 27 "B(1/2) = Byt Boz" ™

D(z)
Then the characteristic polynomial p,(A) in (47) is given by

—_q1ymik+1)+(r=1}n=m) n ~
(58} Pn(’\)z( 1)R [g _._{ ]R c’ ’\mAn(A)a ﬂ)k,

where
(59) A,(A)=|A\(2),- -+, 2" A(2), 2" "By (1/2), - - -, 2" BL(1/2)|(),

and R, is the (nonzero) value of the k x k determinant with rowsi=1, -+ -, k as follows:
(a) For 1=i=s there are i—1 zeros; then ay," "+, a,_,, then s—i+m zeros.
(b) Fors+1=i=ktherearem+i—s—1 zeros; thenB,_,, - - -, Bo, then k — i zeros.
Proof. Again we consider only ordinary points A of P(z; A). For 1=j=k, D(z)
is a common factor of the jth column of the determinant in the numerator of A,(A).
(See (46) and recall (40).) Removing these common factors shows that

(60) A.(A)=D(z,) - - D(z)A,(A),
with A,(A) as in (59), because of (56) and (57). From (55),

(61) D(z): D)= (2=0) -~ (=),
Since z,," * -, z; are the zeros of P(z; A), (12) implies that
(2i=8) (@=L = (=D 'P(Ls 1), 1=l=m.

But A({;) =0, so (6) and (12) imply that P({; A)=—A{]. This and (61) imply that
D(zi) =~ Dlgd={~11" 0 MG~ S A,

 —
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This and (60) yield

(62) An(A) = (=D)"* V(g -+ L) AR, (R).

An induction argument like the one used to prove (49) shows that
(63) B )= (=D VTReTITATT 4 g, (M), nzm,

where deg g,(A)<n—m. To see that R,#0, we observe that since A,(z) and
z°"™B,(1/z) are relatively prime and A,(0)#0, it follows that A,(z) and z°B,(1/z)
are relatively prime. Therefore, an argument like the one used in Theorem 2 to prove
that R # 0 applies here.

From (62) and (63), the polynomial on the right of (58) is monic and of exact
degree n. An argument similar to that used in the proof of Theorem 2 now establishes
(58). This completes the proof of Theorem 4.

Laplace’s development provides a convenient method for expanding the deter-
minants in (46) and (59); see [11, § 5].

Now let E,(A) be the solution space of the system

H.X =X

The following lemma is analogous to a lemma obtained in [11] for Toeplitz band
matrices.

LEMMA 6. Let A and z,,-+ +, z, be as in Definition 1. Then A is an eigenvalue of
H, if and only if there are polynomials

(64) f(2)=Co++ -+ Cory2’™',  g(2)=Dp+---+D,2"",

such that the polynomial

(65) h(z)=f(z)A(z)+ 2" "g(z)B(1/2)

is not identically zero and has zeros at z,, - - + , z, with multiplicities at least m,, - + - , mg;
iLe.,

(66) h(z)=0, 0=I=m-1, 1Sj=gq

Moreover. if S,(A) is the vector space of polynomials h of the form (64) and (65) which
satisfy (66), then

dim §,(A) =dim E,(A).

Proof. A polynomial h of the stated form satisfies (66) if and only if the vector
Y =col [CO: T Cs—hDO& T Dr—l]
satisfies the system
Q,Y=0.
Therefore, dim S,(A) =nullity of ) =nullity of 2, =dim E,(A). (See the proof of
Theorem 2.)
Lemma 6 implies the next two theorems. Since the proofs of these theorems are

the same as those of Theorems 3 and 4 of [11], we omit them.
THeorEM 6. If A is an eigenvalue of H, then

dim E,(A)=min (r, 5).
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THEOREM 7. Suppose A is an eigenvalue of H, and dim E,(A)=2. Then A is also
an eigenvalue of H,_, (if n>k+1) and H,,,; moreover,

dim E,_,(A\)=—1+dim E,(A)
and
dim E,.(A)=-1+dim E,(A).

Acknowledgments. The author thanks T. N. E. Greville for reviving his interest in
the matrices discussed here several years after the publication of [10]. The present
paper was strongly influenced by the joint paper [7], and by Greville’s subsequent
work [2]-[6] on these matrices and on their applications to data smoothing. In
particular, the crucial step of introducing the extrapolated components of U in Lemmas
4 and 5 was motivated by a similar device used by Greville in [4], [5], and [6] to
extend symmetric smoothing formulas to the extremities of data.
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