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Existence of Global Solutions with Prescribed Asymptotic
Behavior for Nonlinear Ordinary Differential Equations (*).

TAKASI KUSANO - WILLIAM F. TRENCH

Summary. — Conditions are given for the nonlinear differential equation (1) L.y + f(t, ¥, ...,
vees y'n=1) = 0 to have solutions which exist on a given interval [fy, o) and behave in some
sense like specified solutions of the linear equalion (2) L,z= 0 as t »oo. The global
nature of these resulls is unusual as compared to most theorems of this kind, which guarantee
the existence of solutions of (1) only for sufficiently large t. The main theorem requires no
assumplions regarding oscillation or nonoscillation of solutions of (2). A second theorem is
specifically applicable to the situation where (2) is disconjugate on [ty, o0), and a corollary
of the latter applies to the case where Lz = 2™,

1. — Introduction.
We consider the nonlinear differential equation
(1) Y 4 a (Y04 o A au )y [ Yy ey =0, T3>,
as a perturbation of the linear equation
(2) 2M b gy () e 4 L Fa,t)z =0, t>1,.

1t is assumed throughout that a,e C[ty, oo), 1<i<n. We give conditions which
imply that (1) has a solution § which is defined on [#,, o) and behaves as ¢ — oo
in some sense like ¢£, where £ is a given solution of (2) and ¢ is a eonstant. Although
much has been written on the existence of solutions with prescribed asymptotic
behavior for nonlinear equations, almost all such results are «local » near infinity,
in that the desired solutions are shown to exist only for ¢ sufficiently large. Global
conditions, i.e., conditions which imply the existence of solutions on the given
interval [t,, co) are relatively rare (see, e.g., [3], [5], and [6]), and—as far as we

(*) Entrata in Redazione il 10 gennaio 1985.
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know—confined to equations of the form
¥+ fit,y) =0.
Here we give a global existence theorem for the general equation (1), which
requires no assumptions concerning oscillation or nonoscillation of the solutions

of (2). We also obtain from this theorem a result which applies specifically to the
case where (2) is disconjugate on [{,, o).

2. — The main results.

We impose the following standing assumption on the nonlinear term in (1).

ASSUMPTION A. — The funetion f: [t,, co) X R" — R is continuons and satisfies
the inequality

(3} i!{t! 1"'0! b | uﬂ—l)léF(t} Iul]]!' bt | ]uﬂ-—l]) ?
where F: [t,, o) X R — R, is continuous and F(¢, vy, ..., V,_y) is nondecreasing in
each v,, 0 <r<n—1, and satisfies one of the following hypotheses:

(H,) For fixed (I, vy, ..., V,_1), A-1F(t, Avg, ..., AV,_y) 18 nondecreasing in 1 for
A >0, and
(4) lim A1 F(t, Avyy oony AVpy) = 03

A=>+0

or

(H,) For fixed (f, Dy, ..oy Vp_y)y A1I(L, 20y, ..., A0,_5) is moninereasing in 2 for
A >0, and

lim A_IF(t, Avo, vany .3.1?,,_1) = 0 .
A+oo

Hypotheses (H,) and (H,) were employed in [4] for the study of second order
semilinear elliptic equations.
It will be convenient below to abbreviate

(5) 1ty y(@)y -.er ¥2(B) = (FY)(D) -
Tt is to be understood that all equations and inequalities involving ¢ hold for ¢>1,

unless otherwise specified, and that «o» and «0» have their standard meanings

a8 1 — oco.
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Let 2, ..., 2, form a fundamental system for (2), and denote

w. = W(#_“ weey Bi_1y z“+1g sany 5'")
! W21y .ovy 2a) ’

where W(gy, ..., ¢,) is the Wronskian of ¢, ..., ¢,. The following well known
identities will be useful below:

(6) i (— 1)”_‘ z:'}(i’)wi{n = af,n—l 1 O<r<n—1.
jesl

THEOREM 1. — Let £ be a given solution of (2), and suppose that there are positive
continuous functions 0g, ..., 0n_y ON [ty, co) and an integer k, 1 <k<mn, such that

(7) g0 <ent), O<r<n—1,
t
(8) Izi”(t}lflwt(sJIF(s, 200(8)y ooy A0na(8)) ds = o(0.(1)) ,
[

1<i<hk—1, 0gr<n—1,
and

(9) [#i"(tllflwe(S)lF(s, 200(8)y ey Agn_1(8)) d8 = o(0,(1))
3
k<i<n, O<r<n—1,

for 2. > 0. Let 0 be an arbitrary positive number, and suppose that ¢ is a given constant-
Then (1) has a solution § on [t,, oo) such that

(10) [gin(t) — e2n(t)| <Blelo,(t), O<r<n—1,

provided that |c| is sufficiently small if (H,) holds, or sufficiently large if (H,) holds.
Moreover,

(11) #n(t) = ef(t) + o(o (1), O<r<m—1.

Proor. — It is convenient to define

(12) Pty A) :f|w;(3)|1f’(s, 200(8)y oeey AOna(8)) ds, 1<i<k—1,
(13) @ilt, 1;‘=ﬁw.(sn1"(s, 206(8)y +eey AOna(8)) ds,  k<i<m,
and t

(14) D(t, 2) = i; [P0 @ity 4y, O<r<m—1.

25 - Annali di Malemalica
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Then (8) and (9) imply that

(15) D,(t, 2) = ofo,(1)), O<r<m—1.
Now let ¢ be an arbitrary positive number. Then

(16) oty Ly <ylot), O<r<n—1,

for 2 sufficiently small if (H,) holds. To see this, let 2, be an arbitrary positive
number, and choose T>t, such that

(17) D, (1) Zo) <y2o0r(t) , t>T, 0<r<n—1.

(This is possible because of (15).) Since (H,) implies that A-1d,(¢, ) is nondecreas-
ing in 4, (17) implies (16) for t>7 and 0 < 2 < 2,. If t,<t<T, then (12), (13), and
(14) imply that

k-1 n
(18) D.(t, < 3 ()| T, 1) + 2 #Oledte, 1), O<r<m—1.
j=1 i=k

From (4) and Lebesgue’s bounded convergence theorem,

(19) Im 2g(r, ) =0, 1<i<k,
A-rto

for any fixed 7>%,. Since the functions o*|¢”| (0<r<n—1,1<i<k) arve all
bounded on [t,, T, (18) and (19) now imply that if 7 is sufficiently small, then (16)
also holds on [t,, T].

A similar argument shows that (H,) implies (16) for sufficiently large .

We will now use the Schauder-Tychonoff theorem to obtain # as a fixed point
(function) of the transformation B defined by

4
k=1
(By)(t) = cZ(t) — -21 = 1)“"34(3]fwf(8}(fy)(3) ds
ts

i=k

-+ i (= 1)"—‘z;(t)fw£(8)(fy)(-?) ds
]

(recall (5)) on a suitable subset of C*-[{,, oo). Let Ct-1[t,, co) be given the topology
of uniform convergence on finite intervals; i.e., ¥, — y means that lim Yyt = (1),

0<r<n—1, where the convergence is uniform on [¢,, 7] for every T>1,. For a
given constant ¢, let V be the closed convex subset of C-D[t,, co) defined by

(20) V = {y € 0"-1[t,, oo): |y"(t) — c&n(t)] <Ble|o,(t), 0 <r<n —1 1
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Because of (3) and the convergence of the integrals in (9) for all 4, By is defined
on [ty, oo) if y € V; moreover, the identities (6) and the fact that 2,, ..., 2, are solu-
tions of (2) imply that

i
@) (B = e£7) —fii (= 1) &) f wi(s)(fy)s) ds -
b

oo

i=k

+ i (— l)"“#‘;"(t)fws(S)(fy}(-?) ds, 0O<r<n-—1,
{
and that

™

(22) (By)=(t) = — 2 a;(t)y"(t) — 1ty (@), ey YD)

i=1

From (14) with A = |e|(1 + 6) and (21),
(23) [(By)(t) — eE(t)| <plt, fe|(1 +0)), O<r<m—1, yeV.

Therefore, to guarantee that By € V whenever y € V (see (20)), we have only to
choose ¢ so that

D.(t, le|(1 + 0) <lelOgr(t), O<r<n—1,
which is possible for |e| sufficiently small if (E,) holds, or for |¢| sufficiently large
if (H,) holds. (See (16) with y = 0/(1 + 0) and A = [e[(1 4 6).)
Having chosen ¢ in this way, we have B(V)c V. We now show that G is con-

tinuous on V. To this end, suppose that {y,} is a sequence in V such that y, —y.
We must show that

(24) Byn— TY .
From (21), if T>1%,, then
¢
k-1
(25) [(Bya)"(t) — (By) ()| < 21 I#‘.-”(t)}f [wi(8)||(fya)(8) — (fy)(s)] ds +
[ ta

+ 3 o[ @i - i, <i<T, 0<r<n—1.
to

The integrands on the right of (25) converge pointwise to zero as ¢ — oo, and they
are respectively dominated by

2(we(s)[F (s, [e|(1 + 0)00(8); vy [¢](1 + 0)@0a(8)), 1<i<m.
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Our integrability conditions on F and Lebesgue’s dominated convergence theorem
imply that the integrals in (25) converge to zero as n —oo. This implies (24).
From (23), the families

(26) {(By)":yeV}, O<r<n—1,

are all uniformly bounded on finite subintervals of [#,, co). Moreover, (3), (20), and
(22) imply that

[(By)m(t)| < lel(1 4 0) 3 |as(t)|oas(t) + F(t, |e[(L + 6)o(t)y ..., ¢](1 + O)ons(P)) ,
i=1
yev,

which, together with (23), implies that the families (26) are also equicontinuous
on finite subintervals of [{,, co). This and the Ascoli-Arzela theorem imply that
BG(V) has compact closure, which completes the verification of the hypotheses of
the Schauder-Tychonoff theorem. Therefore, Gj = § for some § in V. That §
satisfies (1), (10), and (11) can be seen from (22) and (23) with y = By = ¢, and
(15). This completes the proof. :

REMARK 1. — As will be seen in Example 1, (23) may yield estimates of #"(1) —
— ¢27(t) as t — oo which are sharper than (11).

Theorem 1 implies and extends Theorem 1 of [3].

We now apply Theorem 1 to the case where (2) is disconjugate; i.e., none of its
nontrivial solutions has more than n — 1 zeros, counting multiplicities, on [{,, co).
Then it is possible to choose a fundamental system 2, ..., 2, with the properties
assumed in the following theorem. (For a convenient reference for this statement,
see [7, Lemma 1]; however, it is clearly implicit in the earlier papers of HARTMAN [1]
and WILLETT [8].)

THEOREM 2. — Suppose that the fundamental system z,, ..., 2, for (2) is such that
(27) 2,>0, w,>0, l<i<n,
wY' 5 v
(28) (——‘) >0, l<i<j<n,
W;
and
(29) lim P48 i 20 o 1ci<i<n.

{—+ca w((t) B ] z}(i’}

Let k be an integer, 1 <k<n, define

n
(30) V= wir* > w o], O<r<n—1,
i=1
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and suppose that

(31) Iwk(s)F(s, M0oi(8), erey M0pyn(8)) dS< 00, A>0.
Ly

Let O be an arbitrary positive number. Then (1) has a solulion y, on [t,, oo) such that
[y (1) — e2(t)| <Olelv,i(t), O<r<m—1,
and
y(t) = ea’(t) + o(va(®)) , O<r<n—1,
provided that |¢| is sufficiently small if (H,) holds, or sufficiently large if (H,) holds.
Proor. - We apply Theorem 1 with 2 = 2, and p,= v,.. Then (30) obviously
implies (7). Because of (27), (28), and (29), it is easily inferred from (31) that

]
f W0i(8)F (8, A00i(8), v, M0y 4(8)) ds = o(w () f0y(t)), 1<i<hk—1,

t
and
jw,(s)F(s, A00k(8), +vvy AVu_y 1(8)) ds = o{w,(D)wy()), k<i<n.
t
The last two equations imply (8) and (9) with p, = v,,; hence, Theorem 1 implies

the conclusion.

COROLLARY 1. — Suppose that k is an integer, 1 <k<mn, such that

(32) J'z«—kmt, M-y, M2, .., M, MUY, ..., Mt=") dt < 0o, M >0.

t
Let u be an arbitrary positive number. Then the equation
ym 4+ ft, Yy, .,y =0, t>t>0,
has a solution y, on [t,, oo) such that

(33) |Y"(8) — etk —r — 1) )| < plelt, O<r<k—1,

(34) B <plelt™,  k<r<n—1,



388 TarASTI KUSANO - WILLIAM F. TRENCH: Global existence theorems

and
(c—i—o(l))t*-"lj(k—'r—l)!, O<r<k—1,

(33) ¥ =
o(t¥1), k<r<n—1,

provided that |c| is sufficiently small if (H,) holds, or sufficiently large if (H,) holds.

ProoF. — In this case we can take 2,(t) = t*-1/(1 — 1)! and w,(t) = t"¥/(n — i) L.
Then v,.(t) = ¢,,t* "1, where

% 1
= (n—k)! .
o={» i%l(ﬂ—‘b’(t—"—l}'

Now choose 0 so that ¢,.0 < u (0 <r<n-—1), and apply Theorem 2.
Corollary 1 extends Theorem 1 of [3].

REMARK 2. — Trivial modifications of the proofs show that Theorems 1 and 2
and Corollary 1 still hold under (H,) if the integrability conditions on F (i.e., (8)
and (9) for Theorem 1, (31) for Theorem 2, and (32) for Corollary 1) are assumed
only for sufficiently small 2 (or M in (32)).

3. — Examples.

In this section we apply our results to equations of the form (1) with

(36) 1ty oy ooy thnn) = > Dot ()7

r=0

where Py, ..., Pria€ C[ty, o0) and yp,, ..., Ya_, are positive rationals with odd denomi-
nators, so that f is real-valud for all (¢, %y, ..., %,_,) With t>¢,. (We depart slightly
from these conventions in Example 2.) Clearly (36) implies (3) with

Pty oy ey Dy) = :g )]0,
and (H,) holds if y,>1 (0 <r<mn — 1), while (H,) holds if 0 < y, <1 (0 <r<n —1).
ExAmPLE 1. — The equation
2" —-2=0

has the fundamental system

(37) Zi(t) = cost, z,(t)=sint, z(t) =¢,
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and it is easily verified that

cos ¢t — sin ¢ cos f - sin ¢ 1
wy(t) = "—2-_ ’ wy(t) = __'2_'_—1 wy(t) = '—EG" =
Applying Theorem 1 to the perturbed equation
(38) Y'=¥"+y'—y + P}y + p(D(Y') -+ Po(t)(y")* =0

yields the following results.

(a) If p,, p., and p, are either bounded or absolutely integrable on [t,, co) and
(39) max (yo, y1,%2) =y <1,
then (38) has a solution # on [#,, oo) such that
gt = cet+ 0(e”™), r=0,1,2,

provided that le| is sufficiently large.

(b) If p,, p,, and p, are absolutely integrable on [{,, co) and 4 is a fixed real
number, then (38) has a solution # on [f,, co) such that

esin (t+4d) +o(1), r=0,
gn(t) = ccos(t+9d) +o(1), r=1,
—esin (t+6) +o(1), r=2,

provided that (39) holds and |e| is sufficiently large, or that
min (y,, y1, ¥2) > 1

and |e| is sufficiently small.

PROOF. — (a) Let k = 3 and £(t) = g,(t) = p,(t) = 0,(t) = ¢'. Then our assump-
tions imply that the integrals in (8) are O(e”) for i = 1, 2, and that the integral in
(9) is 0(e”~) for k = 3. From this and (37),

D.(t, A) = O(e") = o(e'), r=0,1,2

(see (15)); hence, Theorem 1 and Remark 1 imply the conclusion.

(b) Let k = 1, £(t) = sin (¢t - 8), and o,(t) = 1,7 = 0, 1, 2. Then our assump-
tions imply (9) for ¢ = 1, 2, 3, and Thecrem 1 implies the conclusion.
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ExAMPLE 2. — Consider the elliptic equation
(40) Au + mou -+ g{jo) |l + () [Vuf = 0
in the exterior domain
(41) Q,={reR: [¢| >R}, R>0,

where m, o, and f§ are positive constants and ¢, 9: [R, co) — R are continuous fune-
tions. A radially symmetric function u = u(|e{) is a solution of (40) if and only
if the function y(f) = tu(t) is a solution of the ordinary differential equation

(42) Y+ mPy + ey + " Pyp)ly —ty' =0, 1>R,

which can be regarded as a perturbation of the linear equation
(43) 24 miz =0,
with

F(y oy ) = T (t) ko] "+ T *Prp(t) Jug— L0 |” .
Here (3) holds, with
B(t, v, 1) = % p(t) |vg + tl_whpff')“%‘{‘ t'vl]ﬂs

which satisfies (H,)if &, § > 1, or (H,) if &, f < 1. For (43), we take 2,(t) = maw,(t) =
— cos mt and 2,(1) = mwy(t) = sinmt. If § is a fixed real number, then applying
Theorem 1 with &k = 1, 2(t) = cos (mt + ), 0y(t) = 1, and g,(t) = m shows that if

oo

ft‘ *g(t)| dt< oo and fz‘ Plp(t)| dt < oo
R

then (42) has a solution 7 on [R, co) such that
ij(t) = e cos (mt 4 d) + o(1),

provided that |e| is sufficiently small if «, § >1, or sufficiently large if o, ﬁ< 1.
This implies that (40) has a solution # on £, such that

lim (||d(|a]) — ¢ cos (mz| +- 8)) =

lz}->e0
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Note that 4 is oscillatory with respect to |z|. It would be of interest to develop a
theory which establishes the existence of oscillatory solutions for second order
elliptic equations on unbounded domains.

ExampLE 3. — Consider the equation

n—1
(44) ¥+ 3 p)y") =0,

r=0
where p,e Oft,, o), 0 <r<n—1, and
ft""‘“"‘*"*”lpr(t)l <o, O<r<n—1,

to

for some integer k, 1 <k<n. Suppose that p > 0. Then Corollary 1 implies that
(44) has a solution y, on [f,, o) which satisfies (33), (34), and (35) if

min (Yo, oy Yaa) > 1
and [e| is sufficiently small, or if
mMax (Poy ey Ynoa) < 1

and |¢| is sufficiently large.

ExampLE 4. — Consider the 2m-th order elliptic equation

m—1

(45) Amu + Y g |x])(A'u)" = 0
120

in the exterior domain (41), where ¢,;: [R, o) = R, 0 <l<m —1, are continuous,
It is easy to see that a radially symmetric function u = u(|e|) is a solution of (45)
in £, if and only if

Ftun)om + S @) =0, t>E,
=0
or, equivalently, if and only if y(f) = tu(f) is a solution of
(46) ¥+ ':'5:1 )y =0, t>ER.
=0
Corollary 1 implies that if % is an integer, 1 <k<2m, and

[prrnti g g at< 0, 0<lam—1,
E
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then (44) has a solution y, on [R, oo) which satisfies (35) (with n = 2m), provided
that |¢| is sufficiently small if y,>1 (0<l<m —1), or sufficiently large if y,< 1
(0 <l<m—1). This implies that (45) has a solution %, on £2, such that

lim |o[**uja]) = €,

&|—>oco

under the same conditions on C.
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