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LINEAR PERTURBATIONS
‘OF GENERAL DISCONJUGATE EQUATIONS

W. F. TRENCH
Drexel University
Philadelphia, Pennsylvania, U.S.A.

Suppose that p,,...,p _,, 9 €cCla,, p; >0, and
(1) ;”pidt=m, l1<isn-1,
and define the quasi-derivatives

(2) L.X = x; er = (L x)', 1<r <n

(with P, © 1). We will give conditions which imply that the
equation
(3) Lnu + g{t)u = 0

has solutions which behave as t = = 1like solutions of the equation
L x = 0.
n
Let I0 = 1 and
t
Ij(t,si qj""'qi) = SI qj(WJIj—l(w'S;qj—l"'"qi)dw' Jjz 1.
Then a principal system [2] for L, = 0 is given by
xi(t) = Ii_l(t,a;pl,...,pi_l). 1 £1<n;
in fact,
I p1(ts@iPpygreaasPyy)s 0 S p <4 =1,
(&) eri(t) =
o, isr<sn-1.
We also define
yi(t) = In_i(t,a;pn_l,....pi). 1s4is<n,
and
eri(t), 0<r=<i-1,
(5) dy (£) =

1/1 (t;aipru-..;pi); i£r=sn.

r=i+1
We give sufficient conditions for (3) to have a solution u
such that

(6) Lrui = eri + o(dir) (¢t *%), 0 £r<n-1,

i

for some given i in (1,...,n}. This formulation of the question is



due to Fink and Kusano, and the best previous result on this guestion
is the following special case of a theorem obtained by them in [1].

THEOREM 1, If

(7) IFxiyzlalds < =,

then (3) has a solution u; which satisfies (6).

Our results require less stringent integrability conditions. We
need the following lemma from [4).

LEMMA 1. Suppose that Q € Clt,,>) for some t, z a, that
j“bigdt converges (perhaps conditionally), and that

sup | fTy.0dsl < y(&), 2t 2>t
=i = =

where ¢ L& nonincreasing and continuous on [IOW). Define

0’

K(t;0) = tf“ﬁn_iqz,é;pi,...,pn_l)gta)dé.
and, for £ = IO’ Let
J(£;0) = KC£;0) 4if 4 = 1;
oA %
J(£;Q) = :g P1(8)K(8;Q)ds = T,(8,24;p,KC 5Q))ds

JE3Q) = T, (£, 205p4se00spi 4KC 5Q))

(8) L0 = -, ¢ 2 2,
v(to)dik(z), 0srnsdi-2,

ILJC D1 < t>
29(2)d,;, (), £ -1 s <0~ 1,

G;
mokreover, L4 1lim ¥(%) = 0, then akso
oo
LK(J(I;Q)) = o(dik(tJ), 0sxrs4- 2,
The following assumption applies throughout.

ASSUMPTION A, Let fu}ixiqu converge (perhaps conditionally),
and suppose that

(9) E(t) = [Ty;x;qds = 0(p(t))
t
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with ¢ nonincreasing on [a,=), and

(10) lim o(t) = 0

t-m
If tD > a, let BCto) be the set of functions h such that
Loh,....Ln_1 h € C[to,ﬁﬁ and
gtd...0), 0 2% €1 =2,
ir
Lrh = t = tO ’
0(pd, ), i ~1<r=<n-1,
ir

with norm | | defined by

I IL h{t)| 1L h(t)]
(11) hil = sup max { ———5—— (0sr=i-2), —F—vr—— (i-1<r<n-1)
t2t, w(tn)dir(t) d Zm(t)dir(tJ

Then Lemma 1 with Q@ = gv and ¥ = Ko implies the following lemma.

LEMMA 2. 14§ v € Clto,ﬂﬂ and

Ix!wyiqudu S Ke(t), £22,,
then

JC jqu) € B(%y)
and

170 ;qwb < Kk ,

Now define the transformation T by
(12) (Th)(t) = J(t;qxi} + J(t;qh) .

Lemma 2 and Assumption A imply that J( ;qxi) € B(to) for all tD> a.
We need only impose further conditions which will imply that I“}iqhds
converges (perhaps conditionally) if h € B(to), and that

| /"y,ghas| < Inlottstgdete), ¢ 2t ,
t

where ¢ does not depend on h, and

(13) sup o(t;tﬁ) £89 <1
tZtn

if tn is sufficiently large.Lemma 2 will then imply that T is a
contraction mapping of B(to) into itself, and therefore that there
is an h; in B(tn) such that Thi = hy. It will then follow from
(8) and (12) that u = x3 + hy is a solution of (3). Moreover, Lemma
3 with Q = quy will imply that

O(dir)' Dsr<i-2
(14) Lrui'F Loxy =

0(mdir), i1-15srsn=-1.

The next lemma can be obtained from (9) and integration by parts,
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&= .

ee [ 3] for the proof of the special case where B wes P, = 1.

"

LEMMA 3. Let
1) Hy o=y H O = zI PigHjqds 1544 (py = 1.

Then (9) implies that
o = ; g .
16) Hy 0Ce/L,_,x;), 1535

nd that the integrals

17) f“bj(iji)des, 0%y gd =,

111 converge, Moreover, if the convergence is absolute for some j = k
ith 0 < k < i - 2, then it is abselute for k = is4-1,

THEOREM 2. 14
=L e, & 1
1) T (een)™! S P, H, leds = A< 3,

then (3) has a solution uy which satisfies (14},

Proof. Integration by parts yields
T i-1 T T (
119) [ y.ghds = - I H,(L._ h)I_+ Jp,_ .H L, .h)ds
M gep 3 3"UE i=17i-1""i-1
Lf h € B(to} and 2 < i <n; if i = 1, then the sum on the right

is vacuous and (19) is trivial. (Recall (2) and (15).) Now (5),(9),
(11),(18), and Lemma 3 imply that we can let T = = in (19) and infer

(13) with
i-1

I IH ()L, _
=1 J

(20)  oltsty) = w{to)(¢(t)J_l (X (E) +

+ 20o(eN”Y [Tp 1B, leds .
t

From (16), the sum on the right side of (20) is bounded on [a,=);
hence, (10) and (18) imply (13) for t, sufficiently large. This
completes the proof.

With i = 1, (18) reduces to

Tim (e(t))™? f¢¥1iqlwds < % ,
o0 t
which is weaker than (7), since X, = 1. The next two corollaries show

that ( 18) is also weaker than (7) if 2 < i < n.

.

COROLLARY 1. I§ 2 < 4i<n and
(21) Iupk(thi)(Lk_lxi)_lwdt < o

for some k in {1,...,4 - 1}, then {3) has a sofution uy which



185

satisfies (14).

Proog. From (16),

x, )71

(22)  p, (Lx, I | S Mp (L x ) (L _ x,

for some constant M, so (21) implies that (17) with Jj = k
converges absolutelv. From the closing senterce of Lemma 3, this
means that

o0
S py-yHy,lds < =,
which obviously implies (18) with A =0.

COROLLARY 2. I{ 2 < 4i<n and

o0 3 <1 2
(23) t.f pi_l(é)(af P (W)dw) Te%(5)ds = 0 (9(2)),
then (3) has a so0fution u; which satisfies (13},

Proog. From (22) with k = i - 1 and (4), (23) implies (18) with
A = 0.

THEOREM 3. If§ 1< 4{<n -1 and

-1 e 4 -1
(2y4) Tim (p(t)) . Jo@p (630 p (widw) 1H (s)1ds = B <
z a

e

n =

then (3) has a solution which satisfies (14]).

Proof., Lemma 3 and our present assumption enable us to continue
the integration by parts in (19) by one more step, to obtain

oo i oD
J y;ghds = I H.(t)L,_-.h(t) + [ p,H,(L,h)ds.
g T gig 4 =1 ¢ By
Because of (5) (with r = i) and (11), this yields
i=-1
otitg) = altg)(o(e)™h T IH (£)ILy_yx; (£) + 2H;(£) +
j=1
- s -
+ 20071 fZo(s)p, (s)( [ p, (wiaw) Lin, (s)1ds.
i i i i i

Now (10) and (16) imply (20) for tg sufficiently large. This completes
the proof.

COROLLARY 3. If 1< 4i<n-1 and
oo o0 -1 2
(25) II pifé)(af pL(w)dw) e (s)ds = o(g(£)),

then (3) has a sofution uy which satisfies (14).

Prood. From (16) with j = i, it follows that (25) implies (2u)
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with B = 0.
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