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1. INTRODUCTION

We consider the equation
(1) x4+ [ay + p()] x""D + L+ [a, + p(O)]x = f(1), t>0,

assuming throughout that ay, ..., a, are complex constants and p,,..., p,, f are
complex-valued and continuous on (0, o). We give conditions implying that if 4,
is a simple zero of

Qi) =2+ a "'+ ... +a,,

then (1) has a solution x,, which behaves asymptotically like ce*".
We use “0” and “O” in the standard way to denote behavior as ¢ — oo. The
following theorem is due to Dunkel [1]; see also Hartman [2; Thm 17.2, p. 316].

Theorem 1. Suppose that

@) f ) dt < 0, 1

IA

k

IIA

n,

Jor some q 2 0, that ,, is a simple zero of Q(4), and that if A; is any other zero
of Q(%), then Re (A; — 2,) + 0. Then the equation

(3) X+ [ag + py()] x"Y + ...+ [a, + p()]x =0, t>0,

has a solution x,, such that

(4) ()= (4, + ot 9))e™, 0<rzn-1.

Simsa [3] has recently given conditions which imply that (3) has a fundamental
system Xy, X, ..., X, which satisfies (4) for 1 < m < n. His proof easily implies
the following result for a given m in {1, ..., n}.

Theorem 2. Suppose that Q(7) has simple roots A; = pu; + iv; (L £ j < n), and
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that
5) r |p:(9) ¢ < oo

Suppose also that for some integer m (1 < m < n) and nonnegative constants q
and g, the integrals

o0
(6) J. B pt) el ds, 15ksn

converge (perhaps conditionally), for j in
(7) S={j|lji=mor Re(d; — 4,) + ¢ = 0}.

Finally, suppose that at least one of the following is true:
(i) ¢ > 05 (ii) g = 1; or

®) jﬁwUffm@m

Then (3) has a solution x,, such that

XO(1) = (A, + ofe™ %)) e, 0<r<n-—1.

di<ow, 2Z2kZn.

Except for the assumption that all zeros of Q;4) be distinct (which is required for
Simsa’s stronger result), Theorem 2 is a considerable extension of Theorem 1, since
under assumptions (i) and (ii) there are no integral smallness conditions on p,, ...,p,
which require absolute convergence, and (8) is weaker than (2) for 2 < k < n,
while (5) is weaker than (2) with k = 1 and g > 0.

Sim3a [4] has given an example showing that some additional assumption such
as (8) must be imposed to obtain the conclusion of Theorem 2 with o = 0 and 0 <
< g < 1; however, we will show below that (8) can be weakened. (Very recently,
Sim3a [5] has obtained results for this case without assuming (8); however, they
do not seem to be directly related to the results that we present here.)

2. THE MAIN THEOREM

It is convenient to state the following assumption separately from our main
theorem.

Assumption A. Let
©) Q) = (A = 2 oo (2 = ),
where
Ay=p+iv;, 12j5L,
are distinct, and

IIA

My = p - T

624




Let m be a fixed integer in {1, ..., L} such that d,, = 1. Let ¢ be a nonnegative
constant, and suppose that d; = 1 if

(10) Ui — fy +0=0.

Let N be the unique integer in {1, ..., L} such that

(11) g orpel, 125488 = ]
(which is vacuous if N = 1) and

(12) Mi—Mm+e20, NSj<L.

Let ¢ be positive and nonincreasing on (0, 00) and, if N = 2, let ¢*¢/t) be non-
decreasing for t sufficiently large (say t = T,) for some o such that

qu‘iuum-ﬂ.\'—l_Q-

Finally, let ¢ be a given constant, and define
(13) g(t) = f(t) — ee™* Y 7% p(1).
k=1

Notice that ; need not be a simple root of Q{2) except for those j's (if any) that
satisfy (10); thus, if ¢ > 0, then A, itself need not be simple.

Improper integrals occurring in hypotheses below are assumed to converge, and
the convergence may be conditional, except, of course, where the integrands are
necessarily nonnegative.

The following is our main result.

Theorem 3. Suppose that Assumption A holds and

(149 j g(s) e n=7= ds = 0(g(1)
(see (13)) for j in S (see (7r)). Suppose also that

(15) j " pu(s)] ts) ds = of())
and l

¢{s)ds = o(§(1)), 2=k <n.

(16) [ J

r

r piA) da

5

Then (1) has a solution x,, such that

(17) x (1) = (ci, + O(e ¥P(1))e*, 0<r=n-—1.
Moreover, if *“0” can be replaced by “0” in (14), then

(18) xP(1) = (ed, + ole™"¢’t))) e, 0<r<n-—1.
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3. PROOF OF THE MAIN THEOREM

Following Simsa [3], we use the Banach contraction principle to prove Theorem
3. It is convenient to introduce the new dependent variable

h(t) = x(t) — ce™",

in terms of which (1) becomes

(19) O(D)h = g — Mh
(see (9) and (13)), with
(20) Mh = i ph® ",

k=1
Now suppose that t, = 0 and let B(t,) be the Banach space of functions h in

ci- ”[fo, o) such that
W) = O ="g(r)), 0<r=n—1,

with norm

n=1

e ] = sup fee-"(6() ™, |10}

t=to

Clearly, if (19) has a solution h,, in B(t,), then the function
(22) Xnlt) = ce*" + h,(t)

satisfies (1) on [to, 0) (and can be continued as a solution of (1) over (0, o)), and
has the asymptotic behavior (17). We will now define a transformation which we
will show to be a contraction of B(t,) if t, is sufficiently large, whose fixed point
(function) h,, satisfies (19) on [to, c0).

To this end, let A,(1), ..., A,(f) be the unique polynomials such that deg 4; < d;
(1 £j<L)and

L
Y [4/1)e]? o = Fpp-is 08T S0—1,
j=1 :

and define the associated polynomials

4{f) =M [Af)er]®, 05rZn-1, 15jsL.

Then
degd;,, =degd; <d;, 0=r=n—-1, 15j=sL,

and the standard variation of parameters argument shows that if w e C[t,, o) and

N—=1 m
(23) st w) =Y J Aj(t — ) e w(t) de —
<1},
L o .
-y J. Aj(t — 1) M w(z) dr
J=NJ,
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(where the first sum is vacuous if N = 1), then

N-=1 m
(24) It w) =Y | At — 1) eM w(z) dr —
i=1Jy
L o
-3 J, Ayt — 1) et P wit)de, 0<rsn-1,
i=NJ,
and
(25) o(D)v(t; w) = w,

provided that the improper integrals in (23) and (24) converge. This prompts us to
consider the transformation 7 defined by

Th=G— %h,
where
(26) Gi1) = v{1; g)
and
(27) (£h) (1) = v{t; Mh) ;
thus,

(Zh)(1) = v(t; g — Mh),
and (25) with w = g — Mh implies that
QD) Th =g — Mh.
Therefore, /i, satisfies (19) if 7h,, = h,,.

We assume henceforth that t, > 0 or, if N = 2, that 1, = T}, so that e*¢(1) is
nondecreasing on [f,, ). (See Assumption A.) The proof of Theorem 3 reduces
to showing that 7 is a contraction mapping of B(t,) into itself provided that t, is
sufficiently large, since this implies that there is and h,, in B(t,) such that 7 h,, = h,,.
We will do this by showing that

(28) GeB(t,),

(29) Z(Bito)) = B(to) »

and that there is a positive function o on (0, o) such that
(30) limo(r) = 0

and o

(31 |£h] < olto) 1] .

The following lemma is needed for these proofs.

Lemma 1. Suppose that u is complex-valued and continuous on [to, ©0) and the
integral

u(r) = j g7
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converges for t = t,. Denote

(32) Y(t) = sup

=t

Jw u(s) ds

T

Let A be a polynomial, and suppose that y is a complex constant, with Re (y) = &.
(i) If € >0, then

{33) é Kl 'f’(t) L] t g tlJ 3

r A(t — ) "*9u(s) ds

where K, is a constant which depends only on y and A.

(ii) If & < 0 and there is an « such that 0 < o < —¢& and e*(t) is nondecreasing
on [1o, ), then

_r A(t — 5) C=9u(s) ds

to

(34) SKY(t), t2t,

where K, is a constant which depends only on o, y, and A.
Proof. (i) Integrating by parts yields

(35) r At = 5) " 9u(s) ds = A4(0) U(t) —
s r [A(t = 5) &"=97 U(s) ds .
From (32),
(36) |[4(t = s) =7 U(s)| < W(t)B(s — 1) &™) s>,

where B is a polynomial with nonnegative coefficients determined by y and the
coefficients of A; therefore, (32) and (35) imply (33), with

K, = |4(0)] +J e ¥B(7)dz.
0
(ii) Integration by parts yields

(37) I " A(r — 8) € Iu(s) ds = A(t — 1) "= Ulto) — A(0) U(r) —

to

g/ " [A(t - 9) 9T U(s) s

fo

Our assumptions regarding o imply that

Y(to) S 7 NY(1), t210;
hence,

(38) |A(1 — 15) = U(t,)] = |A(t — 15)] ¥~ Y(t) <
< JA(t — 1) ¥ N (1), 1 2 14,
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With B as in (36), the assumption regarding « also implies that

(39) J' " [A(t = 1) 49T U(5) ds

< Jq B(t — 5) e*~NY(s) ds <

to

t

< (1) j B(t — 5) e+ ds

fo

Now (32), (37), (38), and (39) imply (34), with
K, = |4(0)| +j B(z) e¥*®* dr + sup |B(r)| e®* 2.
0 =0
This completes the proof of Lemma 1.
We now turn to the proof of (28). We must show that G e C~D[t,, ) and that
GY(f) = O(e® =), 0<r<n-~1.

Because of (24) with w = g (see also (26)), this will follow if we show that for
0sr=n-1,

't
(40) f Aj(t — 5) eM¥™(s) ds = O(e¥~D¢(f)), 1<j<N -1,
L]

and

(41) f " At — 5) Mg(5) ds = O(em-01g(r)

t
if N £ j < L. To this end, notice that

(42) e 9g(s) = elin=0MglhsAnta)i=9)[ele~dmig(s)]

Since the integral (14) converges with j = m, we can infer (40)for1 <j SN -1
(recall (11) and our condition on « in Assumption A) and (41) for those j’s such
that N < j < L and strict inequality holds in (12), from Lemma 1 with A = 4 -
V=4 = + 0, u(t) = g(t)e@ ", and Y(t) = O(¢(f)). If the equality holds
in (12), then 4;, = constant (by Assumption A) and (42) reduces to

e*-'“_”g(s) - e(um—a+iV;)r[e(e—#m—iVJ)sg(s)] s

so (14) implies (41). This proves (28).
The next lemma will be used to prove (29) and to establish the existence of the
function o satisfying (30) and (31).

Lemma 2. Suppose that the integrals in (15) and (16) converge, that h e B(t,),
and that B is a real constant. Then the functions

W;‘(r; h) =I Px(s) e(c—u...-l-iﬂ]sh(n—k](s) ds, 1 <k<n,
t
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are defined on [to, o), and they satisfy the inequalities

() |W(es )| <[] j " 1i(9)] 66 ds
and
(44) (Wi(es )| < ] [¢(t) 1 '[ l°° pi(2) di{ +

+(1+ o =+ iﬁl)f ‘r pi(4) d4

Proof. The existence of Wj(r; h) and (43) follow from (21) and the assumed
existence of the integral on the right side of (43).If2<s k<, integration by parts
yields

dJ(s)ds], 2<k=n.

T
J‘ Pk(-T) e(n—un.ﬁﬁ}xh(n—kl(s) ds =
t

T
-+

5

| 4

o [ty ([ e,

and routine estimates based on (21) imply (44), given the assumed convergence of
the integrals on the right side. This completes the proof of Lemma 2.

We now turn to the proof of (29). Lemma 2 implies that if h e B(t,) and B is a real
constant, then

‘ J " eemm= i1 1ts) ds| < ] ofs; )

t

(see (20)), where

(45 )= [l 0y a + 603, |[" )] +
+(1+ o — up + i;ﬁ'l)kzzn2 r r pd2) d2| ¢(s) ds.

Therefore, since
e.l;(r-s)M h(s) = eum-e)re(i,—}....+g)rr—s'|[e(g—im)sM J'I(S)] i

Assumption A and Lemma 1 with 4 = 4,,, y = Aj = Am + @, u(t) = @7 N p(y),
and (1) = || sup o(z; 0) imply that there is a constant K (independent of h and 1,)
such that &

t
46 At — 5) eMIM h(s) ds| < K|k em—or sup a(z; 0),
4 =t
1) =
UL w1, IRJEN 1,
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(47) U A (t — 5) MM h(s) ds| < K|[h] e¥"9"sup o(7;0), Osr=n—1,
t T2t

If N < j < L and (10) does not holds. On the other hand, if (10) holds, then
J
A= IM h(s) = elmet ] ele=km=1vDspfp(s)]

and A4;, = constant (Assumption A), so we can choose K so that (47) also holds
if o(t; 0) is replaced by a(t; v;). Since (15), (16), and (45) imply that o(t; f) = o{¢(t))
for all real B, (24) with w = Mh, (27), (46), and (47) imply that

(48)  [(Lh)? (1) < [n] ¥ ~P(1)o()n, OSr<n—1, t=to,

where o satisfies (30). Since (21) and (48) imply (31), we now conclude that 7~ has
a fixed point h,, in B{t,) if t, is sufficiently large; hence x,, as defined in (22) satisfies
(1) and (17). To deduce the improved estimate (18) in the case where (14) is replaced by

o0
(49) [ ot cemrmmtom s~ ato).
t
it suffices to show that
(50) h(6) = ofe2¢(r)), 0<r=n-—1.

in this case. Since h,, = G — %h,,, we see from (30) and (48) (with h = h,,) that
(50) will follow if

(51) GO(t) = o™~ g(r)), 0<r

To see that this is so, define

¢4(t) = sup {max

=t jes

1A

n—1.

|

(see (7)). Applying the argument used earlier to prove (28), now with ¢ replaced
by ¢,., shows that

j g(s) ele—mm=ivj)s 4o

T

G(t) = Oe¥="9% (1)), 0Zr=n-—1.

Since (49) implies that ¢,(f) = o{¢(t)), this implies (51) and completes the proof of
Theorem 1.

3. RELATIONSHIP OF THE MAIN THEOREM WITH SIMSA'S RESULT

We first deduce the following corollary from Theorem 3.

Corollary 1. Suppose that Assumption A and (15) hold, and that

() [ s = ot
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and

- =]

= j pi(s) €T ds = O(g(), 1<k<n
t

Jor jin S (see (7). Then (1) has a solution x,, which satisfies (17), provided that

(16), holds. Moreover, (16) holds automatically if any one of the following is true:

(i) @ > 0; (ii) “O” can be replaced by “0” in (53) and

(54) j $%(s) ds = 0(@(1)) ;
or (iii)
(55) j $%(s) ds = o(#(1)) .

Finally, if (52) and (53) hold with ““0” replaced by “0”, then x,, satisfies (18).

Proof. From (13), (52) and (53) imply (14). Therefore, Theorem 3 implies the
conclusion if (16) holds. To complete the proof, we need only show that (16) follows
from each of (i), (ii), and (iii). Integrating (53) (with j = m) by parts shows that

-]

(56) J‘ pu(s)ds = O(e™¢(1)), 2<k<n,
t

and therefore

(57) j :" | j n(4) 2

The right side of (57) is o(¢(t)) if either ¢ > 0 or (55) holds; hence, ( i) and (iii) imply
(16). To see that (ii) also implies (16), we have only to observe that if (53) holds
with 0™ on the right, then so does (56) and therefore (57). Given this, (54) implies
(16) even if ¢ = 0. This proves Corollary 1.

We conclude by showing that Corollary 1 implies Theorem 2. It suffices to show
that the integrability conditions of the latter imply those of the former, with #(t) =
= t7% Obviously, (5) implies (15) for any nonincreasing ¢. Integrating by parts
shows that if (6) converges, then

o(s) &5 = o(fe*%ﬂ(s)ds), 2<k<n.

[ neeemasnaig, jes,

t

which verifies (53) with “0” replaced by “0”. Since

o0 » t—!q+1 ( /)
s %ds = q > 1/2),
.[r {24_1)

(54) holds if g = 1. Finally, an argument using integration by parts shows that if (8)
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holds for some g > 0, then

(58) [

(The converse is false.) Obviously, (58) implies (15) for any nonincreasing ¢.
Since the integrability conditions of Theorem 1 imply those of Theorem 2 with
¢ = 0, Corollary 1 also implies Theorem 1.

ds < o0 .

r pl4) d2

£
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