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Abstract—An ad hoe procedure is given for obtaining first integrals of second o:der differential
equations in which the non-linear term is a power of the dependent variable, asvin the Emden-
Fowler equation. The main theorem is a considerable extension of previous results along these
lines. A corollary implies several known examples.

1. INTRODUCTION

In a recent paper [1], Sarlet and Bahar presented a constructive method for finding first
integrals for second order equations of the form

X"+t +bt)x" =0 (m#—1), (L.1)

in which the non-linearity is of the kind encountered in the Emden-Fowler equation [(3.1),
below]. The method used in [1] is an ad hoc procedure, motivated by the idea of attempting
to generalize the construction of energy integrals which are quadratic in x', by using an
integrating factor of the form h(f)x'. On the one hand, using this form for the multiplier
permits more flexibility than the conventional approach of simply multiplying by x', and,
on the other, avoiding a multiplier of the more general form h(t, x, x) preserves the
Newtonian character of the equation of motion prior to the integration process. Moreover,
the choice of this form for the multiplier is consistent with the presence of the purely time-
dependent factor in the first integral of the damped harmonic oscillator (Example 9, below),
as obtained by Logan [2] by means of Noether’s theorem, or of the Lane~Emden equation,
as obtained by Jones and Ames [3] (Example 7, below) through the introduction of
similarity variables.

Although reasons for seeking first integrals for dynamical systems are given in [1], it is
perhaps worthwhile to summarize them here:

(i) A complete set of first integrals determines the solution of the differential equation.

(ii) A first integral can be used to reduce the order of the differential equation.

(iii) A first integral may yield insight into the qualitative behavior of solutions of the
equation. ? '

(iv) A first integral may be used to construct a Lyapunov function by means of the
method of Chetayev [4]. The latter yields information on the stability properties of the
solutions via the second (or direct) method of Lyapunov [5]. For examples, see Djukic
(6], Pozharitskii [7] and Risito [8].

In (1], after multiplication of the differential equation (1.1) by h(t)x’, all terms derivable
as the derivatives of energy-like terms were collected, and the sum of the remaining terms
was assumed to be the derivative of an expression of the form g(t)xx’, computed along the
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trajectories of the equation. Although this procedure produced non-trivial results, it was
noted already in [1] that this restrictive assumption concerning the form of the remaining
terms leads to difficulties even in the linear case. (Bahar and Kwatny [9] later extended
the method to some linear and non-linear systems.) In the present paper, the sum of the
remaining terms (i.c. those resulting from multiplication of the equation by h(r)x’ which
are not the derivatives of energy-like quantities) are assumed to be the derivatives—along
trajectories—of an expression of the more general form f(t)x* + g{t)xx’. Although this is
still an ad hoc procedure, we will show below that it is applicable to a much wider class
of problems than the procedure of [1].
Our main result (Theorem 1 of Section 2) deals with an equation of the form

Lx + a(t)x + b(t)|x|™"sgnx = 0, teJ (m# —1) (1.2)
with
Lx = (rt)x') + q{t)x, (1.3)

where a, b, r and q satisfy suitable assumptions (given below) on the open interval J, and
the equation N

Ly=0 (1.4)

is assumed to have a solution y, with no zeros on J. It is, of course, well known that any
second order linear equation can be transformed into the form

(MOxY + a(t)x =0,

which corresponds to the choice of g = 0 in (1.3); however, the possibility of including part
of the multiplier of y in L (so long as (1.4) still has a non-oscillatory solution on J) lends
additional generality and convenience to the method, as we will see in Section 3.

Following Wong [10], we have chosen to write our basic equation in the form (1.2)
rather than as

Lx + a{t)x + b{t)x* =0 (1.5) .

to avoid the difficulty that the function w{x) = x™ has no branch which is real-valued for
x <0 unless m = p/(2q + 1), where p and g are integers. If m has this form with p odd,
then the real-valued branch of w{x) = x™ is given by w{x) = |x|™ sgn x (x # 0), so that (1.2)
and (1.5) are equivalent; however, if p is even, then w(x) = |x]™ (x 3 0), so that (1.2) and
(1.5) are different. Nevertheless, the results given below can be adapted to (1.5) in this case
by replacing “|x|™sgnx" by “x™" in the differential equation, and “|x|™*'” by “x™*!" in
the associated first integrals. *
In Section 2 we first consider the simpler equation

X +alt)x + BOIxI"sgnx =0  (m# —1), - (1.6)

and then generalize the result obtained in this connection to obtain our main theorem,
which concerns (1.2). Although it could be argued that this step is superfluous, since (1.2)
can be transformed into the form (1.6) by an easy change of variables (given in Section 2),
we believe that the result is more conveniently applicable if stated in terms of the given
equation (1.2). Although we can claim only that our conditions are sufficient for the
existence of first integrals of the form considered here, it seems reasonable to believe that
our results are the most general that can be obtained by this particular ad hoc approach.
In any case, they are sufficiently general so as to imply several previous results as very
special cases, as will be shown by the cxamples in Section 3.
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2. THE MAIN RESULT
We first seek sufficient conditions for (1.6) to have a first integral of the form

Zblxlu"-l

It,x,x') = h[(x’]z +ax? + — :l + fx?* + gxx'. (2.1)

We derive this result in a purely manipulative way, and then state it carefully in Lemma
1.

Obviously, a, b, f, g and h are related by the requirement that (2.1) be an invariant for
(1.5). Although it may secem natural to start with a and b and then find f, g and h, we will
show that all these functions can be most conveniently expressed in terms of h, which can
be any function that is positive and has three continuous derivatives on J. -

We start by observing that

(h(x'?) = 2hx'x" + K(x)?, .2)
(hax?) = 2haxx' + (ha)'x? " (2.3)
and
—-Z—(hb [x[™*1) = 2hbx’|x|"sgn x + 2 [x|™* (hb). (24)
m+ 1 m+ 1
If x satisfies (1.6), then

[x|™sgnx = —(x" + ax)/b,
50 (2.4) can be rewritten as

2x(x" + ax)hby

2 -y " lxl™ -
B 1{hblxl ) = 2hbx’|x|™sgn x (m+ 1)b

(2.5)

.=

Notice that if x satisfies (1.6), then the sum of the first terms in (2.2), (2.3), and (2.5) is zero.
Therefore, differentiating the right side of (2.1), using (2.2), (2.3), and (2.5), and equating the
resulting multipliers of x?, (x')?, xx’ and xx” to zero shows that [ in (2.1) is a first integral
of (1.6) if

. 2ahby .
(ha) _(m T +f'=0, (2.6)
g=—h, (2.7
fo-£%  (em (28)
T2 2 R )

and

= Zih;")i =—g=h [T

respectively. The last equation is equivalent to

b _ —(m+ 3k
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SO

b= Ah ~(m+3)/2 (2‘9)

for some constant .

With fand b as in (2.8) and (2.9), elementary manipulations show that (2.6) is equivalent
to

(ah?) = —h—;—. 2.10)

which is in turn equivalent to

a A I[N
““Fﬁ*i(‘i) @11

where a is an arbitrary constant.
We summarize these results in the following lemma.

Lemma 1. Suppose that h > 0 and k" is continuous on an open interval J, and let A be
an arbitrary constant. Then the equation

x" + a(t)x + AMh()) "™+ 32 |ximsgnx =0, e,

! has the first integral

I(t, x,x') = h(x')* + (;.a *s

i
| ” —(m+1)2 -+l
k )xz e
‘ (m+1)
'5 i provided that a is a solution of (2.10), or, equivalently, is of the form (2.11) with a an
et arbitrary constant. ’
3 This lemma can be verified by simply substituting (2.7), (2.8), and (2.9) into (1.6) and
(2.1).
i We now generalize our results so as to make them applicable to the more general
3| equation (1.2).
1 Theorem 1. Suppose that 1", ¢', and H"" are continuous and r, H > 0 on the interval J.
' Suppose also that (1.4) has a solution y, with no zeros on J, and that A is a solution of
; the equation .
(AH?Y = — § H(ryi(rysH'YY, (2.12)
or, equivalently, that
LI R "_’.J.E(!i
Hh A= ) |
where a is a constant. Let 1 be a constant. Then the equation ;'
: 1 [ 4 — ] b3
11 A H m+3)2), 1. w i, 4 213 ol
| + r(rl[yal:lx + A(H(t)yol?) " sgn x te (2.13) ?
l
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has the first integral

zw—:-uuz |Xf"+|
(m+1)

—riydH'X X', (2.14)

It x,x) = HPPy3(X')? + [HA + ryd(ryiHY]1X? +

where X(1) = x(t)/yo(t).

Proof. Notice that our differentiability assumptions on r, ¢ and H i.aply that the right
side of (2.14) is defined. Let t, be an arbitrary point in J, and define the new independent
variable

s=s(t) = d_rz
(') 0

This transformation maps J monotonically onto an interval J,. Denote the inverse
transformation by t = t(s), and note that

de
3= ryd (2.15)

[where here, and in the following, all functions of  are evaluated at ¢ = t(s)]. We will show
that if x satisfies (2.13), then the function

u(s) = X(t) = % 2.16)

satisfies the equation
i+ A(u + AH@Q)) ™3 |ysgnu =0, tel,, 2.1m

where the dot indicates differentiation with respect to s. From (2.15), (2.16) and_the chain
rule,

U= r{yox' — yox);
therefore,

i@ = ryglyolrx) = x(rya)1. (2.18)

It is now routine to verify that if y, and x satisfy (1.4) and (2.13), respectively, then (2.18)

implies (2.17).
For convenience, let us rewrite (2.17) as

i + afshu + Afh(s))™*"* 3 ju|™sgnu = 0, (2.19)
where
a(s) = A(«(s)) and h(s) = H(i(s)). (2.20)
Lemma | implies that if
Wi

d, ., -
L= 2 @10, (221)
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then (2.19) has the first integral

T(s, u,u) = ha* + (ha + = popr — hui, (2.22)

j’.) , 2Ah-(-flif1|uiu+l
5 Wt ——

However, (2.15), (2.16), (2.20) and the chain rule imply that (2.12) and (2.21) are equivalent,
and that

T(s, u(s), u(s)) = Iz, x(t), x'(6))

[cf. (2.14) and (2.22)]. This completes the proof.

Theorem 1 seems to characterize the class of equations to which our ad hoc procedure
can be successfully applied. Although this is a restricted class of equations and our approach
can be described as somewhat artificial (after all, we have started with the multiplier H
and found the equations for which it is appropriate!), the fact is that the end result is really
comparatively general; in fact, we will show in Section 3 that many known examples are
consequences of the following corollary of Theorem |I.

Corollary 1. Let g, r and H satisfy the assumptions of Theorem 1, and, in addition,
suppose that

(ryd(rydH'Yy = 0. ' (2.23)

Let A and B be arbitrary constants. Then the equation

Lx + %[ﬁ(ﬂtt)y%(r)“‘x + AHOy0) "M x|"sgnx] =0,  tel, (229)

has the first integral (2.14), with A = f/H2.

3. EXAMPLES
The Emden-Fowler equation

(*x') + A'|x|"sgnx =0 (4 = constant) -- 3.1
has many physical and mathematical applications. For a study of its qualitative properties
and an extensive list of references on this equation and its generalizations, see the review
paper by Wong [10]. Ames and Adams [11] have studied boundary value and cigenvalue
problems for (3.1), and Rosenau [12] has given sufficient conditions (relating k and /) for
(3.1) to have a first integral of the kind studied here. We will obtain his conclusions as
special cases of our results on the more general equation

(XY + q*~2x + Ar'|x|"sgn x = 0, (32)
where g and 1 are constants, and

' (k — 17 > 4q. (33)
Equation (3.2) is of the form (1.2), with

Lx =(*xY +qt*"2x  [cf. (1.3)). (34)
The associated equation Ly = 0 is equivalent to the Euler equation

X"+ kt™'x' +qt"2x =0,

which has solutions of the form y, = ", where

E Ep R
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b= 1 —k:‘_’[{k; ”1—4‘]‘]”2; (3.5)

hence, (3.3) implies that the possible choices for y, = " are distinct, real-valued, and non-
zero on (0, o). In (3.4), r(1) = ¢*; hence, r(t)y3(1) = ¢**?*, and condition (2.23) becomes

[‘Ifxv(rk-i Z'H’r]’ = 0.
Since k + 2v # 1 (because of (3.3) and (3.5)), this has the general solut.zn
H(f] =, +cll-l—3v+l + Cgf_“_“*z. \

To obtain specific results, we consider three natural special choices for H, summarized
as follows. (In the following, ¢, B, and 4 are constants, (3.3) is assumed to hold, and v is
defined by (3.5) with a specific—but arbitrary—choice of “+". The differential equation
in each case is obtained from (2.13) with L as in (3.4), while the first integral is obtained
from (2.14). We omit the routine—but burdensome—algebra. The reader who wishes to
verify these results should bear in mind that r(t) = 1, yo(t) = t", A = f/H?, and v is defined
by (3.5).)

Case 1. (H(t)= 1) If

(") + [gf* ™2 + Bt~* "% Ix + At ~*""=*3|x|"sgn x = 0,

then
fl‘“"’(x'lz ¥ [ﬁ‘—lv + vz‘mn—n]xz = zvtufhulxxr + mi lh-(ufnv leun-l =

Case 2. (H(f)=¢~>"**"\)1If
(I*X) + (B + q)* " 2x + Agim* IM=(m 302 |y mgon x = (, (3.6)
then -

ikt 1(x»}2 + (ﬂ + q}[t-lxz + {k . lk*xx' + Arlm* IMk=-1)2 Ixian-l =C

m+ 1 3.7)

[Notice that we may take a = B + g to be the arbitrary parameter in (3.6) and (3.7). In
verifying the coefficient of x? in (3.7), notice that —wv + k — 1) = g, from (3.5).]
Case 3. (H(t) = t=**~2**2) If
“lx-‘}' + [qll-l + ﬁ[3l+¢t—4] + Afllll!flﬂ"l"'lﬂ" I"II"SSDX Sy 0‘
then
tz-h(xsz + [ﬂtzl-l-:w—! + “‘ +v— ”zf—h]xz + Z(k +v— ”l-zn-lxxf

+ = i lltilﬂ'nﬂ*v- I]*x[n+l =c.

Remark. Changing the choice of “+™ in v [cf. (3.5)] is equivalent to replacing v by
I — k — v, which merely interchanges Cases 1 and 3.

Taking f = g = v = Oin Cases 1, 2 and 3 yields three classes of Emden-Fowler equations
with first integrals, as follows. (Recall that (k — 1) (m + 1) # 0.)

Example 1. If

(*x'Y + Ar~*|x|™sgn x = 0,

MLK 12:)-D
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then

1#(x)? + pmses IllX{"” =C
Example 2. If
(Y + plem® DA=tm+ 302 xpm ggn x = 0, (3.8)
- then
l; l ) + (k= Dtxx’ + m—2~+lzzt-* = xpmtt =, (3.9)
! 1, Example 3. If
T (t*X) + A= D=+ 3 gm o = 0, (3.10)

then
13(x) + (k — 1)%x? + 2(k — Dexx’ + m_i 1 Aghmr D =10 mr 1

Example 4. Rosenau [12] has shown that the equation

(t***x') + At*|x|™sgnx = 0 (3.11)
has a first integral if either
"; (+a—Um=3—a+u (3.12)
I
i or p
i w+a—lm=3—-2a—p (3.13)
The conclusion concerning condition (3.12) can be obtained by setting
k=p+a and p=[(m+ 1)k—(m+ 3)]/2 (3.14)

in (3.8). It is cas;ily verified that (3.12) and (3.14) are equivalent. Similarly, setting

el A

k=p+a and p=(m+2k—-(m+3)

e

in (3.10) yields (3.13).'Example | with k = 4+ « and u = --k provides another case—
apparently missed by Rosenau—in which (3.11) has a first integral: p+a —1 #0,
2ut+a=0m# —1.

Example 5. Rosenau [12] also showed that the equation

R

Ex" + (1 + e)x" + At*|x|™sgnx =0 (3.15)

has the first integral

2
N o £+ 21,12 1, mt )2 m+1
I(t,x,x') = rf (x)* + crf* 'xx +—!Rt“ |x| (3.16)
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2 =clm—1)=2, (3.17)

thus generalizing the example of Djukic [13] with ¢ = 1. To deduce this result of Rosenau
from Example 2, rewrite (3.15) as

(%) + A"t x|™sgnx =0,
and let f + q=0, \

sl (m+l}k~(m+3}=

. U+ ' (3.18)

k=c+1

It is easy to verify that (3.17) and (3.18) are equivalent, and that (3.9) then reduces to (3.16).

Example 6. Takingk = 0,4 = —1 and m = —2 in Example 2 yields a result of Vujanowic
(14]; namely, that if ~

"

x" =t Y3 1sgnx =0,

then
f(x')? —xx'+ 22 x| = c.

Example 7. Taking 4 = 1, k = 2, and m = § in Example 2 shows that the Lane-Emden
equation

(Bxy +2x*=0
has the first integral
I(t, x,x') = B3(x')® + *xx’ + § x5,

This is equivalent to a result of Jones and Ames [3].
Example 8. Lewis [15] has shown that the equation

X"+ ¥tx =0
has first integrals of the fo;m
I(t, x, x') = r~2x? + (rx’ — r'x)?,

where r is any solution of

4+ oir=r
Lemma | provides a more direct result in some special cases. Let

M) =co+cyt +ct* >0, 1€,

and suppose that

x"+ Aht) 3x=0, tel.
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Then Lemma | with a = 0 and m = 1 implies that

h(x')? + (% + ;I—l) I _KWxx'=c.

A special case of this (with A = 1 and h(t) = %) has been given previously by Lewis [15]
and by Eliezer and Gray [16].
Example 9. Consider the constant coefficient homogeneous linear equation

X" +ax' + Ax =0, (3.19)
which is of the form governing the damped harmonic oscillator, and can be rewritten as
(e*x’) + 1e¥x =0.

This is of the form (2.24) withm = 1, yo = 1, r{t) = ¥, B =0and H(r) = e™™, so that (2.23)
holds. Substitution into (2.14) (with 4 = 0) yields the elementary conclusion that

e[(x) + axx’ + ix¥] =c .

A

for any solution of (3.19).
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