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AN ALGORITHM FOR THE INVERSION OF FINITE TOEPLITZ
MATRICES*

WILLIAM F. TRENCHf

1. Introduction. In this paper we consider the problem of the inversion of
positive definite matrices of the form

(1.1) Toh = (¢hrs) 0<rs=nnz=0,

where the sequence {¢;}, — = < j < =, is Hermitian and positive definite.
That is

(1.2) ;= ﬁ_b—i ]

and for any n = 0, and nontrivial n-tuple (¥, 1, -+, ¥n-1),
n—l

(1.3) f‘:ﬂ Gl > 0.

Matrices of the form (1.1) are called Toeplitz matrices. They play an
important role in the theory of discrete random processes. For example, if
{ye}, — = < k < =, is a real gaussian stationary process with zero mean
and variance ¢* such that, for every n, the joint distribution of (o, 1,

-, ¥a) is of rank n+1, then the autocorrelation sequence
E[yk-yi,-]

0.2

¢; =

possesses properties (1.1), (1.2), and (1.3). In order to find the joint
probability density function of (g0, 1, - - -, ¥a), or of any n + 1 successive
variates, it is necessary to invert the matrix 7', .

In this paper, we derive an exact recursive procedure for the numerical
inversion of an arbitrary positive definite Toeplitz matrix of finite order,
which takes full advantage of the strong restrictions placed on its elements
by (1.1), (1.2), and (1.3). The number of multiplications required for the
inversion of an nth order Toeplitz matrix, using this procedure, is pro-
portional to n°, rather than to n’, as in the case of methods which are
suitable for arbitrary Hermitian matrices. To the author’s knowledge, this
inversion algorithm is the first to be specifically designed to take advantage
of the peculiar simplicity of the general Toeplitz matrix. In addition, the
closing section of the paper is devoted to a statement of an algorithm for
the inversion of non-Hermitian matrices of the form (1.1).

* Received by the editors February 22, 1963, and in revised form November 20,
1963.

+ Radio Corporation of America, Moorestown, New Jersey. Presently affiliated
with Drexel Institute of Technology, Philadelphia, Pa.
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Siddiqui [1] and Wise [2] have previously obtained the inverses of
Toeplitz matrices, in closed form, in the case where the sequence {¢;} has
a generating function of the form

1 - ;

AQA(/z) PIRLE
where A(z) is a polynomial with real coefficients, with no roots on the
unit eircle. In the theory of stationary time series, it can be shown that
{¢,} is then the autocorrelation sequence of a pure autoregressive process
[1]. Also, Calderon, Spitzer, and Widom [3] have considered infinite matrices
of the form (1.1), and developed conditions for the existence of the inverse.

2. Computation of the inverse in the general case. Let B, = 7,7, and
bren, 0 <7, s £ n, be a typical element of the former. Irom (1.2) it
follows that

brsn — barn .
In addition, B, is symmetric about the secondary diagonal. That is,
br.m = bn—s,n—f.n 3

a property which is called persymmetry by Wise [2].

We now derive a recursive procedure for expressing B, in terms of
B, . From (1.2) and (1.3), ¢y is real and positive. Hence, we can normalize
with ¢y = 1, so that by = 1.

Assume that n = 0. We can write

5T ¢
Tn+1=[1 U“jl, where Un=|:f il
U. T,
¢n+1

and where U,” is the conjugate transpose of U,. We can also partition
B in the form

_ bl)ﬂ.ﬂ+l ]"_’nr
(2.1) Bn-i-l - [ IV" An ] ]

where be n41 is & scalar, W, is an (n + 1)-dimensional column vector, and
A,isann+1 by n-+41 matrix, all to be determined by means of the equations

(2.2) boenst + Wa'Un = 1,
(2.3) Illlltl.wn+l[jrv|1" + ”-?ann = 0:
(2.4) W. + AuUs = 0,

(2.5) WaUsT + ATy = 1.
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Solving (2.3) yields
(2.6) Wa" = —bwns1Un Ba,
which can be substituted into (2.2) to yield
boo,nsr = A

where

Ay =1 — U Bl
The existence of B, , and consequently of bg,.41, ensures that A, = 0.
From (2.6),

W." = —4,7'Us"B,.
Equation (2.5) can be solved to yield

A, = B, + A'B,U.U."B,.

In obtaining this solution, we have not used (2.4). This equation is not
independent of (2.2), (2.3), and (2.5); but it is consistent with them.
Substitution of these results into (2.1) yields

A —A,7'0B,
5 Rrd = £ >
(27 Ban [—A,.“B,, Us B.+ AT'B. U, U,.’B,.]’ n 0.

This relationship provides a recursive procedure for the caleulation of
By, By, .-.. However, it has the disadvantage of requiring the compu-
tation of B, forr = 0, 1, ---, n in order to obtain B,,,. Fortunately, it is
possible to derive a simpler recursive procedure from (2.7), which we now
proceed to do.

Define the vector ¥, by

P«..,

¥ =¥ | = B,
b

or, explicitly

(2.8) Uou = 3 bt

By inspecting (2.7), we conclude that

(8.) bw‘u-f—l = Anhz:

(b} bﬂs.ﬂ+1 = _Au—l J’R—LN E] l é § é n + ]a
(2.9) .

(e) bonnr = —Ay ¥t 12 » S04

(d) bra‘n+l = EJ|v‘—1.ar—I.='a + An_.]\t"r—l‘n‘;s—l.u y 1 é r,s é n—+ 1.
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The property of Hermitian symmetry is evident from these equations. In
addition, we have noted above that B,,, is symmetric about the secondary
diagonal, so that after some manipulation of indices, we can obtain the
following relationships from (2.9):

() bapinttngr = An+1:

(b) br,n+l.u+l = -ﬂn—l’}n—r.n| 0 é T é n,
(2.10) .

(('-) bﬂ-l—l.s.”H—l = ‘_an 'pn—z‘n 3 0 é 5 én,

(d) bra.!:-i—l == brau + 6:1_I\;u—r.u’|f/n- By 0 é r, s én

By comparing (2.9d) with (2.10d), we can conclude that
bnm — br——-l,c-l.u + A;l_lhf":-—l,n';n—l,n s J’n-.r,n‘&u—s.n], 1 é r, 8 é n.
By comparing (2.10a) with (2.9d) for r = s = n + 1, we find that

An ' = bunn + A | Ya [,
so that
B = (1 = | ¥uu [Anea, n 20,
if we define A_; = 1. By comparing (2.9b) with (2.10d), we deduce that
bon = — B [nn¥n—en + Voot al, 1Sssn

To summarize the results to this point, we have shown that A, and the
elements of B, can be expressed completely in terms of the quantities
Auvy Wony 0, ¥an by means of the equations

(a} An = (1 T r‘pvrn |E)An—l 3

(b) bom = Anly,
(2.11) (€) bum = =80 [Waaumsn + Vaorl, 1585 m,
(d) b = =8 Wunbnrin + ¥r1als 1isswigm,
(@) brn = brotiectm + AT WrmtaBetin — PnoraWumsunls
1 =82 n.

In an actual computation, an economy ean be effected by means of the
following procedure.

(i) Employ (2.11a) and (2.11b) to compute the zeroth row of B, .

(i) Employ (2.11¢) to compute the rest of the clements lying above
both diagonals, or on the diagonals.

(iii) Obtain the remaining elements above or on the secondary diagonal
by means of Hermitian symmetry.
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(iv) Obtain the clements below the sceondary diagonal by means of

the syninetry about this diagonal.

We now derive recursion formulas for the computation of the vectors

¥y, ¥, .-, which do not require the calculation of By, B;, -
(2.7), with n replaced by n — 1,
Al —AL ¥
(2.12) B, = s I o
=2V B+ AW Y

Define

J’f +1

V., = ¢.n ,
&

From (2.12)
(2.13) B.V, = [

The rth component of B,V is given by

n

(BuVa):

brman+1—a = Z br.n—s.ﬁ&s-}-l
0 =0

g =

A:ll( 4_’ﬂ+1 - \I':—l Vﬂ-l)
By Viq — 5:1—1(&; o= Wy Vi)W,

Enbs.n—rméa-i-l = Z‘)En—r,n.naﬂl = 'I/n—r,n 3

|

... From

IV
=

1%
=

where we obtain the last equality by inspection of (2.8). By taking conju-
gates on both sides of (2.13), writing the result in eomponent form, and

using the last identity with » replaced by n—r, we find that

(a) Yo = Yrn1 — q"\-&n—r—l,u—l

(2.14)
(b) Yun = n,

where

(2.15) ¢u = é\:l—l(ﬁbnﬂ — W V) = &:}-1(¢n+1 e Z,: Yen1Pns ),

and, recalling (2.11a),
(2.16) A, = (1 — [Q'n |2)An—l-

0=r=n—1,

Equations (2.14), (2.15), and (2.16) provide a recursive means for the

calculation of A, , Yo, <+, Yus In terms of Apoy, You 1, - --
1, b2, -+, buy1, for n = 1. For starting conditions,

(2.17) Yoo ™ By Nepw;

s ¥n-1.n—1 and
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Thus, if it is required to obtain B, for some positive n, it is only necessary
to use (2.14) through (2.17) for 0 = » =< n, and then B, can be obtained
from (2.11). However, the relationships expressed by (2.11) are still some-
what awkward, because they seem to indicate that the inverse of 7',
depends upon ¢,41, by virtue of the dependence of ¥4, , -, ¥, on the
latter. We will now derive a new set of relationships, similar to (2.11),
which does not suffer from this defect. I'irst we define, for every n, ¥y, =
—1land ¢,, = 0if » > n. With this extended definition, we write (2.14) as

(.—).18) ‘xbm = \E’r.n--l - ‘bﬂn'}"ﬂ--r-l.u—l ] r o B

If in addition, we now define b,,, = 0if » or s is negative, we can rewrite
(2.11) more compactly as

\;J,-,n = br—]..ﬂ—‘l.n + An’_][’#r—l.u’;s—l.n - ’I’u—r.n‘;’n—«.nl’
(2.19)
0=nrns=n

v

Iinally, this can be rewritten in the form
(2.20) brg“ = br-.l..«--l,n + A:-l—l[\br—l.n—l'}-"n—l.n—l - 'I’n-—rm 1"’:«- s.n-I]t

in which none of the terms are dependent on ¢n41 . The equivalence of
(2.19) and (2.20) ean be verified by substituting from (2.18) into (2.19),
and applying (2.11a).
TFor the reader’s convenience, we will now collect the formulas which
define the algorithm, assuming that we wish to invert 7', .
Yo = ¢1, Ay = 1.

Apay = (1 — | Ym1.mr |2)Am_2-
m—1
\&mm = d;‘-i(¢m+l - Z-;u &#.‘N--l‘bﬂl-—!)-
'Pﬂrr — wr‘m—l = \E’mm\?’m-r-l.m—l il U g ¥ é m — 1-

The last three formulas are used for 1 £ m = n — 1, To obtain B, , com-
pute as follows.

I‘)Uﬂn = A:l—l .

IIA
IIA
=

bemn = "—611—1‘%..1."—-1 3 1
!‘er = br—‘l..e—l.n + A:I—I(‘}"r—l.ﬂ— I'I’x—],n—l - J’n—r.n—l"’n—s,n—l)'

The last two formulas ean be used to compute the elements which lie in
the triangular section of B, which is bounded by the zeroth column and
the two diagonals (including points on the boundary). The rest of the
elements can be obtained from these by exploiting the Hermitian sym-
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metry about the prineipal diagonal, and the symmetry about the secondary
diagonal.

It is also of interest to compute the determinant of 7', , which we denote
by || Tx ||. In (2.7), take determinants, multiply the first row of || B,y || by
¥ , and add the result to the (r + 1)th row, 0 < » < n, to obtain
1 ﬁu-ll _AB_IGNTBN

| Buna || = |

1o B, I = A7 B, =nz0

so that

IV
Er

| Tasall = Il A, n =

I Toll = 1.

In addition to their importance in the computation of the inverse matrix
B, , the vectors {¥,} play an important role in the problem of linear pre-
diction of a stationary time series. A detailed discussion of this problem
is given by Yaglom [4, pp. 97-103]. The result of interest can be deseribed
as follows. Let {y} be a complex stationary time series with autocorrela-
tion sequence

¢; = Byl

Then, if we wish to predict the value of i1, given ye, o1y <<+ ) Yien
it can be shown that the best linear estimator of y;,, is given by

(2.21) i1 = ZJ Yenllir »

in the sense that of all linear combinations of ¥ , i1y -+, Yaen, (2.21)

is the one for which the variance £(| i1 — ey [°) is minimized.

3. Generalization to the non-Hermitian case. The algorithm of §2 can
be generalized to the case where 7', is of the form (1.1) but not necessarily
Hermitian. The algorithm deseribed here can be employed to invert 7',
if each of the matrices Ty, Ty, ---, T is nonsingular. The derivationof
the algorithm follows essentially the same lines as in the Hermitian case
and will be omitted.

TFor the non-Hermitian case we cousider, for each m, two (m 4+ 1)-
dimensional vectors, ¥,, and H,,, defined by

IV L1 -1
Tu¥n={ % | and T.H.=| %*

bm+1 P—(m+1)
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The components of these two sequences of vectors satisfy the recursion
formulas

IA
g
|

’J’m — wr.m-l - l&mmﬂm—r—l,m—lg é r=
r

IA

1A

3
|

0
Mem = Mrom—1 — ﬂmm‘;’m—r—l,m—l, 0

m—1
1J‘mm — &;j—l [%!+-l — ZD wﬁ."l—l%—-l’] E]

m=1
-1
N = A 1[¢—(m+l) = le ?:"ec.m—l‘ﬁ—(m—s)il y

Apc1 = (1 — Yt me1met ne1)Am—z ,
with starting conditions
Yoo = ¢, N = P-1, A=,

We have assumed, without loss of generality, that ¢, = 1
In order to compute the inverse of T, , these computations are carried
out for m = 1, -++ , n—1, and the elements of B, are given by

=1
buﬂn = Ay )

brnn . —A,_‘l_]_;&,._].,,_| ) 1 é r é n,
=]
bogn = —Au—1Nem1.n—1, l1=s=mn,
-1
brm = br—l.a—l.n + Au—l{#" 1 a—1Te—1 =1 — ’?u-r.u—l'&n-a.n—l]} LS r, 8 = n.

It is only necessary to use the last formula for r 4+ s =< n, since the re-
maining elements can be obtained from the relationshi

(reflection about the secondary diagonal).

¥

<
p

br«m = bn—u.n—r.n
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