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Formulas are given for the characteristic polynomials {PafA)} and eigenvectors of the family
{ T} of real symmetric Toeplitz matrices generated by a rational function R(z) with real
coeflicients such that R(z) = R(1/z). The formulas are in terms of the zeros of a fixed
polynomial P(w; £) with coefficients which are simple functions of 4 and the coefficients of
R(z). The representation for p,(4) exhibits two factors such that the zeros of one have
associated symmetric eigenvectors and the zeros of the other have associated skew-
symmetric eigenvectors. In all of these formulas, n is a parameter; that is, the formula does
not become more complicated as n increases.

1. INTRODUCTION
Let
q .
AZ)= Y a2
i=0
and

P
Cla)= Y ¢,
I==p
where ag,@y,...,a, and c_,... ,Cp, are real, cy=cll<j<p),
(p + qaga,c, # 0, and no two of the polynomials A4(z), z%4(1/z), and
2PC(z) have a zero in common. We consider the real symmetric Toeplitz
matrices

TL=0-d=1 (=12, (1)
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associated with the coefficients {t;} in the formal Laurent series

) =
A@A2) ™ F);m 2 @

defined as follows. If ¢ > 0, write
l @
—_— o 2’[, zZ| < R, {3)
Az) ,,2:0 2 i

where
R =sup{p|A(z) # 0if |2] < p},

and define the formal Laurent series on the right of (2) by

E 1z = C(z)[z‘ﬂz}(i a:jzf) + g(z) f a‘,z"‘], (4)

j=-w j=0 i=0
where f and g are the unique polynomials of degree < g such that
2f(2)A(1/z) + g(2)A(z) = 1. (5)

(Recall that 4(z) and z°A(1/z) are relatively prime.) This series formally
represents the rational function on the left of (2) in the sense that formal
multiplication yields

A@A(1/2) Y 12 = C(2),
j=-w
because of (3), (4), and (5).If g = 0, then h=cif—p<j<pandr;=0
AFJj| > p; thus, (1) is banded if n > 2p.

If R > 1, then we can replace “~" in (2) with “="for all z in the
annulus /R < ]z] < R. The covariance matrices of real-valued
autoregressive moving average time series are Toeplitz matrices
generated in this way by rational functions of the form (2), where A has
no zeros in |z| < 1, C(z) = B(z)B(l/z), and

B(z) = i b2,
i=o

with by, ..., b, real.

In [2] we obtained formulas for the characteristic polynomials of
Toeplitz matrices for which the {r,} in (2) are the coefficients of a formal
Laurent series of an arbitrary rational function, so that T, need not be
symmetric. Here we start with the results of [2] specialized to the
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symmetric case, and deduce from them new formulas which give
additional insight into the symmetric case. Numerical experiments
- (discussed in [3]) seem to indicate that these formulas may provide an
eflicient method for computing the eigenvalues of these matrices.

We let

max(p,q)=m2=1, (6)
and define 0_,,...,0, by
[A(2)4(1/2)] =j): 0,2, 1)

It is convenient to define ¢; = 0 if |j| > p and 8, = 0 if |j| > q.
We start from the following lemma, which can be obtained by
applying Theorem 2 and Corollary 1 of [2] under our present

assumptions.

LemMMA  Suppose that A is such that

Cw— 40, # 0, (8)
and the Laurent polynomial
Q(z; ) =co— A0p + Y, (c; = A0))(Z + z7Y), 9)
j=1
has 2m distinct zeros ' : |
FA TR k1™ Bt T Bt (!0}
1 Zm

Fornz 1, let D, be the 2m x 2m determinant given in block form by

p | [27'4@] (277" A(1/z))] "
n [z:-l-m-l-r— IA“[’Z,}] [zl—n—m-r-l IA(Z_‘}] L
where | < r,s < mineachof the four m x mmatrices on the right. Let V
be the 2m x 2m determinant obtained by letting n = 0 and A(z) = | in
(1), i.e.,
BT BT
Tl el

is the Vandermonde determinant of the zeros (10) of Q( ; A). Then the
value of the characteristic polynomial

Pa(A) = det(al, — T), (12)

is given by
Pa(A) = K,(cp — 26,,)"D,/V, (13)
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where K, is a constant. Moreover, if 1 is an eigenvalue of T, and
{Gyr... Gm Hy, ..., H,} is a nontrivial solution of the 2m x 2m system
m

(@ Y [Z7'4G)G, + 2" A(/z)H) =0, 1<r<m,

m (14)
!b}E [z:i-mfr—lA“/z,)G’ + z’-n—m-r»l-lA(z’)Hj] o 0' 1<r< m,

=1
(which has the determinant D,), then the vector

U={uy,...,u,l", (15)
with components

u, = i A(z)A(1/2)[Gzr* ' + Hz ™", 1<r<m,(l6)
s=1

is a A-eigenvector of T,.

The value of K,, is given explicitly in [2], but it is not important here.

2. THE MAIN THEOREM

Following Cantoni and Butler [1], we say that an n-vector (15) is
symmetricift, = Uy, 4 (1 < r < n),or skew-symmetricilu, = =ty 4
(1 < r < n).Cantoni and Butler have shown thatif T, isa real symmetric
Toeplitz matrix of order n, then R" has an orthonormal basis consisting
of [n/2] skew symmetric and n — [n/2] symmetric eigenvectors of T,.
(Here [x] is the integer part of x.)

The following is our main result.

Tueorem | With0_,,..., 0, as in (7), let

Pwid)=co— A0 + 2 Y (c; — A0)t,(w), (17)

j=1
where t,,....,t, are the Chebychev polynomials: i.e., t,(cost) = cos nt.
Let 4 be such that (8) holds and P( ; 2) has m distinct zeros wy, ..., Wiy

such that
wy# 1, =1, 1<j<m. (18)
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Now let
y,=hcos'w, 0< Re{yj)sg, (19)
and define
C.ly) = i ajcos(n + 2r — 2j — 1)y, (20)
and e
S"'()"’)=_§:Da“5in{n+ 2r=2—1py;. (21)
Then the value of the characteristic polynomial (12) is given by
pald) = K, (c,p — 20,.)"F o, (A)F (1), (22)
where
Fonl2) = det?:;ggr(ﬂ;]; - (23)
and
Filijme s S0t 24)

det[sin(2r — 1)y, J7-,

Moreover, if F (1) = 0, then T, has a A-eigenvector which is symmetric if
| = 0, or skew-symmetric if | = 1.

Proof Define
=w, 4+ /W =1, 1<r<m, (25)
so that
w, = i(z, + 1/z,).
From the defining property of the Chebychev polynomials,
ty(w,) = 3z} + 27);

therefore, z, and 1/z, are zeros of Q(z; 4) (cf. (9) and (17)). Moreover,
since wy,...,w, are distinct and satisfy (18), the quantities (10) are
distinct, and the hypotheses of Lemma 1 are verified.

We now perform manipulations on D,, as defined in (11). For
1 < s < m, divide column s and multiply column m + s by z" *2m~ 12 tg
obtain

- [zs_(n*Z"“ZF+|1f2A(2,)] [zini‘lm-lri- ”ﬂA“frZ;)]

D" I [z:ni-Zr- HIIA{I;Z‘J] [z’-—(n+1r—ll.|’2A(z,}] ’
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Now it is convenient to reverse the order of the first m rows to obtain

[2’-II’+ 2r - I'.I!ZA(z’)] [ziu-l- 2r—- ”'FZA(]!.Z,)]

[z;"”"“”A{I;’z,)] [z’-(n'i'zr"“fIA(z,}]

(For typographical reasons we are not specific about the “+", which
pec

will turn out to be irrelevant to our final result.)
Subtracting row r from row m +r (1 < r < m) in (26) yields

D=+ @)

={m+2r=1)2 (n+2r—1)2
b= 4] A
E, -
with
E,, — [z:n+ zr—mzA(”z‘} - z,“"'*""”’A{z,)];’l‘,ﬂ . (28)

Now adding column s to column m + 5 (1 < s < n) in (27) yields

=~(n+2r-1)2
D, = + [z, A(z,)] F, ’ (29)
E, 0,
where O, is the n x n zero matrix and
Fo=[2t2"124(1/z2,) 4 z;@* -2 4z g1 _ (30)
Now Laplace's expansion of (29) yields
D, = tdet(E,)det(F,). (31)
By taking A(z) = I and n = 0, we infer from this result that
V = +det(E)det(F), (32)
where
B [zlzr-lifl e z;t!r—l)f!]m i {33)
and ‘
F = [.,_22:-1)!1 + z’—ur—mz ;n’: 5 (34)

+ in (32) is the same as in (31). Since V is the Vandermonde
determinant of the distinct points (10), (32) implies that det(E) # 0 and
det(F) # 0.

Now (13), (31), and (32) imply (22), with

and the +

_ det(F,)
Fou(A) = det(F)’ (35)
and
Fia(d) = detik) (36)

det(E)”
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With y, as in (19), w,=cos2y, and (25) implies that z; = e,

Substituting this into (28), (30), (33), and (34) shows that (35) and (36)

can be rewritten as (23) and (24), respectively. (Recall (20) and (21))
If Fi,(2) = 0 (I = 0 or 1), then the system

Y. [A)zy ™ 8.4 (WA /)0 R]P =0, 1<rgm,
s=1

has a nontrivial solution P,,..., P,. From this it is straightforward to
verify that the system (14) has the nontrivial solution

Hy=zf"2""00P, G = (=1)z;®*" 2P, I<s<m.  (37)

(To see this, it is convenient to replace r by m —r + 1 in (14a).)
Substituting (37) into (16) yields the eigenvector (15), with

u, = Y ARJA(I/z)P[20~ ¥+ VR 4 (_ 1)z -2t 02] (3g)
s=1

It is easy to verify that u,_, ., = (—1)',, which completes the proof of
Theorem 1.

3. A REMARK

It is generally agreed that attempting to compute the eigenvalues of a
high order matrix by any method involving the application of root
finding techniques to its characteristic polynomial is wildly impractical.
However, Theorem | essentially reduces the solution of the eigenvalue
problem for T, to finding those values of A for which either

del [Crnh’s]]:.'s= 1 &r 0 or del[an(Ys)]:.':= 1 = 0. (39)

The computations to determine y,, ..., y,, for a given 4 are independent
of n, and n enters into these determinants only as a parameter.
Moreover, elementary manipulations make it possible to delete complex
terms and factor out exponential factors which occur in the
determinants in (39) if some of the quantities y,,..., 4, are not real-
valued. Therefore, the determinants in (39) can be replaced by “well-
scaled” functions which have the same zeros as p,(4), but do not vary
wildly, as p,(4) does if n is large; in fact, they are bounded for all n.
Numerical experiments already performed (and reported in [3]) show
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that this approach can be used to obtain all eigenvalues of high order
rationally generated symmetric Toeplitz matrices such thatm = I, 2, or
3in (6), and at a cost per eigenvalue which is essentially independent of
the order n. There seems to be no theoretical reason to preclude the
extension of the method so as to deal with larger values of m.
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