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TOEPLITZ SYSTEMS ASSOCIATED WITH THE PRODUCT OF A
FORMAL LAURENT SERIES AND A LAURENT POLYNOMIAL*

WILLIAM F. TRENCH®t
Abstract. A method is proposed for solving linear algebraic systems with Toeplitz matrices generated by
T'(z) = C{2)$(z), where C(z) is a Laurent polynomial and #(z) is a formal Laurent series, and a convenient
method is available for solving systems with Toeplitz matrices generated by $(z). Special cases of the method

provide O(n) procedures for solving n X n systems with banded or rationally generated Toeplitz matrices. The
latter do not require recursion with respect to n.
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1. Introduction. To motivate the problem considered here, let {x;} be a wide-
sense stationary time series (possibly complex-valued) with zero mean and covariance
E(x,f_,} = ¢f—J" If

4
yi=2bxi_), —wo<j<oo,
/=0

then {y;} has zero mean and covariance E(y;3) = {,_;, where

P
“] f{'= Z C,‘¢"..|¢,
{==p
with
Pl
C“:. Z bvbl+!! Oélép’
r=0
and
prl
o= z bv‘bl'*f\ _péfé_l.
¥=0

Minimum variance estimation problems concerning the time series {y,} require
solutions of the systems

(2) T,X=Y,
where T, is the n X n Toeplitz matrix
[3) Tn=(f|'-;):{_:-l-

(See, e.g., [16, pp. 20-23].) Definition (1) suggests that if we have an efficient way to
solve the systems

(4) ¢, U=V,
where
(5) D= (i )=15

* Received by the editors November 15, 1985; accepted for publication (in revised form) August 3, 1987.
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182 WILLIAM F. TRENCH

then it should be possible to exploit it in solving (2). Here we propose a method that
does this; however, since our results are not restricted to systems with positive definite
Hermitian Toeplitz matrices, we first formulate the situation more generally.

Let

¥2)= T @2

j= -
be a formal Laurent series, and let

P e
© C@)= T gzl

j=-q
be a Laurent polynomial, with
(7 p.q=0, ptg=kz1, c,c,#0.
Now define
T(z)=C@)¥(2)= 2 1,7/,
j=-00
so that
p

(8) L= 2 €ti-1.

I=-gq

We are still interested in solving (2).

There are many algorithms for solving Toeplitz systems that take advantage of
their special simplicity. (See, e.g., [3], [8], [11], [12], [17] and [18]—by no means a
complete list.) However, most require assumptions that are not met by all Toeplitz ma-
trices, and some are stable only for certain classes of Toeplitz matrices. (In this connection,
see {2].) Our results should be useful if there is a convenient algorithm for dealing with
the matrices generated by ®(z) which does not apply to those generated by T(z). This
could be so, for example, if the former are Hermitian, symmetric, triangular, or positive
definite, or if there is a convenient explicit formula for their inverses, while the latter do
not exhibit the desirable property. Our results provide a way to transfer the burden of
computation in solving (2) to a problem involving ¢, , and the banded matrix

(9) Cr! k= (C:' —_:']E;J‘l

(cf. (7)). The method also entails the solution of a k X k system. Since there are several
algorithms for solving banded Toeplitz systems (see, e.g., [1], [4], [9], [10], [13], and [14]),
this procedure should be useful if n is large compared with k. Moreover, we also formulate
a procedure that avoids using any of the previously published algorithms for solving
banded Toeplitz systems and—as a by-product—provides a new method for this purpose;
however, for reasons of stability, this method requires some knowledge of the locations
of the zeros of C(z). The method also provides an O(n) procedure for solving (2) when
T, is generated by a rational function. (See § 4.)

2. Derivation of the method. We emphasize that we are not proposing to produce
a complete algorithm here. Rather, we are assuming that an algorithm is already available
for solving the system (4), where m = n + p + g = n + k henceforth, and we wish to
indicate how this can be exploited to solve (2).
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Let # be the underlying field. From (5), (8), and (9),

[pXp] [pXn] [pX4q]
Cu®m=| [nXp] T, [nXq]
[gxpl [gxXn] [gXq]

where T, is as in (3) and the other blocks have the indicated dimensions. Therefore, an
n-vector X satisfies (2) if and only if

0, Us
Cubm| X |=| ¥
0, Vo

where 0, and 0, are zero vectors of dimensions p and g, respectively, Uy € #*, and
V, € 9. For our purposes, it is convenient to view this in the manner stated in the
following now obvious lemma.

LEMMA 1. The system (2) has a solution for a given Y if and only if there are vectors
U, in FP and Vy in F9 such that the system

Uo
(10) C®,G=| Y

has a solution G of the form
(1) G=| X

in which case X satisfies {2}..
Now let ¥ ~be the subspace of .#" consisting of vectors

W= [W—p+ [E \""ni—q]:

whose components satisfy the homogeneous difference equation

P
(12) > ewi-; =0, 1=iZn,
I==g
and let
(13) Wy=[wh, 1, o watd, 1SSk,

form a basis for ¥ . Let

(14) F=[f—_n+lv"'vf;1q}r

be a vector in -# ™ whose components satisfy the nonhomogeneous difference equation

P
(15) 2 afi-i=y 1=i=n.

I==gq
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From the definition of C,,, (12) is equivalent to

U
(16) CaW;=10,|, 1 ==k,
v
and (15) is equivalent to
U
(17) C.F=|Y|,
Vv
where U, U,, -+, Uy are in F?, 0, is the zero vector in .#", and V, V,, ---, V,
are in #Y.
There 1s no doubt about the existence of F and Wy, ---, W, in fact, there are
many ways to choose them. We will discuss this in § 3.
THEOREM 1. Let F and Wy, -+, Wy be as just defined. Suppose that for each
Jj=1, -, kthe system
(18) o, W, =W,
has a solution
U;
(19) _ W=\ H; |,
f
and that the system
(20) ®,F=F
has a solution
U
21) F=|Y
v
where {U, Uy, -+, U} C F2, (Y, Hy, -+, H) C F" and {V, V,, -+, Vi} C F*.
Then the system (2) has a solution if there are constants a,, -+ - , ay such that
U U, U
N=a} 5 |+ +al .
£l ool
in which case the vector
(23) X=Y-a\H - —aH

satisfies (2). Moreover, the converse is true if ®,, is invertible.
Proof. For sufficiency, suppose that (22) holds, and let

G=F_31W|_ ahiid _akW&,
which is of the form (11) with X as in (23), from (19), (21), and (22). From (18) and (20),
Cn®,G=Cp(F—a/W,— - —a,W)),
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-and so (16) and (17) imply (10), with

Us] _ U—a U, e a U
vl vl “n vl
Therefore, Lemma | implies that X as defined by (23) satisfies (2).

For the converse, suppose that &,, is invertible and (2) has a solution X. Then the
vector G in (11) satisfies (10) for some U in #7 and V; in .#“. From (10) and (17),

U-U,
Cn(F—2,,G)= 0,
V="V,
so F— ®,,G € %", hence
F-&,G=aW,+:+a W,
for some scalars a;, - - - , ax. From (18) and (20), this can be rewritten as
@, (F—G) = a, W, + -+ +a W)),
S0
F=G=a\W,+ - +a Wi,

since &,, is invertible. Now (11), (19), and (21) imply (22) and (23). This completes

the proof.
THEOREM 2. Suppose that ®,, is invertible, let W,, -+ -, W} be any basis for ¥,
and let ¥ be the k X k matrix
g e O
] 20 k ,
Vi - Vi
with U,, -+, Ugand Vy, -+ . Vi as in (19). Then T, is invertible if and only if ¥ is
invertible. N R )

Proof. Since &, is invertible, W, - - - | W exist; moreover F exists for every choice
of F. If ¥ is invertible, then (22) has a solution a,, - -, a, for every U and V/ hence,
Theorem 1 implies that (2) has a solution for every Y, and therefore 7, is invertible. For
the converse, suppose that ¥ is noninvertible. Then there are constants b,, - - - , by, not
all zero, such that

U, U [0,
b +ortby S| =
[n] - +o{n)Ls
This implies that
0!‘
(24) bW+ +hWi=| H |,
0‘]’

with
H=b;!{;+ +kak
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(cf. (19)). Because of (18), we can rewrite (24) as

0?
[25) lel+---+kak=d=m H .
0#
which makes it apparent that  # 0,,, since { Wy, - - - , W} is linearly independent. Now
(16) and (25) imply that
0, Uo
(26) Con®m| H|=10,
0, ‘0
with
k k
Uo= 2 b;U;, Vo= 2 b;V;.

i=1 i=1

However, (26) and Lemma | with Y = 0,and X = H imply that T,/ = 0,, and therefore
T, is noninvertible, since H # 0,,.

Henceforth we assume that &,,, is invertible and that an efficient algorithm is available
for solving systems with coefficient matrix ®,,. Theorem 1 suggests a procedure for solving
(2), as follows:

Step 1. Obtain a basis Wy, -+~ . W for # and solve{IS) for Wy, -+, Wi If (2)
is to be solved for more than one } then store W, W, for repeated use.

Step 2. For the given Y, let Fin (14) be a so]uuon of (15), and solve (20) for F.

Step 3. Solve the k X k system (22) for ay, , ai. (If (22) has no solution, then
(2) has no solution.)

Step 4. Compute X from (23), with H,, - -+, H, as defined in (19) and Yasin (21).

The missing link in this procedure is a discussion of methods for obtaining F and
W,, - -+, W. This is the subject of § 3.

3. Computation of F and W, - - -, W,. As mentioned earlier, there are many al-
gorithms specifically designed to solvc bancled Toeplitz systems efficiently. If C,, is in-
vertible. then we could obtain F by solving (17) with U = 0, and V' = 0, by means of

one of these algorithms. We could also obtain W), - - , Wi by solving (16) in this way,
with
u --- U
[ ol
R

However, all algorithms for solving banded Toeplitz systems require some kind of as-
sumption on C,; in fact, most require that C,, and all its principal submatrices be in-
vertible. Therefore we will suggest a recursive method for computing suitable vectors F
and W,, . W,. This method requires no specific assumptions on C,, (even that it be
mvcmhlc) and it addresses the question of stability; however, it does require information
on the zeros of C(z).
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One solution (14) of (15) can be obtained from the recursion
I 2
(27 _,G=C— Vieg— 2 €fi—q-1]» g+1Zi=n+gq,

g I=—g+1

with f; = 0,if —p + | =i = g. To exhibit a basis for # ', we first consider the Maclaurin
expansion

[z9C(2)] ' = Z o,z"
v=0

The {a,} can be computed recursively
1 P
(28) =" X gt v=1,
Cogi=—g+1
with a, = 0 if » < 0 and «p = 1/c_,. The vectors (13) with
(29) wl=a;_j,p -pt15isntq, 15jSk
form a basis for ¥ . To see that they satisfy (12), observe that if (29) holds, then
P ) P
(30) Y awili= X Gai-jep-t-
I=—q I=—q
However, from (28)
P
z qa,;=0, u>-q
I=-q

Therefore, the right side of (30) vanishes if i=Z 1 and 1 ==k, since then i —j+

p> —q. To see that W, - - -, W, are linearly independent. it suffices to observe that the
first k rows of the (n + k) X k matrix
(31) (W, - WA

form an upper triangular matrix with 1/c_, in each diagonal position; hence, (31) has
rank k.

This procedure provides a formal method for obtaining Fand W, - - - | W; however,
it is computationally useless for large n if C(z) has zeros in |z| < 1. To be specific, let
z;, *++ , z; be the distinct zeros of C(z), with respective multiplicities m,, - - -, my. Then

L
a;= 2 pli)zr',

f=1

where p; is a polynomial of degree n, — 1. This means that the sequence {a;} grows very
rapidly with increasing i if |z;| < 1 for one or more values of /. Since the recursion (27)
has the explicit solution

i-q
fi= 2 @ioygqVe g+1=i=n+tgq,
v=1

with f = 0if —p + 1 £ i < g, f; also becomes large as / increases. Therefore, these
recursions can lead to overflow for large n. Moreover, it is well known that the propagation
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of errors renders the recursion formula (27) useless if |z;| < | for some /. (To a lesser
extent, the presence of repeated roots on |z| = 1 is also a source of instability.)
1f C(z) has no zeros outside the unit circle, then it makes sense to replace the recursion
(27) by
1

p—1
f;l--iz_ Yasp-i— Z Cn‘.ﬁl+p—-i—|‘ ) p§1§n+p—l.
¢ ]

with f;,_; = 0if —¢ = i = p — 1. This also yields a solution (14) of (15). To obtain a basis
for % " in this case, we consider the Laurent series

zPC@N" = Z Bz,
v=0
convergent for large z. The {8,} can be computed recursively
12
(32) By=—= T iBi-pst v>0,
Cpim—g
with 8, = 0if » < 0 and 8y = 1/c,. The vectors (13) with
(33) w=8,_,.;-n —p+1ZiSn+q 15j2k
form a basis for # . To see that they satisfy (12), observe that if (33) holds, then
P W 14
(34) 2 W= 3 CBn-pi-isi-
I=—q I=—q
However, from (32),
P
2 Busi=0, p>-p;
I=-q

therefore, the right side of (34) vanishes if / < n and j = 1, since thenn — p + j —

i> —p. To see that W,, - - - , W, are linearly independent, observe that in this case the
last k rows of (31) form an upper triangular matrix with 1/¢, in each diagnoal position.
Since
L
Bi= 2 aili)z],

=1

where g, is a polynomial of degree m; — 1, it can be shown that this method of computation
isstable if |z = land my = L if|z| = 1 (1 S [ = L).

If C(2) has zeros in both the interior and exterior of the unit disc, then the recursive
procedures that we have considered so far are both unstable. We will now propose a
procedure applicable to this situation. It requires that we know a factorization

(35) C(z)=z""%4(2)B(1/2),

where

A(z)= 7_. az* (apa, #0),
1]

u
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. and

5
B(z)= 2 b,z* (bobs# 0),
vel
withr>0,5s>0,and r + s = p + g = k, such that A(z) has no zeros in [z| < I,
=*B(1/z) has no zeros in |z] > 1, and 4(z) and z’B(1/z) have no zeros in common.
(This last assumption is clearly superfluous if C(z) # 0 for |z| = 1; however, if C(z) has
zeros on |z| = 1, it may be convenient to allocate them between A(z) and z°B(1/z) sub-
ject to this restriction. This would be so, for example, if C(z) = C(1/2), so that Cy, is sym-
metric. In this case an appropriate factorization would be C(z) = A(z)A4(1/z), where
the zeros of A(z) are in |z| = 1.)
Since A(z) and z*B(1/z) are relatively prime by assumption, there are unique poly-
nomials g(z) and A(z) such that deg g < r, deg & < 5, and

(36) 2°g(2)B(1/2) + h(2)A(2) = |;
moreover, the coefficients of g(z) and A(z) can be found by solving a k X k linear system.
Now define
Y(2)= Z vz’
=1

and
Y@= 2 Y1412,
=1

and notice that
(37) Y(z)=z"Y(1/z).

Consider the expansions

Y(iz) 2
{38] : = r_zl +1
A2) r=o£
and
YQ/z)_ &
(39) = Sy
B(1/z) 2:0"
Notice that {£;} and {5;} can be computed recursively, as follows:
1 ’ )
(40) E,=a—o[yf+|—.‘§la;£,-_;], :30,
and
l 5
(41) ﬂ;=—[yn_j+|—2b;ﬂl_f], ;g()‘
bo =1

where, for convenience, we define y; = 0if i£0Qori=n+ l,and § =7, =0ifi <0.
Because of the assumptions on the zeros of 4(z) and B(1/z), the recursions (40) and
(41) are stable, or at worst, mildly unstable if C(z) has repeated zeros on |z| = 1.
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Now define the formal Laurent series

F(2)=297'8(2) T iz +2"* 0 h() T miz™
(42) _ i=0 i=0

= 2 Szl
{= =

Then (35), (36), (37), (38), and (39) imply that C(z)F(z) = Y(z). Therefore, (14)
with 1,51, ***, fas g as in (42) satisfies (15).

To obtain a basis W, - -+, W, for ¥ ', we first define

L(z)=2z%%(2) 2 a,2*+h(2) Z B.2™*

(43) w=0 u=0
= Z 'Yri'".
I=-x

where

(44) AR = S auz
w=0

and

(45) [B(1/2)]'= 2 Buz™
jl=n

The coefficients {a,} and {B,} can be computed recursively, with a, =8, =0 if
p <0, a0 = 1/ag, Bo=1/b.
l r
auz—a_(n.Z. ape, - g, m

i\

and
l 5
Bi=—1 X bilu-i TESE
0=
It is shown in [7] (see also [6]) that the Toeplitz matrix
Fn+ k= (71 —;)E;J(l
is invertible. We will now show that the first r and last s columns of T, form a basis
for # . (This follows from the main result of [7]; however, we include its brief verification
here for the reader’s convenience.) To see this, let W be the vth column of T, . 4, i.€.,
W= [“"‘p‘l‘ Is "7 7 “'ﬂ-iq]’: [Ti"vs e 07H+k—v]f1
sothat w; = ¥;4p-,, P+ 1 =i=n+gq Then
P P
(46) 2 GWici= 2 CYi-1+p-w
I=—q I=-g

which is the coefficient of z'*#~* in the formal Laurent expansion of C(z)I'(z). However,
(35), (36), (43), (44), and (45) imply that C(z)T'(z) = z*~ % therefore, the right side of (46)
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vanishes for | < i = n provided thati + p — v # 5 — g for | = = n. This condition
holdsifl £v £ rorn+ r+ 1 v = n+ k, which proves our assertion.

4. Toeplitz systems with matrices generated by rational functions. If ®(z) = I, then
T, in (3) is the n X n band matrix

Tn=(c|—-))2;- Iy

and &, = I,,. Now Steps 1-4 of § 2 simplify to yield a procedure for solving (2) in which
the only simultaneous system to be dealt with is of order k.

Step 1. Obtain W, - -+, W, recursively, as described in § 3. If (2) is to be solved
for more than one Y, store these vectors.

Step 2. Obtain F recursively, as described in § 3.

Step 3. Solve the k X k system

k
aw=f, —p+1=i=0, n+1=isn+gq
/i
J=1
for a,, -+, ag. (If this is impossible. then (2) has no solution.)
Step 4. Compute

k
xi=fi- % aw!, 1Zi=n.

Jol
The number of operations required for this procedure is O(kn) as n (as compared
to O(k?n) for methods for solving general n X n banded systems that do not have the
Toeplitz structure). Although there are many “fast” methods for solving banded Toeplitz
systems, most of them require recursion with respect to # and are based on the assumption
that the principal submatrices of T}, are all invertible. Moreover, to the author’s knowledge,
the stability of these methods has not been studied, except insofar as Bunch's results [2]

on stability of algorithms for general Toeplitz systems apply to them.

In the situation that we have just discussed, the matrices {7, } can be described as
being generated by the Laurent polynomial C'(z). Now we consider the case where they

are generated by the rational functions

C(z)
T@) =,
A TETIE
where C(z2) is as in (6),
P(2)= X pi2'
=0
and
Q(2)= Z g2’
=0

We assume here that (u + »)pogop,.g., # 0, and that no two of the polynomials P(z),

Q(1/z) and C(z) have a common zero. Here we let $(z) be the formal Laurent expansion
of

R(2)=[P(2)Q(1/2)] !
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obtained as follows:
(a) If Q = 1, then

RG) =[P = 3 6.2,

1=0

so that the matrices (5) are lower triangular.
(b) If P =1, then

0
R@)=[Q(1/2]"'= T &z,
l=-x

so that the matrices (5) are upper triangular.

(c) If u > 0 and v > 0, then ®(2) is obtained from P(z) and Q(z) in the same way
that I'(z) (cf. (42)) was obtained from A(z) and B(1/z) in § 3. (There is no need to assume
here that the zeros of A(z) are confined to |z| = | while those of B(1/z) are in |z| = 1;
however, if these conditions hold with strict inequalities, then ®(z) is the unique Laurent
series which converges to 7(z) in an annulus containing |z| = 1.)

In this situation, the inverses {®,,'} are banded matrices that are “‘quasi-Toeplitz”
in a sense made explicit in [7], and systems of the form (4) can be solved explicitly with
a number of operations that are O((u + v)m) for large m; moreover, there is no possibility
of instability here, since the computation does not involve recursion. Since the formula_
for &' is given in [7], we will not include further detail here. Combining this formula
with the recursive methods of § 3 yields the solution of (2) in O(n) (as n = cc) operations.

In [15] we gave explicit formulas for the solution of (2) when T, is rationally generated,
in this way, in terms of ¥ and determinants involving the values of P(z) and Q(1/z) at
the zeros of C(z). Although some discussion of numerical implementation was included
in [15], the principal interest there was in the formulas. To the author’s knowledge, the
only previously published O(n) algorithm specifically designed to solve n X n systems
with rationally generated Toeplitz matrices is due to Dickinson [5]. However, Dickinson’s
method requires that 7', - - - , T, all be invertible, and he did not consider stability.
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