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NUMERICAL SOLUTION OF THE EIGENVALUE PROBLEM FOR
SYMMETRIC RATIONALLY GENERATED TOEPLITZ MATRICES*
WILLIAM F. TRENCH*+

Abstract. A numerical method is proposed for finding all cigenvalues of symmetric Toeplitz matrices
To=(t;-)ij=1, where the {1;} are the coefficients in a Laurent expansion of a rational function. Matrices of this
kind occur, for example, as covariance matrices of ARMA processes. The technique rests on a representation
of the characteristic polynomial as det (A, — T,) = W,Go, G\, in which Gp(X) = O for the eigenvalues of 7,
associated with symmetric eigenvectors, G,,(A) = 0 for those associated with skew-symmetric eigenvectors. both
functions are free of extreme variations, and both can be computed with cost independent of a. It is proposed

that root finding techniques be used to compute the zeros of Gy, and G, Numerical experiments indicate that
the method may be useful.

Key words. Toeplitz, rationally generated, eigenvalue, eigenvector
AMS(MOS) subject classifications. 65F15, 15A18, 15A57
1. Introduction. Let
AZ)=ap+ajz+ -+ +a,z9
and

C2)= i ¢z’,

i==p

where ap, *+ ,a,and ¢ ,, ", ¢, 0, cparereal, ¢; = c (1 =j = p), a,c, # 0, and
A(z) has no zeros in |z| = 1. Then the rational function

C(2)
z = —
& A(z)A(1/z)
has a convergent Laurent expansion
(1) )= 2 4=/
Jm—a

(with #; = ¢_)) in an open annulus containing |z| = 1.
Here we propose a numerical method for determining the eigenvalues of the sym-
metric Toeplitz matrices

"
T,= (fj— r‘].ﬂ',,;= 1-

Matrices of this kind occur, for example, as covariance matrices of wide-sense stationary
autoregressive-moving average time series. (In this setting, ((z) = B(z)B(1/z), with
B(z) = by + byz + -+ + b,z".) This is a preliminary report in that further numerical
experimentation is required to ascertain whether the method works well for large
values of

(2) m=max (p,q);
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however, computations already performed with m = 1, 2, and 3 indicate that the method
can be used very successfully to obtain all eigenvalues of 7, at a cost per eigenvalue
which depends essentially only on m and is independent of n.

The asymptotic distribution of the eigenvalues of sequences of Toeplitz matrices T,
associated with a convergent Laurent series has been studied extensively. (See, e.g., [8],
[13]. [19], [20]: there are many other references.) Recently there have been several papers
on the spectral structure of symmetric Toeplitz matrices (e.g., [2]-[4], [6], [9]-[11], [15],
[16]); however, little has been published on methods for computing the eigenvalues of
Toeplitz matrices by methods specifically designed to exploit their simple structure (e.g.,
(2], [51, [71, [12], [14]). To the author’s knowledge, nothing of this kind has been published
for rationally generated symmetric Toeplitz matrices, except for the papers of Bini and
Capovani [2] and Katai and Rahmy [14], both of which deal only with the case where
A(z) = 1, so that T}, is banded if n > g.

Although it is generally agreed that applying root finding techniques to locate the
zeros of its characteristic polynomial is not a good way to find the eigenvalues of a high-
order matrix. we believe that this is a viable method for the matrices that we are consid-
ering. In order to demonstrate this, we need a theorem proved in [18].

Letd_,, -, 6, be defined by

q
(3) A(2)A(1)2)= > 8,2/
J==q
and define
=0 ifljl>p, #,=0 if|j]>q.

Let 7y, 7y, - -+ be the Chebyshev polynomials, i.e.,
(4) 7,{COS 1) = Cos nt.
Finally, let

pn(;\) = det [’\ ]n i Tn}

be the characteristic polynomial of 7,,, and define

q
(5) Coly)= 2 @icos(n+2r—2j— 1)y
j=0
and
q
(6) Sm(Y)= 2 ajsin (n+2r—2j—1)7.
j=0

Our approach is based on the following theorem, which is proved in [18].
THEOREM 1. Let X be such that c¢,, — M, # 0 and the polynomial

m

(7) PwiN)=co— Mg +2 2 (¢;—N)7;(w)
i=1
has m distinct zeros wy, - -+ | w,, such that
(8) we# 1 or—I, l=s=m,
and let
(9) Y= 2 cos ! wy, 0=Re(y,)= z
2 2
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Then
(10) Pn(N) = K(Cn — N, Fou(NF 1 h(A),
where K, is a constant,

dcl [C‘m( T;)I:ﬂs 1

an bolh)= det [cos (2r— 1)y 7=
and
{ 12) [‘.I ”(‘\) - de" [Sm(’}/.i]]r.rs =]

det [sin (2r—1)y7 -,

Moreover, if F,(X\) = 0 (I = 0 or 1), then T, has a \-eigenvector
U={uy, - ,u,)

such that

(13) Uy i1 = (D, 1<i=nh.

We will follow Cantoni and Butler [3] and say that U is sypumnerric if (13) holds
with [ = 0, or skew-symmetric if (13) holds with / = 1. In [3] it is shown that if 7}, is an
n X n real symmetric Toeplitz matrix, then R” has an orthonormal basis consisting of
n — [n/2] symmetric and [#n/2] skew-symmetric eigenvectors of 7,,. (Here [x] is the integer
part of x.) For convenience we will say that the even spectrum of T, consists of eigenvalues
with associated symmetric eigenvectors, while the odd spectrum consists of eigenvalues
with associated skew-symmetric eigenvectors.

Finding the zeros of P(z; A\) for a given A is a nontrivial but tractable (particularly
for 1 = m = 4) problem. Therefore, (10), (11), and (12) in principle provide a means for
computing p,(\) for a given A, with computational cost independent of 1, which enters
into them only as a parameter. Nevertheless, it is clearly impractical to apply root finding
techniques directly to p,(A) if n is large, simply because a polynomial of high degree can
assume tremendous values between its zeros. Fortunately. Theorem 1 provides a way to
overcome this difficulty. We will use Theorem 1 to obtain simpler functions which can
be evaluated for a given A with computational cost independent of n, have the same
zeros as [y,(A) and F,,()\), and do not vary wildly between their zeros. Root finding
techniques can be successfully applied to these functions.

If m = 1 in (2), our approach reduces the eigenvalue problem to routine computations
and solves it completely (in the numerical sense). We will therefore consider this case
separately in § 2. However. some general comments are in order first.

Let

C'[(,!'J']

S5 S
A(e")A(e ™) L=k

(14) J(0)

Then fis real-valued, and f(r) = f(—1); moreover, (3), (4). (7). and (14) imply the identity
(15) P(cos t; f(1) =0, —-r SIS,
It is easily seen that the {#;} in (1) are the Fourier coefficients of /- therefore. if

(16) a= min f(1), b= max f(1),

Osts~ Osis~x

then the eigenvalues of T, are all in [a, b] for every 1 (see [8. p. 64]).
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For convenience, we will say that the values of A which do not satisfy the conditions
of Theorem | are exceptional points of P( ; X). All other values of A will be called ordinary
points. There are at most finitely many exceptional points, and each is of one of the
following types: (i) The point A = ¢,,,/0,,, if 8,,, # 0. (ii) A value of X for which the resultant
R()) of the polynomials P(u; A) and P,(w: \) vanishes; since R()) is a polynomial in ),
there are only finitely many of these. (iii) The numbers f(0) and f(r), since, from (13),
P(1,f(0)) = 0, P(—1, f(x)) = 0, which violates (8).

2. The case m = 1. If m = |, then T(z) can be written as
cote(z+1/2)
(1-pzX1—p/2)’

with =1 < p < . If p = 0, then T, is a tridiagonal Toeplitz matrix, and the eigenvalue
problem can be solved explicitly (e.g.. see [17]). Therefore, we assume that p # 0. We
also assume that

(18) pco+ (14 pYe, =a#0,

(17) Nz)=

which guarantees that 7(z) does not reduce to a constant, since

—2asint

(19) J (f)=m-

Subject to these assumptions, it is straightforward to obtain the expansion (1), with

I,=

b pl; Iy L'op“l =T f-IpU* 1l
[ —p? '
Kac, Murdock, and Szegé [13] have considered the special case where
(20) co=1—p% ¢, =0.

The general case can be reduced to this by applying long division to (17), but this would
not shorten our presentation. Our results are more detailed than theirs, as we will indi-
cate below.

With T as in (17), (7) becomes

P(w:i )= co— M1+ p>)+2(c, + Ap)w.

Our assumption (18) and its consequence (19) imply that f(0) and f(x) are the
endpoints of the interval [a, b] defined by (16), and that ¢; + Ap # 0, P(1; \) # 0, and
P(—1:A) # 0ifa < X\ < b. Therefore, Theorem | implies that

K1+ Ap)"Co(¥)Sulv)

(21 PN) = - ; a<\<b,
COS y Sin v

where K, 1s a constant,

Lot [MLER) e TR
¥=3 Aci+r) | =3
(22) Cily)=cos{n+1)y—pcos(n—1)y,

and

(23) Si(y)=sin(n+ 1)y —psin(n—1)~.
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The formula given in [8] and [13] for the characteristic polynomial of the Kac-
Murdock-Szegd matrix
To=(p""Mij=1s
obtained by choosing ¢, and ¢, as in (20), is

s oy =MV H)

(1—p*)sin 2y’
with
(25) H,(v)=sin (2n+2)y —2p sin 2ny + p* sin (2n—2)y
and
_L M+ —(1-p)
(26) ¥y = > cos o .

It is observed in [8] that if [,(y) = 0 for some v in (0, x/2), then solving (26) for A
produces an eigenvalue of 7. It is also shown in [8] that the zeros v,, - -, v, of H,
satisfy the inequalities

T 2 27 nmw
< Coegy,<
m+2 -1 242 Y S on+2

0€T|<

if 0 < p < 1. (The case where —1 < p < 0 was not considered in [8].)

Numerical computations were not considered in [8], but it is clear that, given such
precise information on their locations, v,, - -+ , v, can easily be obtained by applying
the method of regula falsi to 1,,. Therefore, this classical example already illustrates the
feasibility of finding the eigenvalues of these matrices by the direct application of root
finding techniques, not to p,(\) itself, but to the simple function H,(vy).

Further insight into the eigenvalue problem for this case can be gained by the fac-
torization

Hy(v) = 2C(v)Sx(y)

(cf. (22), (23), (25)), which shows that (21) and (24) are equivalent if (20) holds. Theorem
1 implies that if C,(y) = 0 for some v in (0, #/2) then the quantity

o+ 2¢, cos 2y

7 e e
@n 1 —2pcos 2y +p?

is in the even spectrum of T,,. Also, if S,(y) = 0, then X in (27) is in the odd spectrum
of T,.
By rewriting (22) and (23) as

Cily)=(1—pcos2y)cos(n+1)y—psin 2y-sin (n+ 1)y
and
Sp(v)=(1—pcos 2y)sin(n+1)y+psin 2y-cos(n+ 1)y,
and then noticing the signs of C, and S, at the points
Jr

i < i< y—
X; TR 0=j=n—[n/2],
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and

P s )L

=j=
L il 0=/=[n/2],

it is straightforward to verify that (i) if 0 < p < 1, then C, has a zero in (x;-, yj—,) for

each j =1, .-+, n— [n/2] and S, has a zero in (y;_,, x;) for each j = 1, -+, [n/2];
(ii)if =1 < p < 0, then C, has a zero in (y;_,, x;) foreach j = 1, - -+ , n — [n/2], and S,
has a zero in (x;, y;) foreach j = 1, --- , [n/2].

In either case these zeros are easy to locate by the method of regula falsi. We have
written very short BASIC programs to find the zeros and compute the eigenvalues of the
Kac-Murdock-Szegé matrices. To illustrate the ease with which they solve the problem,
we cite two examples connected with the matrix

Fivio=(2 li= !'I}:’J. it

with computations performed on an IBM PC AT.

(a) With single precision arithmetic (seven significant decimal figures) and requiring
the regula falsi iterations to continue until the successive estimates of the zeros of C,(7)
(or S,(v)) agreed in the first six figures, it took 185 seconds to compute the 1000 eigenvalues
of T|m0.

(b) With double precision arithmetic (16 significant decimal digits) and requiring
the regula falsi iterations to continue until the successive estimates of the zeros agreed
to 15 places, it took eight minutes to compute the same eigenvalues (of course, to con-
siderably better accuracy than that obtained in (a)).

Since the right side of (27) is a monotonic function of ¥ in (0, x/2) (its derivative,
except for a constant, is given by (19) with ¢ = 2v), our results imply that the odd and
even spectra of 7, are interlaced. This has been previously observed by Delsarte and
Genin [6].

In the proof of Theorem | we gave a general formula ([18, eq. (38)]) for the eigen-
vectors of rationally generated symmetric matrices. For the special case considered in
this section, this formula implies that if C,(y) = 0 and A from (27) is the corresponding
eigenvalue, then a corresponding (symmetric) eigenvector is given by U = [, - - - , u,]',
with

IIA

wy=cos (n—2i+1)7y, l1=i=sn.

If S,(v) = 0, then
w,=sin(n—2i+ 1)y, 1=i=n,
which defines a skew-symmetric eigenvector.

3. The general case (m = 2). Now suppose that m = 2 and A is an ordinary point.
Then (10), (11), and (12) enable us in principle to evaluate p,(\) with computational cost
independent of n, but they suffer from the defect that even though pu()\) is clearly real if
Aisreal, (11)and (12) involve complex numbers unless w,, - - - , w,, are all in the interval
(=1, 1), which is not so in general. Moreover, the tremendous range of values that p,(\)
can assume make it impractical to apply root finding methods directly to p,(\), or perhaps
even to compute it at all.

Fortunately, these problems can be overcome. We will now show that on any
subinterval [a,, b] of [a, b] (cf. (16)) containing only ordinary points of P( ; \), we
can write

(28) Pu(N) = Wi N)Gon MG 14(N)



EIGENVALUES OF SYMMETRIC TOEPLITZ MATRICES 297

where W, “absorbs™ the large variations of p,(A). but has no zeros on [¢,. ] and is
therefore of no interest, while G, and G, are reasonably computable functions, involving
only real quantities, to which root finding methods such as the method of regula falsi or
one of its variants can be applied. The zeros of G, and G, are, respectively, the elements
of the even and odd spectra of 7}, which lie in [a,, b].

We need the following lemma, which is established by invoking elementary properties
of algebraic functions (see, e.g., [1]) and recalling that P in (7) has real coefficients.

LEMMA 1. The equation P(w; \) = 0 defines m continuous (in fact, analviic) functions
w, = wi(N) (I £ [ = m) on any interval [a,, b)] consisting entirely of ordinary points
of P( : N). Moreover, for each i = 1. -+, m; (i) wi(X) is real for some ) in [a,, b|] if
and only if it is real for all such \; (1) if' w; is real-valued, then the functions w, — | and
w; + | have no zeros on [a,, b,).

This lemma enables us to factor p, as in (28), where

GonN) = det [Couly I -

and
GN) = det [Sv -

For each s the definition of C,,(v,) and S,.(v,) depends upon whether (i) =1 < w;, < 1,
(i) w, > 1, (iii) w, < —1, or (iv) w, is complex. Lemma | implies that exactly one of these
conditions holds for all A in [a,, b,].

Case (i). —1 < w; < 1. Here C,,(v,) and S,,(v,) are simply linear combinations of
(real) sines and cosines, so we let C(v,) = Co(y,), and S,.(vs) = S.(vs).

In the remaining cases (9) implies that v, = a, + i83;, where

(29) cos 2a, cosh 208, = u;, sin 2agsinh 23, =—v,, 0=q,=

(S RR-1

with wy, = u; + iv,.
Case (i1). w, > 1. Then w, = u; and v, = 0 in (29); hence,

a,=0 and B,=1cosh 'ny:

hence, from (5) and (6),

q
(30) Conlys)= 2, ajcosh (n+2r—2j—1)g,
=0
and
q
(31) S,y =1 2 a;sinh (n+2r—2j—1)8,.
J=0

The imaginary unit in the last equation cancels with one which occurs in column s of
the denominator in (12). To climinate large variations, we factor ¢™/2 out of the sums
in (30) and (31). and define

q
CT}.-,(‘Y.) =% Z a.‘_{(,tﬁr 2= 1B 4 o2+ 2r-2)- Hd,]
ji=0

q
sm(’h} = Z a}[eﬂr 2= 18 _ p(2n+2r—2 - l}ﬁ,]‘
j=0
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The exponential factor is simply included in W,(\). Note that C,,(y,) and S, (v, are
bounded for all #. This will also be true in the following cases.
Case (iii). w, < —1. Now

Y=+ if,
2
with
Bs= 1 cosh™ (—wy);
hence (5) and (6) imply that

“
+ 2 (—1)/a;jcosh (n+2r—2j~ 1)8,=

ji=0

Covs) ifnisodd,
[Sm(‘]f.,-) if n is even
and

q
i 2 (=1)’aq;sinh (n+2r—2j—1)8, =
i=0

lS,,,('y_,-) if n is odd,

Coulys) ifniseven.

Therefore, we remove the exponential factor and irrelevant constants as before, and
define
> (o if 7 is odd,
Z (_]JJQJ[(’QF‘—IJ- IN‘J,+()—I2H+2r- 2 1]5’] :[ n(?:)

=0 5‘,,,('7,} if n is even

and

q
= (—l)fa),[c’”’ -2 - Ild‘_(,--(lrn 2r =2~ 1)8,] =
e

{S,,,{y“) if nis odd,
j=0

C',,,(‘y,) if nis even.

Case (iv). wy = u; + jv,, v, # 0. For real X the coefficients in (7) are real; hence, we
may assume without loss of generality that

(32) Wey = U, — iV,
If
(33) T =cosh? 28,.
then (29) implies that

u? v?

o s

or
(71— Dul+rvi=1(r—1).

Solving this quadratic equation and noting that 7 > 1 yields

r=31+ul+ o2+ V(1 + a2+ )P - 4u?).
Now (29) and (33) imply that

a;= 3 cos™! (u/V7)
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and
(34) B,= 14 sgn (—v,) cosh ! Vr.

It now follows from (5) and (6) that

q
Coulys)= 2 ajcos (n+2r—2j— a, cosh (n+2r—2j— 1)8,

(35) 2
—1i i a;sin (n+2r—2j— Da;sinh (n+2r—2j— 1)8;
j=0
and
aq
Sealys) = 2 a;sin (n+2r—2j— 1)a; cosh (n+2r—2j— )8,
(36) e

q
+i 2 a;cos (n+2r—2j— Da,sinh (n+2r—2j— 1)8;
Jj=0
are the elements in the sth columns of the determinants in the numerators of (11) and
(12), respectively. But now (32) and (34) imply that v,., = «, — i8.. so the elements in
the (s + 1)st columns of these matrices are the conjugates of (35) and (36), i.e.,

Crrr('rs + I) = Crn("(.\')a Sm{TJ + I} = Er:(?.:.}--

This and elementary properties of determinants imply that replacing C,,(v,) and C, (v, )
in columns s and s + 1 of det [C,.(v,)]/s=1 by Re (C,,(v,) and Im (C,,(v,)) simply
multiplies this determinant by a purely imaginary constant (which is cancelled by the
same constant produced by similar manipulations on the determinant in the denominator
of (11)). Following this by factoring out the exponential ¢"?! and other constants leads
us to define the elements in column s of Gy,(\) by

q
Cm('}’:) - Z aj[eur- 27— Digd + e—(2n+ 2r-2j I}I.ﬂ,l] cos {?‘I +2r— 2j_ ”ﬂs
J=0
and the elements in column s + 1 by
q
Cm(T:+ = Z a}_[euf -2j— 1)8d p-n+2r-2j- I-)Iﬁ;f] sin (n+2r— Zj“ Day.
i=0
Similar operations on the real and imaginary parts of (36) lead to the definitions
q
Senlvs)= 2 ae® = Y=l p=Cn+2r=2— 0] sin (n + 2r—2j — 1)ax;
ji=0
and
-~ q & - - s
Sm{')’s+ )= z aj[e(Zr- 2= DBl — p=(2n+2r = 2j - II!BJ] cos (n+2r— 2j— e,
j=0
as the entries in columns s and s + 1 of G ().

4. A proposed procedure for finding all eigenvalues of T,. Here we assume that
m =z 2, since § 2 reduces the case where m = | to routine computations. We pro-



300 WILLIAM F. TRENCH

pose a procedure for computing all the eigenvalues of T,. As mentioned earlier, it is
known that the spectrum of 7, is contained in the interval [a, ). For simplicity we will
assume here that the eigenvalues A,,. - -+, \,, are distinct, that no exceptional point
of P( : \)is an eigenvalue, and that

A< Ny < Aoy < < A< b,

We consider two situations: (I) the eigenvalues of T, _, are already known and satisfy
the inequalities

a{’\l,n—l{hln—l{“ : {hn- b I‘:b:

and (II) the eigenvalues of T, _, are not known.

The first requirement of the procedure is to subdivide [a, b] into closed subintervals
Iy, -+, I, with disjoint interiors such that none of the /s contains more than one
eigenvalue from each of the even and odd spectra. This is very easily done in situation
(I); we simply let k = n and

[as N n- 1] ifj=1,
L=< [N -1 Aja-1] If25 jSn—1,
As-tn-1.8] ifj =n.
Since 7, _ | is a principal submatrix of 7,,, standard separation theorems imply that each
of the intervals /,, - - - | I, contains exactly one eigenvalue of 7,.

Obtaining the desired subdivision of [a, b] in situation (IT) requires some guesswork,
but the guessing is of the educated variety, thanks to the celebrated theorem of Szego
which says that for large n the eigenvalues of T, are distributed in [a, ] like the ordinates

' L < /=<

(37 ,;(HH). | &%,
(For a more precise statement of this result see [8] or [20].) Motivated by this, we have
used the following procedure to subdivide [a, b]: compute the ordinates (37), list them
in memory. and construct a new list g,, - - - , g, consisting of these numbers arranged in
nondecreasing order. (Since /” cannot have more than 2m — 2 zeros on (0, 7), this can
be accomplished efficiently, even for large n.) Then define go =a and g,,,=b. In
the numerical experiments that we have performed with m = 2 and 3 the intervals [, =
[g-1,8), 1 =j=n+ 1 usually satisfy our requirements even for small values of n, like
n=>5orn = 10. (We would expect that the probability of success with this procedure
would increase with 7, due to the asymptotic nature of Szegd’s theorem. It should also
be noted that we do not require that no interval contain more than one eigenvalue;
because of our factorization of the characteristic polynomial, an interval may contain
two eigenvalues, provided that one belongs to the even spectrum of T, and the other to
the odd.) In some cases we missed a few of the eigenvalues. We then used the “brute
force™ approach of simply dividing all the intervals into k parts (usually with k arbitrarily
chosen to be 5). Obviously, this strategy can be improved.

Now we describe the computations performed for each interval in the subdivision.
Let I = [c, d], where it is assumed that / does not contain more than one element from
each of the odd and even spectra of 7, and that ¢ and d are not eigenvalues of 7',. Suppose
first that / contains only ordinary points of P( : A). and let Gy, and G, be the functions
defined on ['in § 4. If

(38) an((‘)(;h{d) <0



EIGENVALUES 'OF SYMMETRIC TOEPLITZ MATRICES 301

for / = 0 (/ = 1), then I contains exactly one element from the even (odd) spectrum of
T, which can be computed by applying the method of regula falsi to G,,. If (38) does
not hold for either / = 0 or / = 1, then [ contains no eigenvalues of T,,.

Now suppose that / contains one or more exceptional points. In this case the defi-
nition of G, will in general change on /. Now we simply subdivide [ into subintervals
whose interiors contain no exceptional points, pick slightly smaller closed subintervals
of these which contain no exceptional points (hoping that no eigenvalue actually lies in
the small part of [ that is excluded in this process), and apply the above procedure to
these intervals. This strategy has worked well in all cases considered.

5. Typical numerical experiments for m = 2 and m = 3. The computations per-
formed so far have been done with BASIC/D (double precision) programs on an IBM
PC AT. No attempt has as yet been made to use more sophisticated programming tech-
niques or numerical methods (such as improvements on the method of regula falsi to
find the zeros of Gy, and (},,): the objective of these computations was simply to ascertain
whether there was any hope that this method would work. The results are quite encour-
aging. The following are typical examples.

Example 1. We took
,4(:}=(1—E)(|—g)

C(2)=15-35(z+z"H+(z2+z7).

and

Regula falsi iterations were continued until successive iterates agreed in the first 15 sig-
nificant decimal digits. The running times to obtain all eigenvalues of T, were 0:54
(minutes and seconds) with n = 10, 3:44 with n = 50, 6:40 with n = 100, and slightly
over 98 minutes with n = 1000. (The last required time seems to be longer than we would
expect, given the first three. The author does not know the reason for this.)

Example 2. We took

Az)=1—.4z— 472+ 217
and
CE)=14+20z+z"Y)=-(2+z")+ (3 + 7).

The regula falsi iterations were continued until successive iterates agreed to 12 significant
decimal digits. The running times required to compute all eigenvalues were 3:58, 12:56.
and 22:10 for n = 10, 50, and 100, respectively.

We have obtained partial checks on our results. For example, all of our test com-
putations yielded eigenvalue distributions consistent with what we would expect from
Szegd's distribution theorem, and in all cases the eigenvalues of T, separated those
of Ty .

6. Conclusions and further research. Numerical results obtained so far indicate
that this method is an efficient way to compute the eigenvalues of high-order symmetric
rationally generated Toeplitz matrices with m = 1, 2, or 3 in (2). Since the scaling of Gy,
and G, makes these functions bounded for all n, there seems to be no reason why the
procedure cannot be applied to very high order matrices. particularly since it does not
require that the elements of T, be stored, or even computed. Moreover, it is obvious that
much greater computing speeds can be obtained by using more sophisticated programming



302 WILLIAM F. TRENCH

methods and/or equipment, We believe that the major problems which need to be over-
come in order to apply this method efficiently for larger values of m in (2) are as follows.

(i) Efficient methods must be developed to find the zeros of P( ; \) for a given A.
For m = 1, 2, 3 we have simply used standard formulas for the zeros of a polynomial in
terms of its coefficients. This method is also a possibility for m = 4, but root-finding
methods are obviously required for m = 5. Of course, there are standard methods available
for this problem: moreover. if A, and A.. , are successive iterates obtained in a regula
falsi procedure, then the zeros w(\y), - - -, w,(\) should be reasonably good first ap-
proximations to w;(Ax s (). -+ . WalAks 1)

(ii) An improved version of the method of regula falsi should be devised. This
would include the more or less standard procedure of combining it with bisection, which
accelerates convergence in certain situations (i.e., where one endpoint would otherwise
“stay in the game™ for an excessive number of iterations). It is not clear how further
improvements could be attained; for example, iterative methods (such as Newton’s) which
require the computation of derivatives would not be useful, since we have no computable
formulas for the derivatives of Gg, and G, in terms of the zeros of P( ; \). Moreover,
it seems desirable to insist that the iterative method be one that is guaranteed to converge.

(iii) Accurate computation of the m X m determinants defining G,, and G,, may
be difficult for larger values of m. This does not appear to be a problem for m = 2 and
m = 3. In fact, for m = 3 we treated this problem in two ways: (a) a simple cofactor
expansion and (b) reduction to triangular form with full pivoting. Although the second
method would presumably be more accurate for larger m, there was no difference between
the results obtained by the two methods for m = 3.

Another area of investigation would be to compute the eigenvectors associated with
the eigenvalues obtained by this procedure and check the residuals

_ITX=AX]
X7

This would be a formidable computation if carried out by brute force: however, the
formula given in [18] for the eigenvectors of T, should greatly simplify this calculation.
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