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ASYMPTOTIC INTEGRATION OF A PERTURBED CONSTANT COEFFICIENT
DIFFERENTIAL EQUATION UNDER MILD INTEGRAL SMALLNESS
CONDITIONS*

WILLIAM F. TRENCH?

Abstract. The problem of asymptotic behavior of solutions of an nth order linear differential equation
is reconsidered, and a result obtained by Hartman and Wintner under integral smallness conditions on the
perturbing terms which require absolute integrability is shown to hold under weaker integrability conditions
requiring only ordinary (perhaps conditional) convergence of some of the improper integrals that occur.
The estimates of the asymptotic behavior of solutions of the perturbed equation are also sharper than in
the classical result.
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1. Introduction. We consider the scalar equation
(1.1) x4ax"" V4t agx" M+ P ()X 4+ P (0)x = (1), >0,
where a,, - - -, a, are complex constants, with
(1.2) 1=k=n-1, a, #0.

It is assumed through that P,,- - -, P,, and f are complex-valued and continuous on
(0, ). We give conditions on them which imply that (1.1) has a solution which behaves
asymptotically like a given polynomial of degree <n—k.
The following theorem of Hartman and Wintner [1, Thm. 17.3, p. 316] addresses
this question. (We use ““0”” and **O”" in the standard way to denote behavior as t > .)
THEOREM 1. Suppose that the polynomial

QM) =A*+a A"+ -+a

has no purely imaginary zeros, and that

(1.3) I |P(0)|t9dt<oo, 1=j=k+1,
and
(1.4) J [P ()¢~ " dr<co, k+2=j=n,

for some q=0. Then, for each [=0,1, -, n—k—1, the equation
(1.5) xM+a,x" P+ +ax" P+ P (X" V4 + P()x =0, >0,
has a solution x; such that
Y eltv ), O=r=n—-k-1,
(x,(r}——) 2[0(1_"””‘*I 4, n-k=r=n-1.

I

Prevatt [3] has obtained the conclusion of Theorem 1 under weaker integrability
conditions on |Py|, - - -, |P,|, and Hartman [2] has recently extended Prevatt’s results
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to the case where Q(A) may have purely imaginary zeros. Here we retain the assumption
that Q(A) has no purely imaginary zeros, and we obtain results which imply the
conclusion of Theorem 1 under integral smallness conditions on Py, -, P, and f
which allow conditional convergence of some (in some cases all) of the improper
integrals involved. We also give more precise estimates of the asymptotic behavior of
the desired solutions.

The results obtained here are anaolgous to those obtained in [8] for the equation

(1.6) x4+ P(0)x'" 4.+ P ()x=f(2)

(see also [7]); however, the condition (1.2) necessitates a distinctly nontrivial extension
of the methods used in [7] and [8]. (For example, see Lemma 1 and its proof.)

In work related to the present paper in the sense that the integrability conditions
on P,,---, P,, and f are stated in terms of possibly conditional convergence, Simsa
[4]-[6], has studied (1.1) with k= n, regarding it as a perturbation of the constant
coeflicient equation

xM+ax" "+ +a,x=0.
The author [9] has also considered this problem.

2. The main theorem. It is to be understood below that improper integrals appear-
ing in hypotheses are assumed to converge, and that the convergence may be conditional
unless, of course, the integrand is necessarily nonnegative.

It is convenient to collect some technical definitions in the following standing
assumption, which holds throughout the paper.

Assumption A. Let

(2.1) Q) =(A=A)% - (A—2ap™

where A; = p; + iv; are distinct, w, #0 (1=I/=L),and u, = p,=---=pu,. Let N be the
unique integer in {1, - - -, L+ 1} such that

(2.2) wm<0 ifl=I=N-1

and g, >0 if N=I= L. Suppose that p is a given polynomial of degree <n—k, and
define

(23) g____f_ Z Pjp{n -j}l
J=k+1
Let m be anintegerin {0, - - -, n —k —1}. Let ¢ be continuous, positive, and nonincreas-

ing on [a, ) for some a > 0. If m # 0, suppose that t"¢ (1) is nondecreasing for some
y<1. If N=2 (so that (2.2) is nonvacuous), let there be a number a such that
0<a<—pun_, and et """"** 4 (1) is nondecreasing on [a, ©).

The following is our main theorem.

THEOREM 2. Suppose that Assumption A holds, that

(2.4) I 'S"'"'"“"g(SJ ds = O(e(1)),
and that

(2.5) g(:):j |P()|b(s) ds=o(d(r)), 1=j=k+1.
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Suppose further that

(2.6) F()=| P(s)ds=o(t7**"), k+2=j=n,
and that
(2.7) I(t) = J [F(s)|s' *2¢(s) ds=o0(p(1)), k+2=j=n
Then (1.1) has a solution X such that

& o(p(1)t™™"), 0sr=n-k-1

u] (r) ]
(2:8) )=p )= { O(p(t)r "rmrrly n—k=r=n-1.
Moreover, if (2.4) can be replaced by
(29) I SRl (s) ds = o((1)),

)

then (2.8) can be replaced by

Alr) _alr _ 0(‘1’(-{)!”_,-]. Oérén—k-—l,
2.10) - {I)—[o(dy(:)r nrmrkely n—-k=r=n-—1.

The proof uses the Banach contraction principle. It is convenient to introduce the
new dependent variable h = x — p, which transforms (1.1) into

(2.11) Q(D)h""¥'= g~ Mh,

with g as in (2.3) and

(2.12) Mh = _z] PR,
=

We will construct a transformation J which, for 1, sufficiently large, is a contraction
of the Banach space B(t,) consisting of functions h in C'"~"'[,, ©) such that

h[,}(r)={o(¢{f)[m-’)’ 0= rén—k—l,

(2.13) O(p(1)~"Hmre+ty n—k=r=n-1,

with norm

n=k=1 n—1
(2.14)  ||h]|=sup (6(1)) ‘[ Y RO 3 Ih“’(r)l].
r=0

iz r=n—k
For reference below, we define
(2.15) By(1,) ={h € B(t,)| (2.13) holds with “O" replaced by “0™}.
If & is a solution of (2.11) which is in B(1,), then the function
(2.16) £=p+h

is a solution of (1.1) on [1,, %) (which can be contmued over (0, 00)) and X has the
desired asymptotic behavior (2.8); moreover, if heBo(rn) then X satisfies (2.10).
Therefore, we wish to construct J so that if Th= h then h satisfies (2.11).
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To this end, let A,, -+, A, be the uniquely defined polynomials such that
deg A; < d, (see (2.1)) and

L
(2.17) Y [A(0e])),co=8r4—1, O=r=k-1.
=1
If ve C[t,, ©), define #,v formally by
N=1 ! L o0
(Loo)t)= ¥ [ At=7)eM" (1) dr— ¥ J. A(t—71) e y(7) dr.
=1 Ji [

I=N

Then formal differentiation and (2.17) imply that

N=1

(&) ()= X J’ A (1—7) """ v(1) dr

(2.18) .
-3 j A, (t=7) e o(7) dr, 0=r=k-1,
I=N T
and that
(2.19) Q(D)¥# v=m,

where A, is the polynomial defined by
A, (t)=e M[A(r) eM]'", 0=r=k-1.

If we C[1t,, ), define #,w formally by

(2.20) (zzw)(r)=r UV sy ds ifm=0
. (n—k-=1)!

or by

(2.21)  (Lw)(t)= .].;7(1;):):; da le ______.___((:::)_;j;)l1 w(s)ds ifl=m=n—-k-1.

In either case,

(2.22) (Lw) " = —w.

Now define

(2.23) G=%(%g) (see(2.3)),

(2.24) Fh=%,(%(Mh)) (see (2.12),

and

(2.25) Th=-G+ %h.

Formal manipulations using (2.19) and (2.22) show that
Q(D)(Th)"""* = g~ Mh;

therefore, a fixed point (function) h of T satisfies (2.11). We will show that 7 is a
contraction of B(1,), and therefore has a fixed point in B(1,), provided that f, is
sufficiently large. It is convenient to present the lengthy proof of this assertion in a
series of lemmas.
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LeMMA 1. Suppose that v is complex-valued and continuous on [1,, ) with t,= a >
0, and that [ t%v(1) dt converges for some nonnegative integer q. Let

Jms“v(s) ds

T

(2.26) (1) =sup

TEl

Let A = u+iv be a complex number and X be a polynomial. Then
(i) If u >0, the functions

(2.27) fl(r}=j 'X(l—-r) M Tu(r) dr

and
[ +]

(2.28) S =J. s7ds J X(s—7)e*" y(r)dr= j s\ (s) ds

L

are defined on [1,,0) and satisfy the inequalities
(2.29) A=K (0, 1=,
(2.30) A= Kap(n), 121,

where K, and K, are constants which depend only on A and X.
(ii) If u <0, suppose that y(t)=0(H(t)), where ¢ is nonincreasing and continuous
on [a,0), and e™'t *¢(t) in nondecreasing on [a, ) for some a such that

(2.31) 0<a<-—u.
Let
0]
(2.32) wl(f)—sr!;’ (1)
and define
(2.33) f_;{t)=J' X(t—71) e u(r) dr.
Then
(2.34) || = Kt ()t 79(1), 121,

where K, is a constant depending only on X and A, and the function

(2.35) )= J s?ds J” X(s—7) e yu(r)dr= Jm sy(s) ds

0

is defined on [t,,0), and it satisfies the inequality

(2.36) (D= Kan(t)o(n), 121,
where K, is a constant depending only on X and A.
Finally, if
(2.37) ¥(1)=o(d(1)),
then

(2.38) Si(t)=o(t (1))
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and
(2.39) fu(t) = o(&(1)).
The lengthy proof of this lemma is given in § 4.

(Note that because of (2.29) and (2.30), (2.37) implies that f,(t) = o(t “¢(t)) and
S(1) =o0(e(1)).)

LEMMA 2. Suppose that ¢ and m are as in Assumption A and we C[t,, ) for
some 1, = a. Suppose also that [ t"~™ * 'w(t) dt converges, and that

(2.40) j s w(s) ds = O((1)).
Define

(2.41) p(t)=sup (¢(r)) "

TEL

Then %,we C'" [ t,, ) (see (2.20) and (2.21)), and there is a constant K which does
not depend on w or t, such that

J' sTTRMT N (s) ds|.

r

(2.42) [(Law) ()| = Kplt)d(1)t™ ", t1zt,, 0=r=n—k-1.
Moreover, if

(2.43) !}_fg p(1)=0,

then

(2.44) (ZLaw) () =o0(d()t™ "), Osr=n-k-1.

This lemma follows immediately from Lemma 1 of [8]. Since its conclusion follows
trivially from the assumption that

’[ s"7Em Y w(s)| ds < oo,

it is important to emphasize here that the covergence in (2.40) may be conditional.
(Note: The existence of the constant y in Assumption A is required for this lemma.)

LEMMA 3. Suppose that v is complex-valued and continuous on [1,, ) with t,= a,
and that [* t""""*~'o(t) dt converges. Let

f "R u(s) ds| = O((1),

r

(2.45) Y(t) =sup

TES

and define , as in (2.32). Then the function

(2.46) u=%(%v)

is in B(1,), and

(2.47) llull = Wi (1),

where W is a constant independent of t, and v. Moreover, if
(2.48) P(1)=o(d(1)),

then

(2.49) ue By(ty) (see (2.15)).
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Proof. From (2.18), #,v and its first k—1 derivatives are linear combinations of
integrals of the forms (2.27) and (2.33) with X = A,: hence, Lemma 1 with q=
n—m-—k—1 (specifically, (2.29), (2.32) and (2.34)) implies that #,ve C* "[¢,, ),
and that

(2.50) [(£0) (D)= et ()b () ™™ o=j=sk-1,

where a, is a constant independent of #, and v. Lemma 1 also implies that
= ==K (#y0) (1) di converges (since it is a linear combination of integrals of the
forms (2.28) and (2.35), again with g=n—m—k—1 and X = A,), and that

(2.51)

I TS 0)(s) ds| Sah(b(), 120,

where a; is a constant independent of 1, and v. (See (2.30), (2.32), and (2.36).)
Now we apply Lemma 2 with w = %, v. Then (2.51) implies (2.40) and (2.41), with
p(t) = a2t (1y). Recalling (2.46), we now see from (2.42) with w = %#,v that

(2.52) ['(8)| = Kasr (1) ()™,  0=r=n—-k—1.
Moreover, since

(2.53) un = —(£,0)?, 0=j=sk-1

(from (2.22) with w= %,v), (2.50) implies that

(2.54) [u' (1) = a i, () p (1)t "mrEH n—k=r=n-1.

Now (2.14), (2.52) and (2.54) imply (2.47), with W =max {a,, Ka,}.
It remains only to show that (2.48) implies (2.49). From the closing paragraph of
Lemma 1, (2.48) implies that

(o)D) =o(p()™" ™ Y,  O0=j=k-1,
and therefore
(2.55) uN1) =olplr) TRy n—-k=r=n-1,

because of (2.53). The closing paragraph of Lemma 1 also implies that
J s"ENZ ) (s) ds = o(#(1)),
'

because of (2.48). Therefore, (2.43) holds if w=.%,v in (2.41), and so
(2.56) u()=o0(d()t™"), O=r=n-k-1,

from (2.44). Since (2.55) and (2.56) are equivalent to (2.49), this completes the proof
of Lemma 3.

LEMMA 4. Suppose that the assumptions of Theorem 2 hold, and let & be as defined
in (2.24). Suppose also that h € B(1,) for some t,= a. Then %h € By(t,) and

(2.57) | £h]|= Wo(to)||Rlf,
where o is defined on [a, ),

(2.58) lim o(1) =0,

=00

and W is as in (2.47).
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Proof. We first consider the integral

J(t; h)=J s RN MB)(s) ds
(2.59) Lo
- Z J s"_m_k_lﬂ{s}hl"_”{S) ds.

We will show that the integrals in this sum converge, and estimate them. We remind
the reader that ||h| is defined in (2.14).
From (2.5),

(2.60) =|hlI(), 1Sjsk+1.

J. S"_m_k_lﬂ-[s}h(ﬂ jl{s) ds

If k+2=j=n, then integration by parts yields

s"1p(s)R P (5) ds

[}

(2.61)

o

oAk 'h‘"'f'(rJF_,-(rHI F(s)ls" ™R (s)) ds - (see (2.6)).

To justify this we first observe that
lim T" " * W (T)F(T)=0, k+2=j=n,

T—so0
because of (2.6) and (2.13). Moreover, since (2.13) and (2.14) imply that
(262) |Is" "R | = (n—-m—k)| k|| S (s)s’ 2, k+2=j=n,

(2.7) implies that the integral on the right side of (2.61) converges (absolutely). We
now conclude that J(1; h) exists on [1,, ) if h € B(t,); moreover, (2.59), (2.60), (2.61)
and (2.62) imply that |J(¢; h)|=<||h|['(¢), where

k41

(=% L(H+(n-m- R z Lo+e ¥ TR
J= Jj=k+2
(See (2.6) and (2.7).) Now define 0{!}= sup,=, I'(7)/¢(7), and note that o satisfies
(2.58), because of (2.5), (2.6) and (2.7).
We now apply Lemma 3 with v= Mh; then the function ¢ defined in (2.45)
satisfies the inequality

= |h|T(1) = o(b(1)).

Since u=%h in (2.46) when v= Mh (see (2.24)), we conclude that £h e By(t,), and
(2.47) with ¢, = | h| implies (2.57). This proves Lemma 4.

We can now complete the proof of Theorem 2. From (2.4) and Lemma 3 (with
v=g), G as defined in (2.23) is also in B(f,). Now (2.25) and Lemma 4 imply that
T(B(t,)) = B(t,); moreover, J is obviously a contraction if £ is, and the latter is so if

(2.63) o(ty) <1/ W (see (2.57)).

From (2.58), we can choose f, to satisfy (2.63). By the contraction mapping principle,
there is an A in B(1,) such that Th= h hence, X as defined in (2.16) satisfies (1.1)
and (2.8).
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) Now suppose that (2.9) holds. Then Lemma 3 implies that Ge By(t,). Since
Fhe By(t,) (by Lemma 4) and

h=-G+%h (see (2.25)),

it now follows that h e By(1,). This and (2.16) imply (2.10), which completes the proof
of Theorem 2.

3. Corollaries. If Pe C[a,o0) and [*|P(t)| dt <, then obviously
J [P(s)|(s) ds=o(s(1))
if ¢ is nonincreasing. Also, if | t*|P(1)| dt <o for some a >0, then

dr <oo

IWP(S)d-‘:OU_“) and J. ! J‘NP(r)df

(see Corollary 3 of [8]), which in turn implies that

o
j sa—l
1

if ¢ is nonincreasing. Since the converses of these statements are false, the integrability
conditions (1.3) and (1.4)—even with g =0—are stronger than (2.5), (2.6) and (2.7).
We remind the reader that Assumption A is still in force.

$(s) ds = o(d(1))

j“ P(7) dr

5

CoroLLARY 1. Let I be an integer in {0, 1, - -+, n—k—1}, and suppose that

(3.1) j §~1p(s) ds=0(179), n—I=j=n,
T

for some q=0 such that
(3.2) q#0,1,---,1L
Let
(3.3) J. Pis) dy= ol k+2=j=sn-1-1,
and define

(3.4) ﬁ={"'[‘” ifl=[q) (= integerpartof q),

g=1  ifi<[q].
Finally, suppose that

(3.5) I |Pi(s)|s P ds=o(1"), 1=j=k+1.
]
Then (1.5) has a solution x; such that
f\NE o=y, 0=r=n—-k-1,
(3.6) ("‘(”'ﬂ) =[O{r""“‘*“"), n-k=sr=n-1.

Moreover, if (3.1) can be replaced by

(3.7) J. P(s) ds = o(177/+kr1m9), n—Isj=n,
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then (3.6) can be replaced by

(3.8) ("'(”_:_:)m=[j((::-_:l""q), giiﬂ-’:;:i
Proof. We start by observing that if 0<a <b and
(3.9) r P(s)ds=0(1""),
'
then
(3.10) r s°P(s) ds=0(t""").
If f=0 (as in (1.5)) and p(t)=1'/1!, then
(3.11) g(')=_,__2:: jﬁ(r)”—i%

(see (2.3)); hence, (3.1) implies that
J‘ sTm R g(s) ds = O(1' ™)

if I—m <g. We now apply Theorem 2 with

(3.12) m =max {0, I —[q]}
and
(3.13) d()=0(""*")=0(1"),

with B as in (3.4). (Note that if m>0, then 8 =g—[g]<1, and ¢ as in (3.13) satisfies
Assumption A with y=8.)

Now (3.1),(3.2) and (3.3) imply (2.6), and (3.5) is the same as (2.5) with ¢ (1) =t %.
Since (3.2) and (3.4) imply that B >0, (2.6) automatically implies (2.7) with ¢ as
in (3.13), without any absolute integrability assumptions on P,,,, - -, P,. Now
Theorem 2 implies that (1.5) has a solution x; such that

N\ (a8, 0=r=n-k-1,
Xy (1) = = m—n+k+1-8
n O(t ). n—k=r=n-1,

which, in view of (3.4) and (3.12), is equivalent to (3.6).

If (3.9) holds with O™ replaced by “0”, then so does (3.10). From Theorem 2
this also implies the assertion concerning (3.7) and (3.8).

We now consider the exceptional cases where (3.2) is not satisfied.

COROLLARY 2. Let q and | be integers, with 0=q=1=n—k—1. Suppose that the
integrals

(3.14) jmrf""“*“f_’,-(r)dr, n—-Isjsn,
converge, that (3.3) holds, that

(3.15) Jm|g.(:)]d:<w, 1Sj=sk+1,
and that

(3.16) J. Y52 F(1)| dt <
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fork+2=j=n—1—1. Then (1.5) has a solution x, which satisfies (3.8) if g=0. If g =0,
the same conclusion is valid if the above assumptions hold and, in addition, (3.16) also
holds forn—1=j=n.

Proof. Now (3.14) implies that ]““ ""™*g(1) dt converges (see (3.11)) with
m =1—g, and that (3.7) holds. We apply Theorem 2 with ¢ =1, in which case (2.5) is
equivalent to (3.15). Also, (2.7) is then equivalent to (3.16) for k+2=j = n. Since the
convergence of (3.14) implies (3.7), which automatically implies (3.16) forn—I=j=n,
the proof is complete.

Corollaries 1 and 2 imply the following corollary, which in turn implies
Theorem 1.

CoRroOLLARY 3. Suppose that the integrals

(3.17) r PP () dl, k+1SjSn,

converge for some g = 0. Suppose also that

(3.18) J.xlfj{sns"?"‘f ds=o(1'9%), 1=sjsk+1.

Then the conclusions of Theorem 1 hold if either (i) q=>0; or (ii) g =0 and

(3.19) rsf“‘"

ds <o, k+2=j=n.

j P(7) dr
It is important to note that (3.17) implies (3.19) if g>0; therefore, it is not
necessary to assume (3.19) in this case.
Corollary 1 implies that if

(3.20) j s K P(s) ds = 0(o(1)), k+t1=j=n,

where ¢(t)—>0 as t—>oc like some positive power of 1/t then (1.5) has solutions
x(t)~t'/1' (0=I=n-k—1), without any further integrability assumptions on
Py, -+, P, provided that P,, - - -, P, satisfy (2.5). The following corollary shows
that this conclusion remains valid even if ¢ decays more slowly than this.

COROLLARY 4. Suppose that ¢ is as in Assumption A, and also that 1"$(1) is
eventually nondecreasing for y <1, and

(3.21) J .‘b—‘f‘szds:o(:fy(r]).

Suppose also that (2.5) and (3.20) hold. Then (1.5) has solutions x,, - - -, X,y such that

( (f)_f_‘)"’_[owa(r}r"'), 0srsn—k-1,
O] Tloeermtttty, p—ksrsa-1.

Moreover, if (3.20) holds with O replaced by *‘0,” then so does (3.22).
Proof. For each 1=0,1,---,n—k—1, we apply Theorem 2 with p(t)=1'/1! and
m = I. The assumption (3.20) implies (2.4) and also that

(3.22)

F;(:)=_[ P(s)ds=0(¢()t 7 ), k+2=j=n

This implies (2.6) and (2.7) (the latter because of (3.21)), which completes the proof.
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A similar argument yields the following related corollary.
COROLLARY 5. Let ¢ be as in Corollary 4, except that (3.21) is replaced by

ao 2
J QST{S] ds= O((1)).
Suppose also that (2.5) holds, and that
J s 'P(s)ds=o0(a(1), ktlsj=n

Then (1.5) has solutions x,, " * * , X,_y, which satisfy (3.22) with O™ replaced by “0.”

Remark 1. Although we have assumed (1.2) throughout, our results are also valid
for (1.6), which corresponds to the case where k =0, provided that obviously vacuous
conditions (i.e., those involving 0=j=k—land n—k=r=n—1) are ignored. To see
this, one has only to modify (in fact, simplify) the arguments as follows:

(a) Omit the now vacuous assumptions on the zeros of Q(A).

(b) Let %, be the identity operator; i.e., v =0

(¢) Omit Lemma 1.
Viewed in this way, the present results improve on those in [7] and [8], since we
assumed in those papers that ]'*' |P,(r}i dt < o0, which is stronger that (2.5), (3.5) and
(3.18) with k=0 and j=1.

Remark 2. While preparing this paper the author discovered errors in [7] and
[8], caused by his overlooking the need for special treatment of the exceptional cases
where (3.2) does not hold. Theorem 2 of [7] requires the additional assumption that

J | I Bile) s

(the notation here is that of [7]). Our present Corollary 2 (with k=0) extends this
corrected result. Example 1 of [8] requires the additional assumption that a #
1,+++,n—1. (The notation here is that of [8].) Corollary 1 (with k=0) extends this
corrected result, and Corollary 2 deals with the excluded cases where a =1, -+, n—1.

"2 dt <0, 2=i=n—-r-1

4. Appendix. Proof of Lemma 1. We assume throughout that 1=, = a. If

(4.1) V,(r)=J. sv(s)ds, O0=r=gq,

'
then (2.26) implies that

(4.2) [Vo(D)= (1),

and by writing s'v(s) =s" “(s%(s)), integrating by parts, and again invoking (2.26),
we find that

(4.3) [vi(n)|=2t"%(1), O0=r=q-1.

Proof of (i). Now suppose that > 0. If 1, = s = T, then integration by parts shows
that

oo

jr X(s—7) e u(r)dr=X(s—T) """ VU(T)+J. . Vo D[ X (s—7) X" 7] dr.

T T

Hence, (4.3) implies that

(4.4)

J X(s—7) e Vy(r) dr| =T W(T)X(T—5) e ", tb=s=T,
T
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where X is a polynomial with nonnegative ¢ coefficients determined by X and A. Setting
s=T=tin (4.4) yields (2.29), with K, = X(O)
To prove (2.30), we consider the integral

(4.5) I(t, T)= J:T s%i(s) ds=1(1, T)+ (1, T),
where
(4.6) L(1,T)= I s"dsJ’ X(s—71) e’ u(r) dr
and
(4.7) L(t, T)= [ s?ds X{S—‘r) e’ (1) dr.
From (4.4) and (4.7),

[L(, T Iwm] T—s)e " Mds

> +]

wmf X(n) e " dn;

0

hence,
(4.8) lim Iy(t, T) =0.
Changing the order of integration in (4.6) yields
(4.9) Ii(1, T)=ITF(:, yv(7) dr,
'
where
(4.10) I'(t, T)=J‘rsqx(3“‘r} e* ) g,

Repeated integration by parts shows that

q
(4.11) Ir(,r)=Y [X. (07 —t'X,(t—7)e*"" ],

r .‘u
where X,, - -+, X, are polynomials determined by X and A. Substituting (4.11) into
(4.9), we obtain I(t, T) in terms of integrals which converge as T - o; therefore, (4.5),
(4.8) and (4.11) imply that the integral f5(¢) = I(t, ) (see (2.28)) converges, and that
(4.12) L) = Z X (0)V,(1)—- Z t J X, (t—=7) e o(r) dr
(see (4.1)). Replacing X by X, in (4.4) and letting s = T =t shows that

= K, 17 %(1),

J X.(t=71)e*" "o(r) dr

where K,, is a constant determined by A and X, (and therefore by X). This, (4.2),
(4.3) and (4.12) imply (2.30) for suitable K,, a constant determined by X and A. This
proves (i).
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Proof of (ii). Now suppose that p <0. Integrating (2.33) by parts yields

L

Si(0) = Vo(1) X (1= 1) """ — X (0) Vo{!)+J Vo(D)[X(t=7) """ 7] dr.

Therefore, from (4.3) with r=0,

(4.13) [AO]=20599(10)| X (1 — 1)] e+ 2| X (0)| (1)t

+2 f U(r)r X (1—1) """ dr

where X is a polynomial with positive coefficients determined by X and A. Now (2.32)
and our assumptions on « and ¢ imply that

()T = dh(t) e TR (07, 1tz 1z,
This and (4.13) imply (2.34), with
K3=2[|X(0)|+suplxw)l e‘"*“’*+j X (n) el dn].
£20 0

which is finite, because of (2.31).
To see that (2.37) implies (2.38), observe from (2.33) that if 1,=1, =1, then

L}

(4.14) f;(f}=f ' X(t=7)e*" "u(r) df+J X(t—=1) e u(r) dr.

Ll

For fixed ¢,,

(4.15) H. I X(t—7)e*" To(r) dr| = M(to, 1,) Y(1) e*,

where
M(to, t) =max {|o(7)|[t,=7=1,}

and Y is a polynomial, while

(4.16) J X(t—7) e Tu(r) dr| = Ky (1)t (1), =1,

(Since this integral has the same form as f3(1) in (2.33), with 1, replaced by t,, (4.16)
is obtained as was (2.34).)
Our assumptions on ¢ and a imply that

Y(t) e =o(t p(1)).
Therefore, (4.14), (4.15) and (4.16) imply that
Eﬂ_;(l -q¢{”}‘||f3“)|§ Ky (1), LZ 1.
Since (2.32) and (2.37) imply that lim, .. ¢,(#,) =0, we now see that (2.37) implies

(2.38).
For reference below, we observe here that

(4.17) lim t:(1)=0
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in any case. This is obvious from (2.34) if ¢(t)=o(1). If lim,_.. ¢(#)>0, then (2.26)
implies (2.37), which implies (2.38) and, therefore, (4.17).

To prove (2.36), consider the integral
T

J(1, T)= I s(s) ds——‘J. stds JS X(s—1) e u(r) dr.

Reversing the order of integration yields

T T T

v(7) dTJ. sIX(s—7) e*" 7 ds.

Ii

J(1, T)=J. v(7) de sIX(s—7) et ds+J.

ty t '

Manipulating the limits of integration here shows that
J(t, TY=H(t)—H(T).

where
H(1)= J’ I'(t, )v(7) dr (see (4.10)).

Therefore, from (4.11),

f r

v(7) dr— i i -[ X, (t—7) " "o(7) dr.
r=0

fo

q
(4.18) H(t)= % X,(O)J
r=0 ™
The integrals on the right converge as t - c0. Moreover, since the integrals in the second
sum are of the same form as f3(r) (see (2.33)), (4.17) implies that this sum approaches
zero as t - o0; hence,

(4.19) H(e)=lim H(T)= Eq, Xr(O)J‘ T'v(7) dr.

fo

Since f4(t) = H(c0c)— H(t), we now see from (4.1), (4.18) and (4.19) that

q q ¥
(4.20) (D=3 X0 V.()+ ¥ rrJ X, (t=7)e*" u(7) dr.

r=0 =0 o
Recalling (2.32), (4.2), (4.3) and, again, that the integrals in the second sum here are
of the same form as f3(t), and therefore satisfy an inequality like (2.34), we see from
(4.20) that (2.36) holds for a suitable constant K, which is ultimately determined by
X and A.

Finally, suppose that (2.37) holds. Then obviously V.(t) = o(¢(t)), from (4.2) and

(4.3). Moreover,

J. X, (t—7) """ Pv(r) dr=0(t7(1)),

as can be seen by replacing X with X, in (2.33) and applying the argument that led
to (2.38). Now (4.20) implies (2.39), which completes the proof of Lemma 1.
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