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Abstract. An iterative procedure is proposed for computing the eigenval-

ues and eigenvectors of Hermitian Toeplitz matrices. The computational cost per

eigenvalue–eigenvector for a matrix of order n is 0(n2) in serial mode. Results of

numerical experiments on Kac–Murdock–Szegö matrices and randomly generated

real symmetric Toeplitz matrices of orders 100, 150, 300, 500, and 1000 are included.

I. Introduction. Here we present a method for computing the eigenvalues

and eigenvectors of Hermitian Toeplitz matrices; i.e., matrices of the form

Tn = (ti−j)
n
i,j=1

with tr = t̄−r. The method rests specifically and crucially on the special structure

of Tn. There are efficient algorithms which exploit this simple structure to invert

such matrices, or to solve systems TnX = Y . There is also an extensive literature

on the asymptotic distribution of the eigenvalues of a family {Tn} of Hermitian

Toeplitz matrices as n → ∞, in the case where the {tm} are the Fourier coefficients

of a function f which satisfies suitable integrability conditions. However, the de-

velopment of efficient methods designed specifically to compute the eigenvalues and

eigenvectors of these matrices is still in its early stages.
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Several recent papers ([5], [7], [9], [18], [23]) have dealt with the spectral struc-

ture of Hermitian Toeplitz matrices, and numerical methods aimed mainly at find-

ing the smallest eigenvalue of a positive definite Hermitian Toeplitz matrix have

appeared ([8], [11], [14], [15]). Some of these use inverse iteration with Rayleigh

quotient shifting, exploiting the Levinson algorithm [17] for solving Toeplitz sys-

tems. The author [22] has proposed a method which, on the basis of preliminary

numerical experiments, appears to provide an effective procedure for computing

the eigenvalues of Hermitian Toeplitz matrices generated by rational functions, at

a cost per eigenvalue which is essentially independent of the order of the matrix.

(Autocorrelation matrices of ARMA processes are of this kind.)

The method presented here combines the Levinson–Durbin algorithm [6] for

the shifted matrices Tm − λIm (1 ≤ m ≤ n − 1) with an iterative root finding

procedure to locate the zeros of the rational function

(1) qn(λ) = pn(λ)/pn−1(λ),

where

(2) pm(λ) = det[Tm − λIm], 1 ≤ m ≤ n.

The basic idea of this approach is not original with us. Cybenko and Van Loan [8]

used the Levinson–Durbin algorithm and Newton’s method to compute the smallest

eigenvalue of a symmetric positive definite Toeplitz matrix, and our work should

be considered to be a continuation of theirs. However, our method will determine

any eigenvalue of Tn which is not also an eigenvalue of any of the nested subma-

trices T1, . . . , Tn−1 (an assumption also required by Cybenko and Van Loan). The

corresponding eigenvectors are obtained as byproducts.
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Delsarte and Genin [9] have used arguments based on the Levinson–Durbin

algorithm as applied to the shifted matrices Tm − λIm to obtain theoretical results

concerning the spectra of Hermitian Toeplitz matrices. For a result related to their

work, see also Wilkes and Hayes [23].
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2. The Theoretical Basis for the Method.

Most of the results in this section are not new, although we believe that this

presentation in specific reference to the eigenvalue problem is somewhat more ex-

plicit and complete than previous discussions. In any case, it seems appropriate to

include it here for the reader’s convenience.

Since the eigenvalues of Tn are real, we assume throughout that λ is real.

Let

Un−1 = [t1, t2, . . . , tn−1]
T (T = transpose).

If λ is not an eigenvalue of Tn−1, then let

Xn−1(λ) = [x1,n−1(λ), . . . , xn−1,n−1(λ)]T

be the solution of

(3) (Tn−1 − λIn−1)Xn−1(λ) = Un−1,

and define

(4) Yn(λ) =

[

−1
Xn−1(λ)

]

.

Recall the definitions (1) and (2) of qn(λ) and pm(λ). In the following, ‖ ‖ is the

Euclidean norm.

Theorem 1. If λ is not an eigenvalue of Tn−1, then

(5) qn(λ) = t0 − λ − ŪT
n−1Xn−1(λ)
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and

(6) q′n(λ) = −1 − ‖Xn−1(λ)‖2.

If, in addition, λ is an eigenvalue of Tn, then Yn(λ) is an associated eigenvector.

Proof: We partition Tn − λIn in the form

(7) Tn − λIn =

[

t0 − λ ŪT
n−1

Un−1 Tn−1 − λIn−1

]

.

Subtract xj,n−1(λ) times column j+1 from the first column of (7) for j = 1, . . . , n−1,

and invoke (3) to obtain

pn(λ) =

∣

∣

∣

∣

t0 − λ − ŪT
n−1Xn−1(λ) ŪT

n−1

0 Tn−1 − λIn−1

∣

∣

∣

∣

= (t0 − λ − ŪT
n−1Xn−1(λ))pn−1(λ),

which implies (5). From (3), (4), (5), and (7),

(8) (Tn − λIn)Yn(λ) = −qn(λ)[1, 0, . . . , 0]T ;

hence, if λ is an eigenvalue of Tn, then Yn(λ) is an associated eigenvector.

To verify (6), we differentiate (5):

q′n(λ) = −1 − ŪT
n−1X

′
n−1(λ)

= −1 − X̄T
n−1(λ)(Tn−1 − λIn−1)X

′
n−1(λ),(9)
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where the second equality follows from (3) and the Hermitian symmetry of Tn−1 −

λIn−1. Since differentiating (3) shows that

(Tn−1 − λIn−1)X
′
n−1(λ) = Xn−1(λ),

(9) implies (6).

The formula (6) is due to Cybenko and Van Loan [8]; however, they did not

explicitly identify qn(λ) as the ratio pn(λ)/pn−1(λ).

Except for a missing minus sign on the right, (3) is the Yule–Walker equation

for Tn−1 − λIn−1 (cf. [6]). The following theorem is essentially a statement of the

Levinson–Durbin algorithm for solving (3), with minor changes to account for the

fact that the diagonal element of the matrix in (3) is t0 − λ rather than unity. We

omit the proof.

Theorem 2. If Tm − λIm is nonsingular for 1 ≤ m ≤ n − 1, then (3) can be

solved recursively as follows: Let

(10) x11(λ) = t1/(t0 − λ), ∆1(λ) = t0 − λ,

and, for 2 ≤ m ≤ n − 1,

(11) ∆m(λ) = [1 − |xm−1,m−1(λ)|2]∆m−1(λ),

(12) xmm(λ) = ∆−1
m (λ)[tm −

m−1
∑

j=1

tm−jxj,m−1(λ)],

and

(13) xjm(λ) = xj,m−1(λ) − xmm(λ)x̄m−j,m−1(λ), 1 ≤ j ≤ m − 1.

6



For convenience, we say that a real number λ is nondefective with respect to Tn if

it is not an eigenvalue of any of the principal submatrices T1, . . . , Tn−1. Conversely,

λ is defective with respect to Tn if it is an eigenvalue of any of these matrices. An

eigenvalue of Tn which is not simultaneously an eigenvalue of any of the principal

submatrices will be said to be a nondefective eigenvalue of Tn. From the Cauchy

separation theorem, a nondefective eigenvalue must be of multiplicity one. (Note

that these are nonstandard usages of defective and nondefective.)

Cybenko [6] has shown that if m ≥ 2 and

Lm(λ) =

















1 0 . . . 0 0

−x1,m−1(λ) 1 . . . 0 0

−x2,m−1(λ) −x1,m−2(λ) . . . 1 0

...
...

. . .
...

...

−xm−1,m−1(λ) −xm−2,m−2(λ) . . . −x1,1(λ) 1

















,

then

(14) L̄T
m(λ)(Tm − λIm)Lm(λ) = diag[∆m(λ), . . . ,∆1(λ)].

Because of Sylvester’s law of inertia, this implies the following theorem, which has

been used previously in the algorithms of Cybenko and Van Loan [8] and Hu and

Kung [15] for computing the smallest eigenvalue of a positive definite Hermitian

Toeplitz matrix, and is also crucial for the more general algorithm presented here.

Theorem 3: Let Negm(λ) be the number of eigenvalues of Tm (counting

multiplicities) less than λ. Then Negm(λ) equals the number of negative values

among {∆1(λ), . . . ,∆m(λ)}, provided that λ is nondefective with respect to Tm.
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Since detLm(λ) = 1, (14) implies that

(15) pm(λ) =
m
∏

j=1

∆m(λ), 1 ≤ m ≤ n,

which is essentially equivalent to a formula obtained in [21] for the determinant

of a Hermitian Toeplitz matrix. Setting m = n in (15) shows that pn(λ) =

∆n(λ)pn−1(λ); hence

(16) qn(λ) = ∆n(λ).

Henceforth we will use qn(λ) and ∆n(λ) interchangeably.

Notice that it is not necessary to carry out the computations in (13) for m =

n − 1 in order to compute qn(λ) from (16), as it would be if we wished to use the

formula (5) obtained earlier. (However, (16) requires that Tm −λIm be nonsingular

for 1 ≤ m ≤ n − 1, while (5) requires only that Tn−1 − λIn−1 be nonsingular.)

Theorem 4: Suppose that α and β are nondefective with respect to Tn, and

that (α, β) contains exactly one eigenvalue (with multiplicity one) of Tn. Suppose

also that neither α nor β is an eigenvalue of Tn. Then (α, β) contains no eigenvalues

of Tn−1 if and only if ∆n(α) > 0 and ∆n(β) < 0.

Proof: Since Negn(β) = 1+Negn(α) by assumption, Theorem 3 implies that

the set {∆1(β), . . . ,∆n(β)} has exactly one more negative member than the set

{∆1(α), . . . ,∆n(α)}. Therefore, if either ∆n(α) < 0 or ∆n(β) > 0, the set {∆1(β),

. . . ,∆n−1(β)} must contain more negative members than the set {∆1(α), . . . ,

∆n−1(α)}, and therefore (α, β) contains at least one eigenvalue of Tn−1, by Theo-

rem 3. On the other hand, if ∆n(α) > 0 and ∆n(β) < 0, then the two sets mentioned
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in the last sentence must contain the same number of negative elements, and The-

orem 3 implies that Negn−1(β) = Negn−1(α); i.e., that Tn−1 has no eigenvalues in

(α, β).

As observed in [8], The idea of computing pn(λ)/pn−1(λ) by partitioning a

Hermitian matrix as in (7) and then locating its zeros by combining inertia com-

putations with a root finding method has been used by other authors (see, e.g.,

[19] and [24]); however, this approach requires O(n3) operations for the general

Hermitian matrix, rather than the O(n2) required for Toeplitz matrices.

In connection with his work on real centrosymmetric matrices, Andrews [1]

defined a vector V = [v1, . . . , vn]T to be symmetric if

(17) vj = vn−j+1, 1 ≤ j ≤ n,

or skew-symmetric if

(18) vj = −vn−j+1, 1 ≤ j ≤ n.

Cantoni and Butler [5] have shown that if T is a real symmetric Toeplitz matrix

of order n then R has an orthonormal basis consisting of n − [n/2] symmetric and

[n/2] skew-symmetric eigenvectors of T . (Here [x] is the integer part of x.) For

convenience, let us say that an eigenvalue of Tn is even or odd if it has an associated

eigenvector which satisfies (17) or (18), respectively. It is clear from (11) with

m = n − 1 that λ is a nondefective eigenvalue of a real symmetric Toeplitz matrix

if and only if xn−1,n−1(λ) = ±1. From the form of the associated eigenvector Yn(λ)

in (4), we can see more specifically that λ is a nondefective even eigenvalue of Tn

if and only if xn−1,n−1(λ) = −1, or a nondefective odd eigenvalue if and only if

xn−1,n−1(λ) = 1.
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3. The Iterative Procedure.

If λ is defective with respect to Tn, then qn(λ) cannot be computed by means

of Theorem 3. For practical purposes it is more appropriate to observe that qn(λ)

cannot be computed in this way if at least one of the quantities ∆1(λ), . . . ,∆n−1(λ)

is so small as to cause overflow in (12) for some m in {1, . . . , n−1}. We will discuss

this further in Section 5; however, for now it suffices to say that in the numerical

experiments reported in Section 4, which comprise the computation of thousands of

eigenvalues, there was not a single instance in which computation was terminated

for this reason. Therefore, we will assume in this section that the eigenvalues of Tn

(or at least those that we are trying to compute) are nondefective, and that none of

the approximants to the eigenvalues generated by the procedure that we are about

to describe are sufficiently close to being defective so as to cause overflow in (12).

We use an iterative procedure to locate the eigenvalues of Tn as the zeros

of qn = pn/pn−1. The iteration terminates when the difference between successive

iterates is sufficiently small. In the following description of the procedure, we assume

that ∆n(λ) 6= 0 for every value of λ encountered during the iteration. This is for

convenience only; obviously, if ∆n(λ) “underflows” to zero, then λ is an acceptable

approximation to an eigenvalue. (This did not occur in any of our computations.)

Let the eigenvalues of Tn be

λ1 ≤ λ2 ≤ . . . ≤ λn,

and suppose that we wish to find a single nondefective eigenvalue λi. Our first task

is to find an interval (α, β) which contains λi, but does not contain any other eigen-

values of Tn or any eigenvalues of Tn−1. On such an interval qn(λ) is continuous.

Obviously α and β satisfy the first requirement if and only if

(19) Negn(α) = i − 1 and Negn(β) = i,
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and, given this, Theorem 4 implies that the second holds if and only if

(20) ∆n(α) > 0 and ∆n(β) < 0.

In the following, Negn(λ) is computed by means of Theorem 3.

To start, we find α and β, by trial and error, such that

(21) Negn(α) ≤ i − 1 and Negn(β) ≥ i.

If (19) and (20) hold for this α and β, then this phase of the computation is finished.

If not, let γ = (α+β)/2. If Negn(γ) ≤ i− 1, replace α by γ; if Negn(γ) ≥ i, replace

β by γ. Repeat this until (19) and (20) both hold, which must occur after finitely

many steps.

Since qn is continuous on the interval (α, β) that we have just determined, we

can now switch from bisection to a more efficient zero finding method to locate

λi. The method of false position [20] was unacceptably slow, but the Pegasus

modification of this method yielded consistently good results. Since this procedure

is well described in the literature (see, e.g. [10], [20]), we will not describe it here,

except to say that if {µj} is the sequence of iterates produced by the Pegasus

computation, starting with µ0 = α and µ1 = β, then we terminate this phase of the

computation at the first integer r such that

(22) |µr − µr−1| < .5(1 + µr)10−K ,

where K is a suitable positive integer. We then compute ∆n(µr) from (10) – (13),

and continue (13) with m = n − 1 (which is not required to compute ∆n(µr), as

mentioned earlier) to compute x1,n−1(µr), . . . , xn−2,n−1(µr). Then we use Newton’s

method to obtain a final approximation to λi:

µr+1 = µr −∆n(µr)/∆′
n(µr)

= µr + ∆n(µr)/(1 + ‖Xn−1(µr)‖
2)

11



(cf. (6) and (16)).

This application of Newton’s method is “for good measure,” and can probably

be omitted without great loss. We included it without rigorously evaluating its

effect because in some cases it appeared to allow the use of a smaller integer K in

(22) without degrading the results, and we report it here since it was used in most

of the computations reported in Section 4. We did not use Newton’s method as

our principal iterative technique (after determining α and β as in (19) and (20)),

since it could produce a sequence of iterates which converge to another eigenvalue

or does not converge at all. The Pegasus method does not suffer from this defect,

and it has a respectable order of convergence (approximately 1.642).

It may be of interest to note that Newton’s method as applied to this prob-

lem is actually a form of Rayleigh quotient iteration. To see this, suppose that λ

is an approximation to an eigenvalue of Tn. Then the vector Yn(λ) in (4) is an

approximation to a corresponding eigenvector, and a new approximation λ̂ to the

eigenvalue can be obtained by computing the Rayleigh quotient

(23) λ̂ =
Ȳ T

n (λ)TnYn(λ)

‖Yn‖2
.

However, from (8) and (16),

TnYn(λ) = λYn(λ) − ∆n(λ)[1, 0, . . . , 0]T ,

so that

Ȳ T
n (λ)TnYn(λ) = λ‖Yn(λ)‖2 + ∆n(λ).
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Since

‖Yn(λ)‖2 = 1 + ‖Xn−1(λ)‖2 = −∆′
n(λ)

(cf. (6) and (16)), it now follows that the Rayleigh quotient λ̂ in (23) can be

rewritten as

λ̂ = λ − ∆n(λ)/∆′
n(λ),

which establishes our point.

Now suppose that we wish to find eigenvalues λp, . . . , λq, where 1 ≤ p < q ≤ n.

Since it would be wasteful to simply apply the procedure just described indepen-

dently for i = p, . . . , q, we will define a method for finding ξp−1, . . . , ξq such that

(24) ξi−1 < λi < ξi, p ≤ i ≤ q.

Having accomplished this, we then apply the above described procedure for i =

p, . . . , q, taking the initial points in the search for λi to be α = ξi−1 and β = ξi.

(Clearly, (24) implies (21) in this case.) It is to be understood that as each ξi is

determined, ∆n(ξi) is retained for subsequent use.

The inequalities (24) are equivalent to

Negn(ξp−1) ≤ p − 1,(25)

Negn(ξi) = i, p ≤ i ≤ q − 1,

Negn(ξq) ≥ q.

We specify the method for choosing ξp−1, . . . , ξq inductively. We start by choosing

a and b, by trial and error, such that Negn(a) ≤ p − 1 and Negn(b) ≥ q, and let
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ξp−1 = a and ξq = b. Now suppose that at some step of our inductive proce-

dure ξp−1 and ξq have been specified, but at least one of the intermediate points

ξp, . . . , ξq−1 has not. Let r and s be the smallest integers such that p ≤ r < s ≤ q

and ξr has not been selected, while ξs has. Define

(26) γ = (ξr−1 + ξs)/2

and k = Negn(γ). If r = p and k < p − 1 (which can occur only if the inequality

holds in (25)), then we replace ξp−1 by γ. Similarly, if s = q and k > q, then we

replace ξq by γ. In all other cases, r − 1 ≤ k ≤ s, and we let ξk = γ.

This procedure merely replaces a previously selected ξk unless k satisfies the

stronger inequalities r ≤ k ≤ s− 1; however, the bisection (26) will obviously cause

the selection process to be completed in a finite number of steps.

Since ξi−1 is no longer needed after λi has been obtained, λi can be stored in

the location previously occupied by ξi−1.

4. Computational Results.

We considered real symmetric matrices only. All computations reported here

were performed in double precision (15+ decimal places) in Fortran 77. The com-

putations for all matrices of order less than 1000 were performed on an IBM PC

AT. Those for matrices of order 1000 were performed on an IBM PS/2 Model 60.

Both machines were equipped with the 80287 coprocessor. Due to the limitations

of available computing equipment, we made no attempt to use parallel process-

ing to solve the Levinson–Durbin system (3). Therefore, the computation of each

eigenvalue and its associated eigenvector with our implementation of the proposed

method requires 0(n2) steps, where the “constant” buried in the “0” depends, of

course, on the number of iterations required for the given eigenvalue. Although
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this number depends upon the eigenvalue itself and on the starting values (α and

β), its average value over all eigenvalue–eigenvector pairs for a matrix of order n

appears to be essentially independent of n. Of course, it depends on K in (22). In

the computations reported here, we took K = 10.

We consider two kinds of matrices: the Kac–Murdock–Szegö (KMS) matrices

(27) Tn = (ρ|i−j|)n
i,j=1 , (0 < ρ < 1)

which are discussed in [13] and [16], and matrices

Tn = (ti−j)
n
i,j=1 ,

in which the defining elements t0, . . . , tn−1 were randomly generated with a uniform

distribution in [−10, 10].

The eigenvalues of the KMS matrices can be computed quite easily, even on a

hand-held calculator. It is shown in [13] that if

(28) sin(n + 1)γ − 2ρ sinnγ + ρ2 sin(n − 1)γ = 0,

then the quantity

(29) λ = (1 − ρ2)(1 − 2ρ cos γ + ρ2)−1

is an eigenvalue of Tn in (27). Moreover, it is also shown in [13] that (28) has roots

γ1, . . . , γn which satisfy the inequalities
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0 < γ1 <
π

n + 1
< γ2 <

2π

n + 1
< · · · < γn <

nπ

n + 1
.

Given such precise information on their locations, it is a simple matter to find

γ1, . . . , γn by standard root-finding methods, and then to compute the eigenvalues

λ1 < λ2 < · · · < λn from

(30) λi = (1 − ρ2)(1 − 2ρ cos γn−i+1 + ρ2)−1, 1 ≤ i ≤ n.

For a considerable extension of this idea, see [22].

We used the algorithm proposed here to compute all eigenvalues of KMS matri-

ces of orders n=100, 300, 500, and 1000 for various values of ρ. We also computed

the same eigenvalues by the “exact” method; that is, by solving (28) iteratively

with the Pegasus procedure to obtain γ1, . . . , γn, and then computing λ1, . . . , λn

from (30). We terminated the iteration for each γi as soon as the difference be-

tween successive iterates was less than 10−14. We then computed the fractional

error

(31) fi = (λ̂i − λ̃i)/λ̃i,

where λ̂i and λ̃i are the estimates of λi obtained from our general algorithm and

the “exact” method, respectively. The distributions of these fractional errors are

shown in Tables 1, 2, 3 and 4; e.g., Table 1 shows that for n = 100 and ρ = .5, 14

of the fractional errors were in the interval [10−14, 10−13).

Tables 5 and 6 summarize results obtained in computing all eigenvalues of 20

randomly generated matrices of order 100, 24 of order 150, 22 of order 300, 5 of

16



order 500, and 2 of order 1000. As mentioned above, the eigenvectors were obtained

as byproducts. We attempted to assess the results as follows.

We computed

(32) Qi = |qn(λ̂i)| , 1 ≤ i ≤ n

(or, equivalently, Qi = |∆n(λ̂i)|), where λ̂i is the final estimate of λi. We also

computed

(33) Ri = min{|xn−1,n−1(λ̂i) − 1| , |xn−1,n−1(λ) + 1|}

It is obvious from (1) that Qi = 0 if λ̂i = λi. Also, since λi is an eigenvalue of Tn if

xn−1,n−1(λi) = ±1, Ri = 0 if λ̂i = λi. Table 5 shows the percentage distributions of

{Qi} and {Ri}. Here n is the order of the matrix and m is the number of matrices

of that order for which the results are given. Under each value of n there are two

columns, headed Q and R, which show the percentage distributions of {Qi} and

{Ri}, respectively, for all m matrices of the given order n. For example, 34.58

percent of the {Qi} and 11.74 percent of the {Ri} fell in the interval [10−9, 10−8)

for n=300.

After a considerable portion of the computations summarized in Table 5 had

been completed, we decided that a more decisive measure of error should be calcu-

lated for the randomly generated matrices; namely,

(34) σi = ‖Tn − λ̂iYn(λ̂i)‖ / ‖Yn(λ̂i)‖,
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since Yn(λ̂i) (as defined in (4) with λ = λ̂i) is an approximate λi-eigenvector. Table

6 shows the percentage distribution of {σi} for a subclass of the matrices considered

in Table 5; again, m is the number of matrices of the given order n which are included

in this subclass.

The computations in (10)–(13) require approximately n2 flops for each λ. With

K = 10 in (22), these computations were performed on the average approximately

eleven times per eigenvalue (and this was essentially independent of the partic-

ular matrix or its order). Let us extrapolate from these computations, and as-

sume that this method requires approximately M(K)n2 flops per eigenvalue, where

M(10) ≈ 11. By comparison, standard QR requires approximately 2n3/3 flops for

the preliminary tridiagonalization of Tn, after which all the the eigenvalues can be

computed with O(n) flops [12, Section 8.2]. On the basis of this count only, it would

seem that the method presented here has a clear advantage over standard QR if

it is desired to compute N eigenvalues (1 ≤ N ≤ n) of Tn, provided that N is

small compared to (2n)/3M(K), while the advantage shifts to standard QR if this

is not so. In the context of parallel processing, the determination of the crossover

point is more complicated; since the computations for distinct eigenvalues are com-

pletely independent of each other with the present method, it is straightforward

to distribute the labor of computing many eigenvectors among multiple processors.

Moreover, the memory requirement for the present method is O(n), compared to

O(n2) for standard QR.

The approximate average running times required on the IBM PC AT to find

all eigenvalues and eigenvectors of Tn, with K = 10 in (22) and without computing

σi (cf.(34)), were 24 minutes, 81 minutes, 10.6 hours, and 49 hours for n=100,

150, 300, and 500, respectively. For those runs in which σi was computed, the

average running times were approximately 27 minutes, 88 minutes, 11.6 hours, and
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54 hours, respectively. For the matrices of order 1000, the average running time per

eigenvalue-eigenvector pair was approximately 15 minutes on the PS/2 Model 60.

5. The Effects of Defectiveness

Our program included a command to terminate computation of qn(λ) = ∆n(λ)

if

(35) |1 − x2
m−1,m−1(λ)| < 10−J

for some m in {1, . . . , n− 1}. The purpose of this test is to prevent overflow in (12)

if λ is too close to an eigenvalue of one of the principal submatrices T1, . . . , Tn−1 of

Tn. In the computations reported in Section 4 we took J = 9 (recall that K = 10

in (22)), and termination for this reason never occurred. Thus, the practical effect

of defectiveness is not that it is likely to cause overflow (although this can be forced

to happen in contrived situations); rather, it effects the accuracy of the results.

In most cases where the error indicators fi, Qi, and Ri, were relatively large, we

were able to ascertain that the eigenvalues in question were close to being defective.

For example, it can be seen in Table 5 that Qi was in the interval [1,10) for one of the

6600 eigenvalues computed for randomly generated matrices of order 300. This was

λ̂=122.418638510399, with q300(λ̂) ∼= 8.45. To test for defectiveness, we reduced J

in (35) to 4 and attempted to compute q300(λ̂). The calculation terminated with

m = 298. Subsequent calculation showed that q298(λ̂) ∼= .31× 10−5, indicating that

λ̂ was close to an eigenvalue of T298. Examination of other cases in which the error

indicators were unusually large yielded similar results.

The results in Table 1 for the KMS matrix with ρ = .5 and n = 100 show

that the fractional error fi for one eigenvalue is in the interval [10−8, 10−7), while
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all the others are less than 10−12. The eigenvalue for which this occurred is λ =

1, which is defective; indeed, it is straightforward to verify that if ρ = .5 and

n = 3m + 1 (m = 0, 1, 2, . . .), then γ = π/3 satisfies (28) and therefore, from

(29), λ = 1 is an eigenvalue of Tn. Hence, λ = 1 is an eigenvalue of 33 principal

submatrices of T100.

Although our results indicate that defectiveness in the sense that we have

defined it is not a major problem for the matrices that we have considered, it would

still be worthwhile to develop methods to overcome it. Clearly, defectiveness is

a problem — theoretically — mainly because the Levinson–Durbin algorithm for

solving the Yule–Walker equation (3) requires that all the principal submatrices of

Tn −λIn be nonsingular; i.e., that Tn −λIn be “strongly nonsingular.” Alternative

methods have been proposed for solving Toeplitz systems with matrices which are

not strongly nonsingular; for discussions of such methods, see [2], [3] and [4]. A

possible direction for future research would be to incorporate some of the ideas in

these references into the present method.
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