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Recently the asymptotic properties of solutions of systems of functional

differential equations have begun to be studied. (See, e.g., [1]–[10].) Here we

give sufficient conditions for rather general functional differential systems to

have solutions that approach given constant vectors as t → ∞. This question

has been thoroughly investigated for ordinary differential equations, and it

seems clear that the methods applied to them can be adapted to functional

equations. For example, in [10] the author and T. Kusano obtained sufficient

conditions for a functional differential system of the form

x′
i(t) = fi(t, x1(gi1(t)), . . . , xn(gin(t))), 1 ≤ i ≤ n, (1)

to have solutions which approach constant vectors as t → ∞, given that

fi : [a,∞) × Rn → R and gij : [a,∞) → R, 1 ≤ i, j ≤ n, are continuous

and that

|fi(t, ξ1, . . . , ξn)| ≤ wi(t, |ξ1|, . . . , |ξn|), 1 ≤ i ≤ n, (2)

where w1, . . . , wn satisfy certain monotonicity and integrability conditions.

Assumptions of this kind are standard in connection with systems

x′
i(t) = fi(t, x1(t), . . . , xn(t)), 1 ≤ i ≤ n,
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of ordinary differential equations. It is interesting that they lead to results for

the system (1), in which no assumptions other than continuity are imposed

on the deviating arguments {gij}. Nevertheless, although (1) is a consider-

ably more general system than (2), it is not very general in the context of

functional differential equations, which may take a great variety of forms.

For example, one may wish to consider a functional system

X ′(t) = F (t;X), (3)

or, in component form,

x′
i(t) = fi(t;X), 1 ≤ i ≤ n

(here X = [x1, . . . , xn]), in which each fi(t;X) depends on X evaluated

at several (perhaps infinitely many) values of the independent variable t.

Therefore, it would seem to be useful to replace assumptions like those stated

above by conditions which are easy to check for specific systems, but are not

strictly limited in their applicability to systems of a given special form. This

is our objective here.

We begin with the following definition from [10].

Definition 1. If −∞ < t0 < ∞, then Cn(t0) is the space of continuous

n-vector functions X = (x1, . . . , xn) on (−∞,∞) which are constant on

(−∞, t0], with the topology induced by the following definition of convergence:

Xj → X as j → ∞ if limj→∞ [sup−∞<t≤T ‖Xj(t) − X(t)‖ ] = 0 for

every T in (−∞,∞).

Here ‖ · ‖ is any convenient vector norm. Notice that Cn(t0) is a Fréchet

(= complete linear metric) space and that Cn(t0) ⊂ Cn(a) if t0 ≥ a.
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We now state our main assumption on the functional F in (3). It is to

be understood that this assumption holds throughout the paper.

Assumption A. Suppose that a ∈ (−∞,∞) and r is a given integer,

1 ≤ r ≤ n. Let Cnr(a) be the set of functions X in Cn(a) such that |xi(t)| >

0, −∞ < t < ∞, r + 1 ≤ i ≤ n. Suppose further that:

(i) For each X in Cnr(a), F (·;X) is continuous on [a,∞).

(ii) If {Xj} ⊂ Cnr(a) and Xj → X ∈ Cnr(a), then limj→∞ F (t;Xj) =

F (t;X) (pointwise), t ≥ a.

(iii) The component functionals f1(·;X), . . . , fn(·;X) satisfy the inequal-

ities

|fi(t;X)| ≤ wi(t, ρ1, . . . , ρn), t ≥ a, 1 ≤ i ≤ n, (4)

whenever X ∈ Cnr(a) and

|xi(t)| ≤ ρi, −∞ < t < ∞, 1 ≤ i ≤ r, (5)

and

|xi(t)| ≥ ρi, −∞ < t < ∞, r + 1 ≤ i ≤ n, (6)

where, for each i = 1, . . . , n, wi : [a,∞) × (0,∞)r × (0,∞)n−r → [0,∞) is

continuous, nondecreasing in ρ1, . . . , ρr, and nonincreasing in ρr+1, . . . , ρn.

Suppose also that

∫ ∞

a

wi(t, ρ1, . . . , ρn) dt ≤ ∞, 1 ≤ i ≤ n, (7)

for all ρ1, . . . , ρn > 0.
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Some of these conditions are obviously vacuous if r = 0 or r = n. This

is also true of other assumptions and of some of the conclusions below. The

proofs simplify in obvious ways in these special cases.

We first prove a lemma which will facilitate the derivation of our main

results.

Lemma 1. Suppose that t0 ≥ a and ρ1, . . . , ρn, θ1, . . . , θn are positive

numbers such that 0 < θi < 1 if r + 1 ≤ i ≤ n,

∫ ∞

t0

wi(t, ρ1, . . . , ρn) dt ≤
θi

1 + θi

ρi, 1 ≤ i ≤ r, (8)

and
∫ ∞

t0

wi(t, ρ1, . . . , ρn) dt ≤
θi

1 − θi

ρi, r + 1 ≤ i ≤ n. (9)

Let c1, . . . , cn be given constants such that

|ci| ≤
ρi

1 + θi

, 1 ≤ i ≤ r, (10)

and

|ci| ≥
ρi

1 − θi

, r + 1 ≤ i ≤ n. (11)

Then there is a function X̂ in Cnr(t0) such that

X̂ ′(t) = F (t; X̂), t ≥ t0, (12)

|x̂i(t) − ci| ≤
θi

1 + θi

ρi, −∞ < t < ∞, 1 ≤ i ≤ r, (13)
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|x̂i(t) − ci| ≤
θi

1 − θi

ρi, −∞ < t < ∞, r + 1 ≤ i ≤ n, (14)

and

limt→∞x̂i(t) = ci, 1 ≤ i ≤ n. (15)

Proof. We obtain X̂ as a fixed point (function) of the transformation

Y = TX defined by

yi(t) =











ci −
∫ ∞

t
fi(s;X) ds, t ≥ t0,

1 ≤ i ≤ n.

ci −
∫ ∞

t0
fi(s;X) ds, t < t0,

(16)

which is to act on the set S of functions X in Cn(t0) such that

|xi(t) − ci| ≤
θi

1 + θi

ρi, −∞ < t < ∞, 1 ≤ i ≤ r, (17)

and

|xi(t) − ci| ≤
θi

1 − θi

ρi, −∞ < t < ∞, r + 1 ≤ i ≤ n. (18)

Since S is a closed convex subset of Cn(t0), the Schauder–Tychonoff

theorem asserts that X̂ = TX̂ for some X̂ in S provided that

(a) T is defined on S;

(b) T (S) ⊂ S;

(c) TXj → TX if {Xj} ⊂ S and Xj → X; and
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(d) T (S) has compact closure.

For the rest of the proof we assume that X ∈ S. Then (10) and (17)

imply (5), while (11) and (18) imply (6), so that S ⊂ Cnr(a). Now (5) and

(6) imply (4); hence, (8) and (9) imply that Y = TX is defined, and that

(17) and (18) remain valid with xi replaced by yi (cf.(16)). This establishes

hypotheses (a) and (b) of the Schauder–Tychonoff theorem.

Suppose that {Xj} ⊂ S and Xj → X. Let Yj = TXj = (y1j , . . . , ynj)

and Y = TX = (y1, . . . , yn). From (16),

|yij(t)−yi(t)| ≤

∫ ∞

t0

|fi(s;Xj)−fi(s;X)| ds, −∞ < t < ∞, 1 ≤ i ≤ n. (19)

Since part (ii) of Assumption A implies that the integrand here converges

pointwise to zero and (iii) implies that

|fi(t;Xj) − fi(t;X)| ≤ 2wi(t, ρ1, . . . , ρn), t ≥ t0, 1 ≤ i ≤ n,

(7) and Lebesgue’s dominated convergence theorem imply that the integral

in (19) converges to zero as j → ∞; hence, {Yj} converges to Y uniformly

on (−∞,∞). This establishes hypothesis (c) of the Schauder-Tychonoff the-

orem.

To see that T (S) has compact closure, we first observe that it is uni-

formly bounded on (−∞,∞), since T (S) ⊂ S. Differentiating (16) and

applying (4) yields the inequality

|y′
i(t)| ≤ |fi(t;X)| ≤ wi(t, ρ1, . . . , ρn), t ≥ t0, 1 ≤ i ≤ n
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(with the appropriate one–sided interpretation when t = t0.) This implies

that T (S) is equicontinuous on compact subintervals of [t0,∞), and now

the Arzela–Ascoli theorem and Definition 1 imply that T (S) has compact

closure. Therefore, the Schauder-Tychonoff theorem implies that TX̂ = X̂

for some X in S. It is trivial to verify that X̂ satisfies (12), (13), (14), and

(15). This completes the proof of Lemma 1.

Theorem 1. Let c1, . . . , cn be given constants, with ci 6= 0 if r+1 ≤ i ≤

n. Then, if t0 is sufficiently large, there is an X̂ in Cnr(t0) which satisfies

(3) for t > t0 and has the asymptotic behavior (15).

Proof. Choose positive numbers θ1, . . . , θn, with 0 < θi < 1 for r+1 ≤

i ≤ n. Then choose ρ1, . . . , ρn to satisfy (10) and (11). Finally, choose t0 so

that (8) and (9) hold, and apply Lemma 1.

Theorem 2. Suppose that ρ1, . . . , ρn and t0 (≥ a) are such that

∫ ∞

t0

wi(t, ρ1, . . . , ρn) dt < ρi, 1 ≤ i ≤ r. (20)

Then there is an X̂ in Cnr(t0) which satisfies (3) for t > t0 and has the

asymptotic behavior (15), provided that |ci| is sufficiently small for 1 ≤ i ≤ r

and |ci| is sufficiently large for r + 1 ≤ i ≤ n.

Proof. Choose θ1, . . . , θr sufficiently large to imply (8). (This is pos-

sible because of (20).) Next choose θr+1, . . . , θn in (0, 1) to satisfy (9). Now

Lemma 1 implies the conclusion, provided that c1, . . . , cn satisfy (10) and

(11).
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Theorem 3. Suppose that r = 0; i.e., that wi(t, ρ1, . . . , ρn) is non-

increasing with respect to ρ1, . . . , ρn for 1 ≤ i ≤ n. Then there is an X̂ in

Cnr(a) which satisfies (3) on the entire interval [a,∞) and has the asymptotic

behavior (15), provided that |c1|, . . . , |cn| are sufficiently large.

Proof. Here (8) and (10) are vacuous. Let ρ1, . . . , ρn be arbitrary

positive numbers, and choose θ1, . . . , θn in (0, 1) so that (9) holds with t0 = a

and r = 0. Then Lemma 1 implies the conclusion, provided that (11) holds

with r = 0.

Theorem 4. In addition to Assumption A, suppose that 1 ≤ r ≤ n and

that the following conditions hold for 1 ≤ i ≤ r:

wi(t, ρ1, . . . , ρn) = ui(t, ρ1, . . . , ρr) + vi(t, ρr+1, . . . , ρn), (21)

where

lim
λ→∞

vi(t, λ, . . . , λ) = 0 (22)

if r < n or vi = 0 if r = n; ρ−1ui(t, ρ, . . . , ρ) is monotonic in ρ for each t,

and, for some t0 ≥ a,

lim
ρ→α

ρ−1ui(t, ρ, . . . , ρ) = Ai(t), t ≥ t0, 1 ≤ i ≤ r, (23)

where
∫ ∞

t0

Ai(t) dt = φi < 1, 1 ≤ i ≤ r, (24)

and either α = 0+ or α = ∞ . Then there is an X̂ in Cnr(t0) which satisfies

(3) for t ≥ t0 and has the asymptotic behavior (15), provided that |ci| is
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sufficiently large for r + 1 ≤ i ≤ n and either (i) α = 0+ and |c1|, . . . , |cr|

are sufficiently small or (ii) α = ∞.

Proof. Choose θ sufficiently large so that φi < θ/(1 + θ), 1 ≤ i ≤ r.

Then, from (23), (24), and Levi’s monotone convergence theorem,

∫ ∞

t0

ui(t, ρ, . . . , ρ) dt <
θ

1 + θ
ρ, 1 ≤ i ≤ r,

if ρ is sufficiently near α. Moreover, (22) and Lebesgue’s dominated conver-

gence theorem imply that

lim
λ→∞

∫ ∞

t0

vi(t, λ, . . . , λ) dt = 0, 1 ≤ i ≤ r.

Therefore, we can choose ρ0 sufficiently near α and λ0 sufficiently large so

that

∫ ∞

t0

ui(t, ρ0, . . . , ρ0) dt +

∫ ∞

t0

vi(t, λ0, . . . , λ0) dt ≤
θ

1 + θ
ρ0, 1 ≤ i ≤ r,

which, from (21), is equivalent to

∫ ∞

t0

wi(t, ρ0, . . . , ρ0, λ0, . . . , λ0) dt ≤
θ

1 + θ
ρ0, 1 ≤ i ≤ r. (25)

If r < n, now choose θ̂ in (0, 1) so that

∫ ∞

t0

wi(t, ρ0, . . . , ρ0, λ0, . . . , λ0) dt ≤
θ̂

1 − θ̂
ρ0, r + 1 ≤ i ≤ n.
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Now Lemma 1 implies that there is an X̂ in Cnr(t0) which satisfies (3) for

t > t0 and has the asymptotic behavior (15), provided that

|ci| ≤
ρ0

1 + θ
, 1 ≤ i ≤ r, (26)

and

|ci| ≥
ρ0

1 − θ̂
, r + 1 ≤ i ≤ n.

Hence, the conclusion of the present theorem is now immediate under as-

sumption (i) above. To see that it also holds under assumption (ii), we

simply observe that if α = ∞ and |c1|, . . . , |cr| are arbitrary, we can pick ρ0

so large that (25) and (26) both hold.

Theorem 4 generalizes results obtained in [10] with r = n and Ai(t) ≡

0, 1 ≤ i ≤ n. Notice that if Ai(t) ≡ 0 for 1 ≤ i ≤ r, then Theorem 4 is

global result, since then we can conclude that there is an X̂ in Cnr(a) which

satisfies (3) on the entire interval [a,∞) and has the asymptotic behavior

(15). Of course, Theorem 3 is also of this nature.
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