Proceedings of the International Conference on Theory and Applications of Differential Equations, Ohio University, 1988), pp. 448-453

MIXED SUBLINEAR, SUPERLINEAR, AND SINGULAR SYSTEMS OF FUNCTIONAL DIFFERENTIAL EQUATIONS

WILLIAM F. TRENCH

Trinity University, San Antonio, TX USA

We consider systems of the form

$$x'_{i}(t) = \sum_{j=1}^{n} a_{ij}(t) (x_{j}(g(t)))^{\gamma_{j}}, \quad t > t_{0}, \quad 1 \le i \le n,$$
(1)

where $a_{ij}: [t_0, \infty) \to R$ and $g: [t_0, \infty) \to R$ are continuous, and $\gamma_1, \ldots, \gamma_n$ are nonzero rational numbers with odd denominators, so that the quantity x^{γ_j} is real-valued whenever x is real. However, this restriction is for notational convenience only; with trivial modifications our results are valid for the system

$$x'_{i}(t) = \sum_{j=1}^{n} a_{ij}(t) |x_{j}(g(t))|^{\gamma_{j}} sgn(x_{j}(g(t)), \quad t > t_{0}, \quad 1 \le i \le n.$$

The asymptotic behavior of systems of functional differential equations has recently begun to receive attention (see, e.g., [1]–[9]). Here we give condi-AMS(MOS) Subject Classifications: 34K15, 34K25. tions which imply that (1) has solutions on the half-line $[t_0, \infty)$ that approach a given constant vector C as $t \to \infty$. Since there are no assumptions on the deviating argument g other than continuity, we must allow for the possibility that $g(t) < t_0$ for some $t > t_0$. For this reason we introduce the following definition.

DEFINITION. If $-\infty < t_0 < \infty$, then $C_n(t_0)$ is the space of continuous n-vector functions on $(-\infty, \infty)$ which are constant on $(-\infty, t_0]$, with the topology induced by the following definition of convergence: $X_j \to X$ as $j \to \infty$ if $||X_j(t) - X(t)|| \to 0$ uniformly as $j \to \infty$ on every half-line $(-\infty, b]$.

We say that a function X in $C_n(t_0)$ is a solution of (1) if X is differentiable and satisfies (1) on (t_0, ∞) . We give conditions which guarantee the existence of a solution of (1) such that $\lim_{t\to\infty} x_i(t) = c_i$, $1 \le i \le n$, for given c_1, \ldots, c_n . For convenice, we will abbreviate (1) as $x'_i(t) = f_i(t; X)$, $1 \le i \le$ n, or in system form as X'(t) = F(t; X). We obtain our results by applying the Schauder-Tychonoff theorem to the transformation Y = TX defined by

$$Y(t) = \begin{cases} C - \int_t^\infty F(s; X) \, ds, & t \ge t_0, \\ C - \int_{t_0}^\infty F(s; X) \, ds, & t < t_0. \end{cases}$$
(2)

The system (1) will be said to be *linear*, superlinear, sublinear, or singular with respect to x_i if, respectively, $\gamma_i = 1$, $\gamma_i > 1$, $0 < \gamma_i < 1$, or $\gamma_i < 0$. In the following $\mathcal{A} = \{i \mid 1 \leq i \leq n \text{ and } \gamma_i > 0\}$, and $\mathcal{B} = \{i \mid 1 \leq i \leq n \text{ and } \gamma_i < 0\}$. For a given constant vector C, let $\mathcal{N} = \{i \mid 1 \leq i \leq n \text{ and } c_i \neq 0\}$ and $\mathcal{Z} = \{i \mid 1 \leq i \leq n \text{ and } c_i = 0\}$. Any of the sets $\mathcal{A} \mathcal{B}, \mathcal{N}$, and \mathcal{Z} may be empty. We impose the following integrability conditions on the coefficient functions $\{a_{ij}\}$ in (1). It should be understood that this assumption applies throughout the remainder of the paper.

ASSUMPTION A. Let $\gamma_i > 0$ if $i \in \mathbb{Z}$. Let $\varphi_1 \dots, \varphi_n$ be positive, nonincreasing and continuous on $(-\infty, \infty)$, with $\varphi_i(t) = 1, t \leq t_0$. Suppose that the integrals $\int_{-\infty}^{\infty} a_{ij}(t) dt$ $(1 \leq i, j \leq n)$ converge (perhaps conditionally) and that for $1 \leq i \leq n$ and $t \geq t_0$,

$$\alpha_{ij}(t) = \left| \int_{t}^{\infty} a_{ij}(s) \, ds \right| = O(\varphi_i(t)), \quad j \in \mathcal{N}, \tag{3}$$

$$\beta_{ij}(t) = \left| \int_t^\infty |a_{ij}(s)| \varphi_j(g(s)) \ ds = O(\varphi_i(t)), \quad j \in \mathcal{N},$$
(4)

and

$$\sigma_{ij}(t) = \int_t^\infty |a_{ij}(s)| (\varphi_j(g(s)))^{\gamma_j} \, ds = O(\varphi_i(t)), \quad j \in \mathcal{Z}.$$
 (5)

For convenience below we define

$$\overline{\alpha}_{ij} = \sup_{t \ge t_0} \alpha_{ij}(t) / \varphi_i(t), \ j \in \mathcal{N},$$
(6)

$$\overline{\beta}_{ij} = \sup_{t \ge t_0} \beta_{ij}(t) / \varphi_i(t), \ j \in \mathcal{N},$$
(7)

$$\overline{\sigma}_{ij} = \sup_{t \ge t_0} \sigma_{ij}(t) / \varphi_i(t), \ j \in \mathcal{Z},$$
(8)

and

$$M_{ij} = \overline{\alpha}_{ij} + \theta (1 \pm \theta)^{\gamma_j - 1} |\gamma_j| \overline{\beta}_{ij}, \qquad (9)$$

where θ is a given number in (0, 1) and the " \pm " is "+" if $\gamma_j \ge 1$ or "-" if $\gamma_j < 1$. It is also convenient here to define the functions $\lambda_i(t), 1 \le i \le n$, by

$$\lambda_i(t) = \sum_{j \in \mathcal{Z}} r_j^{\gamma_j} \sigma_{ij}(t) + \sum_{j \in \mathcal{N}} |c_j|^{\gamma_j} [\alpha_{ij}(t) + \theta |\gamma_j| (1 \pm \theta)^{\gamma_j - 1} \beta_{ij}(t)]$$
(10)

if $t \ge t_0$ and $\lambda_i(t) = \lambda_i(t_0)$ if $t < t_0$.

THEOREM 1. If r_i $(i \in \mathbb{Z})$ and c_i $(i \in \mathbb{N})$ are constants such that

$$\sum_{j \in \mathcal{Z}} \overline{\sigma}_{ij} r_j^{\gamma_j} + \sum_{j \in \mathcal{N}} M_{ij} |c_j|^{\gamma_j} \le \begin{cases} \theta |c_i|, & i \in \mathcal{N}, \\ r_i, & i \in \mathcal{Z}, \end{cases}$$
(11)

then (1) has a solution \hat{X} such that

$$|\hat{x}_i(t) - c_i| \le \lambda_i(t) \le \theta |c_i| \varphi_i(t) \ (i \in \mathcal{N}), \quad -\infty < t < \infty, \tag{12}$$

and

$$|\hat{x}_i(t)| \le \lambda_i(t) \le r_i \varphi_i(t) \ (i \in \mathcal{Z}), \quad -\infty < t < \infty.$$
(13)

PROOF. We apply the Schauder–Tychonoff theorem to show that $\hat{X} = T\hat{X}$ (cf.(2))) for some \hat{X} in the closed convex subset S consisting of functions X in $C_n(t_0)$ such that

$$|x_i(t) - c_i| \le \theta |c_i| \varphi_i(t) \ (i \in \mathcal{N}), \quad -\infty < t < \infty, \tag{14}$$

and

$$|x_i(t)| \le r_i \varphi_i(t) \ (i \in \mathcal{Z}), \quad -\infty < t < \infty.$$
(15)

Since

$$0 < (1-\theta)|c_i| \le |x_i(\tau)| \le (1+\theta)|c_i| \ (i \in \mathcal{N}), \quad \infty < \tau < \infty, \tag{16}$$

the continuity of the $\{a_{ij}\}$ implies that the functions

$$f_i(t;X) = \sum_{i=1}^n a_{ij}(t)(x_j(g(t)))^{\gamma_j}, \quad 1 \le i \le n, \quad X \in \mathcal{S},$$

are continuous on $[t_0, \infty)$. Moreover,

$$\left|\int_{t}^{\infty} f_{i}(s;X) \ ds\right| \leq \left|\int_{t}^{\infty} f_{i}(s;C) \ ds\right| + \int_{t}^{\infty} \left|f_{i}(s;X) - f_{i}(s;C)\right| \ ds \quad (17)$$

if the integrals on the right converge, which we will now verify. From (3),

$$\left|\int_{t}^{\infty} f_{i}(s;C) \, ds\right| \leq \sum_{j \in \mathcal{N}} |c_{j}|^{\gamma_{j}} \alpha_{ij}(t).$$
(18)

Now consider

$$f_i(t;X) - f_i(t;C) = \sum_{j \in \mathbb{Z}} a_{ij}(t) (x_j(g(t)))^{\gamma_j}$$

$$+ \sum_{j \in \mathcal{N}} a_{ij}(t) [(x_j(g(t)))^{\gamma_j} - c_j^{\gamma_j}].$$
(19)

From the mean value theorem, $|x^{\gamma} - c^{\gamma}| \leq |\gamma| |\hat{x}|^{\gamma_j - 1} |x - c|$ with \hat{x} between x and c, provided that x and $c \ (\neq 0)$ have the same sign. Therefore, from (16) with τ replaced by g(t),

$$|(x_j(g(t)))^{\gamma_j} - c_j^{\gamma_j}| \le |\gamma_j| |\hat{x}_j|^{\gamma_j - 1} |(x_j(g(t)))^{\gamma_j} - c_j^{\gamma_j}|, \quad j \in \mathcal{N},$$
(20)

where

$$(1-\theta)|c_j| < |\hat{x}_j| < (1+\theta)|c_j|, \quad j \in \mathcal{N}.$$
(21)

Now (14), (20), and (21) imply that

$$|(x_j(g(t)))^{\gamma_j} - c_j^{\gamma_j}| \le \theta |\gamma_j| (1 \pm \theta)^{\gamma_j - 1} |c_j|^{\gamma_j} \varphi_j(g(t)) \ (j \in \mathcal{N}) \ , \ X \in \mathcal{S},$$

where the " \pm " is "+" if $\gamma_j \ge 1$, "-" if $\gamma_j < 1$. Hence, (4), (5), (15), and (19) imply that

$$\int_{t}^{\infty} |f_{i}(s;X) - f_{i}(s;C)| ds \leq \sum_{j \in \mathbb{Z}} r_{j}^{\gamma_{j}} \sigma_{ij}(t) + \theta \sum_{j \in \mathbb{N}} |\gamma_{j}| (1 \pm \theta)^{\gamma_{j}-1} |c_{j}|^{\gamma_{j}} \beta_{ij}(t),$$

which, together with (17) and (18) yields the inequalities

$$\left|\int_{t}^{\infty} f_{i}(s; X) ds\right| \leq \lambda_{i}(t), \quad 1 \leq i \leq n,$$

with λ_i as defined in (10). Therefore, (6), (7), (8), (9), and (11) imply that if Y = TX, then

$$|y_i(t) - c_i| \le \lambda_i(t) \le \theta |c_i| \varphi_i(t), (i \in \mathcal{N}) \text{ and } |y_i(t)| \le \lambda_i(t) \le r_i \varphi_i(t), (i \in \mathcal{Z}),$$

for all t. Hence, $T(S) \subset S$. Since it is routine to verify that T is continuous and T(S) has compact closure, the Schauder–Tychonoff theorem now implies that $T\hat{X} = \hat{X}$ for some \hat{X} in S with components which satisfy (12) and (13). This completes the proof.

Now let $\mathcal{A}_0 = \{j \in \mathcal{N} \mid \gamma_j > 0\}$ and recall that $\mathcal{B} = \{j \mid 1 \leq j \leq n \text{ and}$ $\gamma_j < 0\} \subset \mathcal{N}.$

COROLLARY 1. Suppose that r_i $(i \in \mathbb{Z})$ and c_i $(i \in \mathcal{A}_0)$ are such that

$$\sum_{j\in\mathcal{Z}} \bar{\sigma}_{ij} r_j^{\gamma_j} + \sum_{j\in\mathcal{A}_0} M_{ij} |c_j|^{\gamma_j} < \begin{cases} \theta |c_i|, & i\in\mathcal{A}_0\\ r_i, & i\in\mathcal{Z}. \end{cases}$$
(22)

Then the conclusions of Theorem 1 hold if $|c_i|$ is sufficiently large for $i \in \mathcal{B}$.

PROOF. Clearly (22) implies (11) if $|c_i|$ $(i \in \mathcal{B})$ are sufficiently large.

COROLLARY 2. The conclusions of Theorem 1 hold if either:

(i) $\gamma_i > 1$ for all *i* in \mathcal{A} (i.e., the nonsingular part of (1) is purely superlinear), provided that r_i is sufficiently small for *i* in \mathcal{Z} , $|c_i|$ is sufficiently small for *i* in \mathcal{A}_0 , and $|c_i|$ is sufficiently large for *i* in \mathcal{B} .

(ii) $\gamma_i < 1$ for all *i* in \mathcal{A} (i.e., the nonsingular part of (1) is purely sublinear), and the constants $|c_i|$ and r_i are all sufficiently large.

REFERENCES

 I. Foltynska and J. Werbowski, On the oscillatory behavior of solutions of systems of differential equations with deviating arguments, Colloq. Math. Soc. János Bolyai 30: Qualitative Theory of Differential Equations (M. Farkas, Ed.), Vol. 1, 243–256, Szeged, 1981.

- I. Györi, On existence of the limits of solutions of functional differential equations, Colloquia Mathematica Societatis Janos Bolyai 30. Qualitative Theory of Differential Equations, Szeged (Hungary), 1979. (North Holland, Amsterdam-Oxford-New York, 1980, 297–315.)
- Y. Kitamura and T. Kusano, Oscillation and a class of nonlinear differential systems with general deviating arguments, Nonlinear Anal. 2 (1978), 537–551.
- P. Marušiak, Oscillatory properties of solutions of nonlinear differential systems with deviating arguments, Czechoslovak Math. J. 36 (1986), 223–231.
- V. Šeda, On nonlinear differential systems with deviating arguments, Czechoslovak Math. J. 36 (1986), 450–466.
- V.N. Shevelo, Oscillation of solutions of differential equations with deviating argument, Naukova Dumka, Kiev, 1978. (Russian)
- V.N. Shevelo, N.V. Varch and A.G. Gritsai, Oscillatory properties of solutions of systems of differential equations with deviating argument, Preprint 85.10, Institute of Mathematics, Ukrainian Academy of Sciences, Kiev, 1985. (Russian)
- W.F. Trench, Asymptotics of differential systems with deviating arguments, Proc. Amer. Math. Soc. 92 (1984), 219–224.
- 9. W.F. Trench and T. Kusano, Systems of functional differential equations with asymptotically constant solutions, Proc. Amer. Math. Soc.

(to appear).