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We consider systems of the form

x′
i(t) =

n
∑

j=1

aij(t)(xj (g(t)))γj , t > t0, 1 ≤ i ≤ n, (1)

where aij : [t0,∞) → R and g: [t0,∞) → R are continuous, and γ1, . . . , γn

are nonzero rational numbers with odd denominators, so that the quantity

xγj is real-valued whenever x is real. However, this restriction is for nota-

tional convenience only; with trivial modifications our results are valid for

the system

x′
i(t) =

n
∑

j=1

aij(t)|xj(g(t)))|γj sgn(xj(g(t)), t > t0, 1 ≤ i ≤ n.

The asymptotic behavior of systems of functional differential equations

has recently begun to receive attention (see, e.g., [1]–[9]). Here we give condi-
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tions which imply that (1) has solutions on the half-line [t0,∞) that approach

a given constant vector C as t → ∞. Since there are no assumptions on the

deviating argument g other than continuity, we must allow for the possibility

that g(t) < t0 for some t > t0. For this reason we introduce the following

definition.

Definition. If −∞ < t0 < ∞, then Cn(t0) is the space of continuous

n-vector functions on (−∞,∞) which are constant on (−∞, t0], with the

topology induced by the following definition of convergence: Xj → X as j →

∞ if ‖Xj(t)−X(t)‖ → 0 uniformly as j → ∞ on every half-line (−∞, b].

We say that a function X in Cn(t0) is a solution of (1) if X is differen-

tiable and satisfies (1) on (t0,∞). We give conditions which guarantee the

existence of a solution of (1) such that limt→∞ xi(t) = ci, 1 ≤ i ≤ n, for given

c1, . . . , cn. For convenice, we will abbreviate (1) as x′
i(t) = fi(t;X), 1 ≤ i ≤

n, or in system form as X ′(t) = F (t;X). We obtain our results by applying

the Schauder–Tychonoff theorem to the transformation Y = TX defined by

Y (t) =

{

C −
∫ ∞

t
F (s;X) ds, t ≥ t0,

C −
∫ ∞

t0
F (s;X) ds, t < t0.

(2)

The system (1) will be said to be linear, superlinear, sublinear, or singu-

lar with respect to xi if, respectively, γi = 1, γi > 1, 0 < γi < 1, or γi < 0.

In the following A = {i | 1 ≤ i ≤ n and γi > 0}, and B = {i | 1 ≤ i ≤ n and

γi < 0}. For a given constant vector C , let N = {i | 1 ≤ i ≤ n and ci 6= 0}

and Z = {i | 1 ≤ i ≤ n and ci = 0}. Any of the sets A B, N , and Z may be

empty.
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We impose the following integrability conditions on the coefficient func-

tions {aij} in (1). It should be understood that this assumption applies

throughout the remainder of the paper.

Assumption A. Let γi > 0 if i ∈ Z. Let ϕ1 . . . , ϕn be positive, nonin-

creasing and continuous on (−∞,∞), with ϕi(t) = 1, t ≤ t0. Suppose that

the integrals
∫ ∞

aij(t)dt (1 ≤ i, j ≤ n) converge (perhaps conditionally) and

that for 1 ≤ i ≤ n and t ≥ t0,

αij(t) = |

∫ ∞

t

aij(s) ds| = O(ϕi(t)), j ∈ N , (3)

βij(t) = |

∫ ∞

t

|aij(s)|ϕj(g(s)) ds = O(ϕi(t)), j ∈ N , (4)

and

σij(t) =

∫ ∞

t

|aij(s)|(ϕj(g(s)))γj ds = O(ϕi(t)), j ∈ Z. (5)

For convenience below we define

αij = sup
t≥t0

αij(t)
/

ϕi(t), j ∈ N , (6)

βij = sup
t≥t0

βij(t)
/

ϕi(t), j ∈ N , (7)

σij = sup
t≥t0

σij(t)
/

ϕi(t), j ∈ Z, (8)

and

Mij = αij + θ(1 ± θ)γj−1|γj |βij , (9)
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where θ is a given number in (0, 1) and the “±” is “+” if γj ≥ 1 or “−” if

γj < 1. It is also convenient here to define the functions λi(t), 1 ≤ i ≤ n, by

λi(t) =
∑

j∈Z

r
γj

j σij(t) +
∑

j∈N

|cj|
γj [αij(t) + θ|γj |(1 ± θ)γj−1βij(t)] (10)

if t ≥ t0 and λi(t) = λi(t0) if t < t0.

Theorem 1. If ri (i ∈ Z) and ci (i ∈ N ) are constants such that

∑

j∈Z

σijr
γj

j +
∑

j∈N

Mij |cj|
γj ≤

{

θ|ci|, i ∈ N ,

ri, i ∈ Z,
(11)

then (1) has a solution X̂ such that

|x̂i(t) − ci| ≤ λi(t) ≤ θ|ci|ϕi(t) (i ∈ N ), −∞ < t < ∞, (12)

and

|x̂i(t)| ≤ λi(t) ≤ riϕi(t) (i ∈ Z), −∞ < t < ∞. (13)

Proof. We apply the Schauder–Tychonoff theorem to show that X̂ =

TX̂ (cf.(2))) for some X̂ in the closed convex subset S consisting of functions

X in Cn(t0) such that

|xi(t) − ci| ≤ θ|ci|ϕi(t) (i ∈ N ), −∞ < t < ∞, (14)

and

|xi(t)| ≤ riϕi(t) (i ∈ Z), −∞ < t < ∞. (15)

Since

0 < (1 − θ)|ci| ≤ |xi(τ )| ≤ (1 + θ)|ci| (i ∈ N ), ∞ < τ < ∞, (16)
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the continuity of the {aij} implies that the functions

fi(t;X) =
n

∑

i=1

aij(t)(xj (g(t)))γj , 1 ≤ i ≤ n, X ∈ S,

are continuous on [t0,∞). Moreover,

|

∫ ∞

t

fi(s;X) ds| ≤ |

∫ ∞

t

fi(s;C) ds| +

∫ ∞

t

|fi(s;X) − fi(s;C)| ds (17)

if the integrals on the right converge, which we will now verify. From (3),

|

∫ ∞

t

fi(s;C) ds| ≤
∑

jεN

|cj|
γj αij(t). (18)

Now consider

fi(t;X) − fi(t;C) =
∑

jεZ

aij(t)(xj (g(t)))γj

+
∑

jεN

aij(t)[(xj(g(t)))γj − c
γj

j ].

(19)

From the mean value theorem, |xγ − cγ| ≤ |γ||x̂|γj−1|x − c| with x̂ between

x and c, provided that x and c (6= 0) have the same sign. Therefore, from

(16) with τ replaced by g(t),

|(xj(g(t)))γj − c
γj

j | ≤ |γj||x̂j |
γj−1|(xj(g(t)))γj − c

γj

j |, j ∈ N , (20)
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where

(1 − θ)|cj | < |x̂j | < (1 + θ)|cj |, j ∈ N . (21)

Now (14), (20), and (21) imply that

|(xj(g(t)))γj − c
γj

j | ≤ θ|γj |(1 ± θ)γj−1|cj|
γj ϕj(g(t)) (j ∈ N ) , X ∈ S,

where the “±” is “+” if γj ≥ 1, “−” if γj < 1. Hence, (4), (5), (15), and

(19) imply that

∫ ∞

t

|fi(s;X) − fi(s;C)|ds ≤
∑

jεZ

r
γj

j σij(t) + θ
∑

j∈N

|γj|(1 ± θ)γj−1|cj|
γj βij(t),

which, together with (17) and (18) yields the inequalities

|

∫ ∞

t

fi(s;X)ds |≤ λi(t), 1 ≤ i ≤ n,

with λi as defined in (10). Therefore, (6), (7), (8), (9), and (11) imply that

if Y = TX, then

|yi(t)− ci| ≤ λi(t) ≤ θ|ci|ϕi(t), (i ∈ N ) and |yi(t)| ≤ λi(t) ≤ riϕi(t), (i ∈ Z),

for all t. Hence, T (S) ⊂ S. Since it is routine to verify that T is continuous

and T (S) has compact closure, the Schauder–Tychonoff theorem now implies
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that TX̂ = X̂ for some X̂ in S with components which satisfy (12) and (13).

This completes the proof.

Now let A0 = {j ∈ N | γj > 0} and recall that B = {j | 1 ≤ j ≤ n and

γj < 0} ⊂ N .

Corollary 1. Suppose that ri (i ∈ Z) and ci (i ∈ A0) are such that

∑

j∈Z

σ̄ijr
γj

j +
∑

j∈A0

Mij |cj|
γj <

{

θ|ci|, i ∈ A0

ri, i ∈ Z.
(22)

Then the conclusions of Theorem 1 hold if |ci| is sufficiently large for i ∈ B.

Proof. Clearly (22) implies (11) if |ci| (i ∈ B) are sufficiently large.

Corollary 2. The conclusions of Theorem 1 hold if either:

(i) γi > 1 for all i in A (i.e., the nonsingular part of (1) is purely su-

perlinear), provided that ri is sufficiently small for i in Z, |ci| is sufficiently

small for i in A0, and |ci| is sufficiently large for i in B.

(ii) γi < 1 for all i in A (i.e., the nonsingular part of (1) is purely

sublinear), and the constants |ci| and ri are all sufficiently large.
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2. I. Györi, On existence of the limits of solutions of functional differential

equations, Colloquia Mathematica Societatis Janos Bolyai 30. Qualita-

tive Theory of Differential Equations, Szeged (Hungary), 1979. (North

Holland, Amsterdam-Oxford-New York, 1980, 297–315.)

3. Y. Kitamura and T. Kusano, Oscillation and a class of nonlinear dif-

ferential systems with general deviating arguments, Nonlinear Anal. 2

(1978), 537–551.
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