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AN ALGORITHM FOR THE INVERSION OF FINITE
HANKEL MATRICES*

WILLIAM F. TRENCH?Y

1. Introduction. By a Hankel matrix of order n + 1, we mean a matrix
of the form

Ce Ci - C,
;A L L T
C'I Cﬂ+1 R Cﬂn

Hankel quadratic forms,

Qulzo, 21, -+-,20) = ‘_;‘J Cijxixi,
are closely connected with the Hamburger moment problem [1, pp. 4-5].
Matrices of this form also arise as coefficient matrices of the normal equa-
tions in problems of least squares polynomial curve fitting. Most writers
suggest that the normal equations be solved by Gauss’s method of elimina-
tion or one of its variants. For example, see [2, pp. 147-163].

In this paper, we present an algorithm for the inversion of the matrix H,
which yields the exact inverse. When all of the matrices Hy, H,, --- , H,
are nonsingular, the number of multiplications required to invert H, is
proportional to (n + 1)°, rather than to (n + 1)°, as in the conventional
methods for the inversion of an arbitrary symmetric matrix of order n + 1.

The author has previously [3] presented a similar algorithm for the
inversion of finite Toeplitz matrices, which are of the form

Th = (Cij)ijmo .

2. Derivation of the algorithm. Throughout this section, we assume
that n = 1, and that H,,, H,, H,.,, are nonsingular. Denote H,™* by
Hn_l = Bn = (bnn):’:amﬂ .

B, is symmetric, a fact which we will use without specifically citing it.
By definition,

(1) ;cﬁ,b,... = b, 0<rs=n
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We also define

2) —— —;cw.lbm, 0sssn
For notational convenience, we define

(3) Unirn = 1, Unszn = U1 = 0,

and

(4) boin = bupren = 0, 0=s=n+1,

for every n. We will apply (3) and (4) often in the following derivation,
without specifically stating it each time. These definitions allow us to take
liberties with indices and limits of summation in ways which prove to be
quite convenient.
From (1) and (2),
n+l
_Zo Crpibin = 8re = Srinpillen 0sr<n+1,0=s=n
=

For fixed s, 0 < s < n, consider this as a system in the unknowns b ,
0 £ r £ n + L. It has the solution

(5) bma = bra‘u{-l - br.r:+1.n+lum ] 0 é r é n + 1! 0 é s é .
With » = n 4 1, this implies that
(6) bu+1.s.n+l = "Jn+l.n+l‘n+-lum ] 0 é s=En Tl

Multiplying both sides by Ciyny1 and summing from s = Otos = n + 1
yields

(7) Vit ittt = 7\;:—1 5
where
n+1
(S) An-{-l s Zl] Cn+s+luan -
From (6) and (7) we substitute into (5) to obtain
(9) brontr = bran + i . 0snrs=n-+ L
Xn+1

This relation provides a convenient method for obtaining B, from B, .
However, there is a recurrence formula of a different type which reduces
the problem of inverting H, to a still simpler form. By starting from (1)
and suitably manipulating indices, it can be shown that

n
Z Crpibiassin = O — Benllatr,n — Cyribnss1,n
i=0
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For fixed s, we solve this system to obtain
n
br~1.s+1.u = bﬂ?ﬂ - brnuuw-i-l,n - b:a.s+l .nz brjncﬂ'l'j'l-l. H
=0

0=r=n0=s

IIA
(=

From (2), (6), and (7), this can be rewritten
(10) bﬂu - l')r—l‘\1+l.m + )‘n_l(ur.u—lud-i'vl.n e urnus+l,n—l)1
0=srs=n-+1

This relation reduces the problem of inverting H, to that of obtaining
{rm} and {u, . 1}. These quantities in turn can be computed with a simple
recursion formula. Substituting (10) into (2), we find that

n41 n+4-1

Ugn = — Z Cl+j+lbj—l.a+l,n - )\n-lun--l.uz Cr:+_i'+luj.n—!.
(11) += ot
n+1
+ Rra_lua'-i-l.m—iz Cu-}-_:'-i-lujn 3 0 é $ é n
J=0
By shifting the index of summation and using (9), we can write
n+l n+1l
Z C!J+j+lbj—l.s+l.!| = Z C;|+j+ij.u+l,ﬂ
=0 F=0
(12) ntl B nt1
= g Cn+j+‘.’.bj.a+l,n+.'| “‘}\n-lﬂ ’!&;.1'-1,“_20 Cn-i-_;'-i-fu‘;'n ' 0=s=n
J= -
From (2), we can rewrite (12) as
n+1 5
(13) Z; Coritthicispin = —Usplnil — MahYapillepin, 0 = 8 = n,
=
where
n+1
(14) Yol = Z;] Cn-l-;'+2uju .
=
Substituting (13) into (11), and applying (8) and (14) yields
Usn = Usil,n4l ~+ K:-lrl')’n+1%+1.n = M_l'}'n%sn.n + hn_lj\u+1u=+1,n_1 f
0=s=n.

By replacing s with s — 1, and solving for u, 41, we obtain
-1 =1
Us,ni1 = ()\n I"."n - A‘.I'H-11’:i+l.)'MM + Uern — M Anpallen—,

(15)
0<s=n+1,
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except that a separate verification is required for s = 0. This verification
follows similar lines, and is omitted.

Equations (8), (9), (10), (14), and (15) provide the basis for a simple
algorithm for the inversion of Hankel matrices. For the reader’s con-
venience, the equations are arranged in a reasonable computational order
in the next section.

3. Statement of the algorithm. Suppose that it is required to invert the
matrix H,.,:, that & < m, and Hy_y, Hi, -+, Hnia are all nonsingular.
Obtain w1, Wik-1, = -y Uk-14-1, and Ugk , Ui, -+, U DY solving the
system

IA
A

Z Cristtin = —Chtrir, 0=r=n,
=0

forn = k — 1 and n = k. Also, compute N\, and vy, from (8) and (14),
withn = k& — 1. Then compute recursively as follows, fork = n = m — 1:

n+1

Mg = Zﬂ Ctistthin
=
(16) S
st = 2 Coiisolhin,
P
a7 Uentl = (7\.-._!“{“ a5 ?\:l+l'}'n-l-l)usn + Up—in — P\r;_l}\-wlus,u—l,

0=s=n+1,
where 41 » = Unprnr = 0, Unj1n = 1,
=1
(18) bmm = br—l.s+1.m + )\m (ﬁr.m—lus+l.m o urmus-t-l.m—ljg 0 é r é $ é m,

where b_1 o11.m = br_1.mir.m = 0. Then, compute Aps1 and Haty :

m+1
(19) Ay = _Z':, Crti1Uim
=
(20) brs.mH. == bnm + K;-lllﬂl'fv*'-:-ww\l"'»"sm ] 0 é r é 8 é m + lr
bn.m+l = 'bxr'm+1, 0=s<r=m+ 1L

At first glance, it may seem more reasonable to employ (17) up to
n = m, rather than to m — 1, and to compute b, ms1 from (18), with m re-
placed by m 4+ 1, thus dispensing with (19) and (20). However, a critical
examination shows that this would require the use of Camys, (in (16), with
n = m), which does not appear in H,.; . The algorithm as stated does not
suffer from this defect.

If all the matrices Ho, Hy, -+ + , Huy1 are nonsingular, then one can take
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I = 1 in the above algorithm, and use starting conditions
uw = Co C1,
upn = (CoC: ~ CF)7N(CICr — CF),
(CoC2 — C') (G102 — CoCh),

I

Un

and
4\0 = Cu, Yo = Cl .

4. Connection with the theory of orthogonal polynomials. If the matrix
H, is positive definite, it is known [1, p. 5], that there exists a nondecreasing
funetion F(x) such that
r<n.

i = l:x, dF (x), 0

IIn
IIA

There is a sequence [4, pp. 24-25], Py(x), Py(zx), -+, P.(x), of poly-
nomials

Pa(z) = _Z_;,«pmx'

such that pu. > 0 and

l: Pu(2)Pu(z) dF(z) = .
The kernel function

Ku(@,y) = 3 Pa(2)Pa(y)

has been extensively studied [4, pp. 37-43]. Tt can be shown that

K. (x,y) = 2 bren'y';
that is, K,(x, y) is the generating function for the inverse of H, . This fact
appears to have been ignored, or at least not applied in the problem of com-
puting H,”". Of course, the solution of least squares curve fitting problems
by means of orthogonal polynomials is an old technique [2, pp. 163-173], but
the extension to matrix inversion has not been carried out, to the author’s
knowledge. The algorithm given here can be derived, for the case where H,
is positive definite, from the properties of the orthogonal polynomials and
the kernel function. However, the derivation given here is free of the as-
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sumption of positive definiteness, is self-contained, and is elementary in
nature.

A similar connection exists between the author’s previous work on
Toeplitz matrices and the theory of polynomials orthogonal on the unit
circle [4, pp. 280-288]. However, the author had not perceived this con-
nection when that work was in progress.
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