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ABSTRACT

Conditions are given for a nonlinear perturbation of a linear differential equa-
tion to have a solution on a given semiinfinite interval which behaves asymptotically
like a specified solution of the unperturbed equation. Unlike most previous results
on this question, our integrability conditions allow conditional convergence of some
of the improper integrals that arise. Our asymptotic estimates are more precise
than those previously obtained, and our results apply to singular equations.

1. Introduction

We consider the asymptotic behavior of solutions of the differential equation

v @y o pa (v = 1Yy TY),
where pi,...,pn € Cla,o0). For convenience we write
flty) = ftu, oy ..,y ).
Let {z;,%3,...,%,} be a fundamental system for the unperturbed equation
2™ 4 pi ()2 4 pa(t)z =0
and define

Wi = (_l)n_iW(a:l,...,:1:;_1,1:;+1,...,:z:,.),
W(z1,...,Tn)

(1)
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where W(uy,...,u,,) is the Wronskian of u;,...,u,,. The following well known
identities will be useful below:

szr)wi :5'_’,,,_1, OSrSn—l. (3)

i=1

Our results are global, in that we give sufficient conditions for (1) to have
solutions on the given interval [a,o0) which behave like solutions of (2) as t — oo.
(We use “0” and “O” in the usual way to indicate asymptotic behavior as t — co.)
In this sense, this paper continues a theme developed by Kusano and the author.34

The following theorem is the main result of .

THEOREM 1. Suppose that f : [a,00) X R™ — R 1s continuous and
|f(t:u0’ e ’un—l)l S F(t’ lu'Ola ezl Iun—-ll)a (4)

where F : [a,00) x Rt — R is continuous and F(t, 1o, ..., ln—1) is nondecreasing
in each p, (0 < r < n—1), and either (i) for fized (t,vo,...,vn-1) € [a,00) x RZ,
ATLF(t, Avo,..., Ava_y) is nondecreasing in X for A > 0, and

’\l_i'r(r)1+ ATF (6, Avgy .y Avpmy) = 0;

or (ii) for fized (t,vo,...,vn-1) € [a,00) X R, A"1F(t,Avg, ..., \v,_1) 1s nonin-
creasing tn X for A > 0, and

Jlim ATLF(t, Mvo, ...y AUp_g) = 0.

Let T be a given nontrivial solution of (2) and suppose that there are positive
continuous functions gy, ...,0,_; on [a,00) and an integer k (1 < k < n) such that

EO(0)] <on(t), 0 r<n—1, )

|:z:£r) ®)} / |w; (8)|F (s, Agg(s), ..., 0n-1(s)) ds = o(0,(t)},

1<i<k-1,0<r<n-1,
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and

|z§f)(t)|/t°° |wi(8)|F (8, A0o(s), - . . AGn—1(s)) ds = o (o, (t)) ,

k<i<n, 0<r<n-1,

for A > 0. Let § be an arbitrary positive number, and suppose that ¢ is a given
posttive constant. Then (1) has a solution § on [a,00) such that

G () — ) (8)] < feo,(t), 0<r <n—1, (6)

provided that ¢ is sufficiently small if (i) holds, or sufficiently large if (i) holds.
Moreover,
7)) = () + 0 (0, (), 0<r<n—1. (7

2. The Main Result

The main result of this paper is similar to Theorem 1 in that it guarantees the
existence of the desired solution % on the given interval [a, o0}, but different in that
it provides more precise estimates of the differences 7™ (t) — Z(")(t) as t — oo in
the case where f(-;¢Z) is oscillatory. It is also applicable in some situations where
Theorem 1 is not.

DEFINITION 1. Let w denote either O+ or co. If r > 0 then I(r) = (0,r) if
w = 04, or I(r) = (r,00) if w = co. We will say that an assertion is true for “c
sufficiently close to w” if it holds for all ¢ in some interval I(r), where r is sufficiently
small if w = 0+ or sufficiently large if w = oo.

THEOREM 2. LetT be a given solution of (2) andlet pg, ..., pn—1 be continuous
and positive on [a,00). Suppose that there is a ¢co > O such that the following
assumptions hold for all ¢ in I{co):

(3) f(+; ¢Z) is continuous on [a, 0);
(1) For some 8 >0, f(t,uo,...,u,_1) is continuous and

[f(t, w0, . un—1) — ft;eZ)] < F(t,¢) (8)

on the set

{(t w0y s tmr) t Juy — EO(8)] < ep, (t),6 > a, 0<r<n—1},
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where F : [a,00) X I(co) — R4 is continuous and ¢~ ' F(t,c) is nondecreasing in c

for each t > a if w = 0+, or nonincreasing tn ¢ for each t > a if w = oo. In esther

case,
lim ¢ 1F(t,¢) =0,t > a.
c—w

(i5i) for some integer k, 1<k <n+1,andt > g,

A7) [ wils)(sicw) ds

< ale)p(t), k<i<n, 0<r<n-—1,

(1) /t ” v (s)f(s;cZ) ds

where lim,—,, ¢~ 1a(c) = 0,

) (t)\/; (ws($)|F(s,¢) ds = o(p(2)), 1 <i <k —1,

and

0O [ loule) P (ove) ds = olor (@), k< i<

Then (1) has a solution § on [a,00) such that
GO (@) — ()] < bepe(t), t > a, 0<r<n—1,
provided that ¢ is sufficiently close to w. Moreover,
() = 2 (8) + g(t;F) + 0 (0, (1)), 0< T <n -1,

where

k
i

g(t; cZ) gx, /a w;(s)f(s; ez ds——Zx,(t / w;(s) f(s;cZ) ds.

1

<ale)pe(t), 1<i<k-1,0<r<n-1,

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)
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The main differences between Theorems 1 and 2 are as follows:

e The integrals in (10) and (11) do not involve the absolute value of f(5c%).
Therefore, Theorem 2 takes advantage of oscillatory behavior of f(:;¢Z); in partic-
ular, the integrals in (11) may converge conditionally.

e Assumption (5) automatically restricts the precision of the estimates in (6)
and (7). There is no such restriction in Theorem 2; indeed, Theorem 2 may apply
even if Time—. 00" ()| /p-(t) = 00, as the examples in Section 4 will show.

e Theorem 2 does not require that f be majorized as in (4), with F' nondecreas-
ing in all arguments except t. This requirement makes Theorem 1 inapplicable, for
example, to singular equations, as in Example 2 of Section 4.

We prove Theorem 2 by means of the following special case of the Schauder—
Tychonoff theorem. The proof of this lemma is like that of a similar lemma of
Coppel.!

LEMMA 1. Let C("_l)[a, oo) be given the topology of uniform convergence
on compact subintervals of [a,00); i.e., if {y;} ¥s a sequence in Cc"=Da,0), then
“y; — y” means that lim; yg.r) (t) =y (t) (¢t > a, 0 <1 < n—1) uniformly on
[a,T] for all T > a. Let S be a closed convex subset of C»=1[a,00) and suppose
that T : § — § is continuous and the family of functions T($) is uniformly bounded
and equicontinuous on [a,T) for all T > a. Then T§ =7 for some Y € §.

PROOF OF THEOREM 2. For a given ¢ € I(cg) let S be the closed convex
subset of C(*~1[a,00) defined by

={ye " Vg,00): Iy () - 2 ()| < bep,(t), t > a, 0<r <n—1}. (17)

We will show that if ¢ is sufficiently close to w, then the transformation T defined
by

k-1 t n oo
(Ty)(t) = cz(t) + Z :c,-(t)/ w;(s)f(s;y) ds — E:zc,(t)/]t w;(s)f(s;y)ds (18)

satisfies the hypotheses of Lemma 1 on §, and therefore that Ty = ¥ for some
g € $. It will then be easy to verify that ¥ is a solution of (1) with the stated
properties.




If the improper integrals on the right of (18) converge, then (3) implies that

(Ty)(')(t)—cz(')(t)+2z(') (t) / a0 (8} e s

_Zzgr)(t)/w wi(s)f(s;y)ds, 0<r<n-—1,

and

(TP () = —pO)(T) V() = = pa()(TH)(B) + f(t:0).
It is convenient to rewrite (19) as

(Ty) () = ) (2) + ¢ (t;.¢T) + () (2)
(see (16)), where

)@ = 3 27 ) / wils) f (1) — Fs3 %)) ds

From (3) and (16),

¢ (t;cz) = Zz (¢ / s)f(s;cZ) ds

—me / w;(s)f(s;¢eZ)ds, 0 <r <mn—1;

therefore, (10) and (11) imply that

[g(')(t;ci)[ <nale)p,(t),t>a, 0<r<n-—1.

(22)

(23)
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In order to estimate (¥y)(") we argue as in the proof of Theorem 1.* For ¢ in
I{co) define

[w@F s, 1<igho,
$ilt.e) = Tleo (24)
[ iR ds, k<isn,

t

and

®,(t,c) = f: 1= (8)|s(t,¢), 0 <7 <m—1. (25)

i=1
Then (12) and (13) imply that
&, (t,0) = 0 (pr(t), 0<r <n—1. (26)
Now let v be an arbitrary positive number. Then
&, (t,c) <vyepr(t), 0<r<n-—1, (27)
for t > a if ¢ is sufficiently close to w. To see this, choose T > a such that
. (t,c0) < veope(t),t >T,0<r<n-—1.

(This is possible, because of (26).) Then the monotonicity of ¢~ F(¢, ¢} implies (27)
fort > T and ¢ € I{¢p). If a <t < T, then (24) and (25) imply that

k-1 n
o, (t,c) < Z |27 (8)]6:(T, ) + O |27 (8)bulac), 0O< r <m—1. (28)

i=k

From (9), (24), and Lebesgue’s bounded convergence theorem,

lim ¢c™1¢;(7,¢) =0, 1 < i < m, (29)

c—rw
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for any fixed 7 > a. Since the functions p:1|x§r)| (0<r<n-1,1<i<k)areall
bounded on [a,T), (28) and (29) now imply (27) on [a,T] if ¢ is sufficiently close to
w.

From assumption (ii), (17), (22), (24), and (25),
(X)) (8)| < @,(t,¢),t>a, 0<r<n—1 (30)

Now choose ¢; € I{cp) so that
8 6
na(c) < ?c and 9, (t,¢) < gp,(t), t>a, 0<r<n-—1,

if ¢ € I{c1). (Welet v =6/2in (27).) Then (21), (23), and (30) imply that
(Ty)D () — T (1) < epe(t),t >a, 0<r<n—1; (31)
i.e., that T(§) C S. From (31), the families
{(Ty) :ye s}, 0<r<n-1, (32)
are equibounded on finite intervals. Moreover, from assumption (i) and (17),
(&9 <1 (6 e@)| + | f(ty) — f(EeT)| < |f(E )| + Ft,e), v € S.

Therefore, (20) now implies that the family {(Ty)(®) : y € §} is also equibounded on
finite intervals. We can therefore conclude that the families (32) are equicontinuous
on finite intervals.

We will now show that T is continuous. Let {y,} be a sequence in S such that
Yo — y. From (19), if T > a,

T

(500 ~ (A< Y =@ [ sl (si3m) = S0}l ds

i=1 &

+ X:Iﬂﬂ,(')(t)l/oo lw; ()1 (s59n) — F(s;y)|ds,a <t <T, 0<r<mn—1(33)
i=k &
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The integrands on the right converge to zero as t — oo, and they are respectively

dominated by 2(w;(s)|F(s,¢), 1 <7 < n. Therefore, our integrability conditions on

F and Lebesgue’s dominated convergence theorem imply that the integrals in (33)
{r)

converge to zero as ¢ — co. Since zgr), -.+»Zn’ are bounded on [a,T], this implies
that Ty, — Ty; hence, T is continuous.

We have now verified that T satisfies the hypotheses of Lemma 1 on S. There-
fore, Ty = ¥ for some 7 in $. Setting y = ¥ in (20} and (31) shows that 7 is a
solution of (1) and that F satisfies (14). Setting y = ¥ in (30) and recalling (26)
shows that (Xy)(")(t) = o(p,(t)), 0 < r < n — 1; therefore, setting y =7 in (21)
verifies (15). This completes the proof of Theorem 2.

3. Perturbations of a Disconjugate Equation

If no nontrivial solution of (2) has more that n—1 zeros (counting multiplicities)
on (a,00) then we say that (2) is disconjugate on [a,00). In this case {2) has a

fundamental system {z;,...,z,} such that®5¢
z; >0, |w;| >0,t>a, 1<i{<n, (34)
/’
: (t (t
Zil 50, and lim—tﬂlzlimf’(—)zo,lgi<j§n. (35)
w; t—oa wi(t) oo z,()

In order to state our next theorem we need the following elementary lemma,
which can be proved by integration by parts.

LEMMA 2. Suppose that v € Cla,0), and % u(s) ds converges (perhaps
conditionally), and sup, 5, |f1°° u(s) ds| < ¢(t), where ¢ is continuous and nonin-
creasing. Let p' € Cla,00) and p > 0.

(a) If p' <O then < 29(t)p(t), ¢t > a.

[ wompts)as

(b) If p > O then

[ wle)ps) ds| < wlahnle) + (000 + | w6,

and the quantity on the right is o(p(t)) if limy_, oo p(t) = oo.



THEOREM 3. Let (2) have a fundamental system {zi,...,z,} which satisfies
94) and (85), and let ¢ be continuous and nonincreasing on [@,00). Let k be an
iteger, 1 < k < n, and define

Bl 1<i<k-1,
Wk
Hik = ¢ ’ 1'= ka (36)
26/ 2| ky1<i<n,
nd
prk = lrrsugn{mkler)l}- (37)

et T be a given solution of (2) and suppose that there is a ¢y > O such that for all
€ I(co) assumptions (i) and (ii) of Theorem 2 hold with p, = p,y 0<r<n—-1).
uppose also that

/:x’ wi () F(s,¢) ds = o (4(t)) (38)

nd

sup
T2t

/, " ()£ (s: ¢2) ds| < Be)d (1), (39)

here lim,_,,, c_lﬂ(c) = 0. Then the conclusions of Theorem 2 hold with p, = Prk-

PROOF. Because of (36), (39), and Lemma 2,

S TBe)pi(t), 1<i<k-—1

/at wi(s)f(s; cZ) ds

vhere Jy,...,Jx—1 are suitable constants), and

< Ble)uin(t), k<i<n,

/t°° wi(s) f(s;cZ) ds
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for all ¢ € I{co). Also, (36), (38), and Lemma 2 imply that

/t wi(8)F(s,c)ds = o (pi(t)), 1<i<k—1

and

/t°° w;(s)F(s,c)ds =o(pu(t)), k<i<n

for all ¢ € I(co). The last four equations and (37) imply (10), (11), (12), and (13)
with p, = pr& and a = JB, where J = max{Jy,...,Je—1,1}.

4. Examples

Consider the equation
" +y' = (oY + a1 (y)" + ax(y")”?) 4(t) sin bt, (40)

where ag,a;, and a; are constants, ¥o,71, and 72 are rational numbers greater
than one with odd denominators, 6 is not an integer, ¢ is positive, continuously
differentiable, and nonincreasing on [a, 00), lims—.o ¢(t)=0, and

/t " $2(s) ds = o (4(2)) (a1)

The functions z1(t) = 1, z2(t) = cost, and z3{t) = sint form a fundamental system
for the unperturbed equation

2" 4’ =0, (42)

and, correspondingly, w; (t) = 1, wa(t) = —cost, and ws(t) = —sint. Eq. (40) is of
the form (1) with

Flt,uo,u1,u2) = (agug® + arul® + azul®) #(t) sin 6t.

We will use Theorem 2 with k = 1 to show that (40) has solutions on [a, 00) which
behave like ¢Z, where T is an arbitrary solution of (42).
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If T is a solution of (42), then our assumptions on 1,2 and ~3 imply that z7°,
(Z')"* and (Z")?? are continuously differentiable and have period 27 on (—oo, 00);
hence, their Fourier series converge uniformly on (—oo,c0), and the coefficients in
these series approach zero at least as fast as 1/n as n — oo. Since 6 is not an
integer, it follows that

<B,t>a,1<1<3,0<5<2,

/at w;(s) (’a‘:(f) (s))w sinbésds

for some constant B. This and integration by parts imply (11), with k =1,
a(c) = 2B(aoc™ + a16™ + az¢™),

and p,(t) = ¢(t), r =0,1,2.

If § > 0 and |u, — cz(") ()| < fed(t) (r = 0,1,2), then the mean value theorem
implies (8) with
F(t,¢) = (Aoc™ + A1c™ + A2c™) 62(1),

where Ao, A1, and A, are constants independent of ¢. Therefore, (41) implies (13).
Since a and F satisfy the hypotheses of Theorem 2 with w = 0+, we can now infer
from Theorem 2 that if § > 0 and ¢ is a sufficiently small positive number, then
(40) has a solution F on [a, co) such that

[ () — 2\ (8)] < Oeg(t), t > a, r=0,1,2.
Condition (41) holds, for example, if ¢(t) = €(t)/t, where €(t) — 0 monotoni-
cally as t — oo. In this case, Theorem 2 implies the existence of solutions 7 of (40)
on [a,0) such that

77(t) = @ () + O (e(t) /), r = 0, 1,2.

Theorem 1 does not apply unless [ ¢(t)/t dt < co. Because of the restriction (5),
the best estimate that could be obtained from Theorem 1 in this case is that

7(t) = 2 (t) + o(1) (r =0,1,2).
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EXAMPLE 2. Consider the equation

6 15 15 e{t)sint
R e s —(—)tT—y",tZa>0, (43)

which is of the form (1) with
f(t,u) = ue(t)t™* sint. (44)

We assume that v # 0,1, and ¢ is positive and nonincreasing. The functions z; =
t,zo = t3, and z3 = t> form a fundamental system for the unperturbed equation

and, correspondingly, w; = t/8,w; = —1/4t, and ws = 1/8t3.
Let T=t?""1, where m = 1,2 or 3 and suppose that A > 1+ (2m — 1)v. Let
a=A—-1-(2m —1)v. (45)

We will use Theorem 3 with k = 1 to show that if ¢7~! is sufficiently large, then
(43) has a solution ¥ on [a, o) such that

7Ht) =3I (t) + O (e(t)t >, r = 1,2,3. (46)

If m = 2 or 3 this will require no additional assumptions on « or €; if m = 1 we will
need an additional assumption, stated below.

With f as in (44), integration by parts shows that

c?

8

/t’oo wi(s)f(s;cT)ds

i 1
/ s %¢(s)sinsds| < Zc"t“’e(t),
¢

which implies (39) with k = 1, B(c) = ¢7/4, and ¢(t) = t™“¢(¢). With this ¢,
calculating from (36) and (37) yields

por(t) = 4t7*Fe(t), pi1(t) = 107 %¢(t), and pyy(t) = 40t~ Le(2).




If 8 is sufficiently small and
lu — et>™71| < Oepoy(t) = 48ct™Fe(2), (47)

then i "
0< Ect2""1 <u< Ect2"‘_1, t>a,

which implies that
wI™t < 2l =ty =14(2m-1)(-1) [y 5 g (48)
for all 4. By the mean value theorem,
|F(t,w) — f(t,et>™ 1) < y]a" u — et?™ Y e(t)t 2, (49)

where (47) (and therefore (48)) holds with u = #. Therefore, from (45), (47), and
(49),
|F(t,u) — F(t,et®™1)| < F(t,¢) =ps. Ke't™2272m+12(p),

where K is independent of ¢. In the present situation, the integrability assumption
(38) becomes

/oo s-2(m+0"1)52(s) ds = O(E(t)t_a)'

t

This automatically holds (for any nonincreasing €) if m = 2 or 3; therefore, we need
no further assumptions in this case. If m = 1, then we must assume that

/ s72%€%(s) ds = o ((t)t™),
t
which certainly holds if @ > 1, so that
/ (w1(8)|(Zm(5))7 ds < oo, (50)
t

but also, for example, if @ = 1 and €(t) = O ((log t)‘l), in which case (50) does not
hold.
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It should be noted that estimates more precise than (46) can be obtained by
recalling (15). Also, notice that Theorem 1 cannot be applied to (43) unless v > 0,
and a > 1; moreover, even in this case the asymptotic estimates obtained from
Theorem 1 are not as precise as (46), due to the limitation (5).
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