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A Note on Computing Eigenvalues of

Banded Hermitian Toeplitz Matrices

William F. Trench

In a recent paper Arbenz [2] (see also [1]) presented a method for computing

the eigenvalues of a Toeplitz matrix

Tn = (ti−j)
n
i,j=1, (1)

where

tν = t
−ν and tν = 0 if |ν| > r;

thus, Tn is symmetric. If n > r (which we assume henceforth), then Tn is also

banded. Following Arbenz, we will say that Tn has bandwidth r.

Since [2] is so recent and easily accessible, there is no need to go into the details

of Arbenz’s algorithm here; rather, we focus on the important point that it yields

the eigenvalues of Tn with a computational cost of O(r(n+r2)) flops per eigenvalue.

Another approach to this problem is discussed in [3] and [6].

It seems worthwhile to point out that the quite different algorithm given by the

author in [9] for finding individual eigenvalues of a full Hermitian Toeplitz matrix

with O(n2) flops per eigenvalue requires only O(rn) flops per eigenvalue in the

banded case. Here we will give the briefest description of the algorithm that suffices

to make this point. For complete details, see [9]. For related results, see [10].

Theorems 1 and 2 of [9] imply the following theorem, which is the basis for the

algorithm.

Theorem 1. Let Tn be a Hermitian Toeplitz matrix, let Tm (1 ≤ m ≤ n) be

its m × m principal submatrix, and define

qm(λ) =
pm(λ)

pm−1(λ)
, 1 ≤ m ≤ n,
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where

p0(λ) = 1 and pm(λ) = det[Tm − λIm], 1 ≤ m ≤ n.

If λ is not an eigenvalue of any of the principal submatrices T1, . . . , Tn−1, then

q1(λ), . . . , qn(λ) can be computed recursively as follows. Let

q1(λ) = t0 − λ, x11(λ) = t1/(t0 − λ).

Then, for 2 ≤ m ≤ n − 1,

qm(λ) = [1 − |xm−1,m−1(λ)|2]qm−1(λ),

xmm(λ) = (qm(λ))
−1

[tm −

m−1
∑

j=1

tjxm−j,m−1(λ)], (2)

and

xjm(λ) = xj,m−1(λ) − xmm(λ)x̄m−j,m−1(λ), 1 ≤ j ≤ m − 1. (3)

Finally,

qn(λ) = [1 − |xn−1,n−1(λ)|2]qn−1(λ).

Moreover, if λ is an eigenvalue of Tn, then

Yn(λ) =

[

−1
Xn−1(λ)

]

is an associated eigenvector, where

Xn−1(λ) =









x1,n−1(λ)
x2,n−1(λ)

...
xn−1,n−1(λ)









.

Let the eigenvalues of Tn be

λ1 ≤ λ2 ≤ . . . ≤ λn,
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and suppose that we wish to compute λk for a given k in {1, 2, . . . , n}. We

assume that λk is not an eigenvalue of any of the submatrices T1, . . . , Tn−1. From

Sturm’s theorem, the number of negative values in {q1(λ), q2(λ), . . . , qm(λ)} equals

the number of eigenvalues of Tm − λIm less than λ. Therefore, if we can guess

values a and b such that λk ∈ (a, b), then Theorem 1 and bisection can be used to

find a subinterval (α, β) of (a, b) which contains λk but no other eigenvalue of Tn

nor any eigenvalue of Tn−1. Since qn is continuous on (α, β), we can then use a

more elaborate iterative rootfinder to compute λk as a zero of qn. In [9] and [10] we

chose the Pegasus modification [5, 7] of the rule of false position, which has order

of convergence approximately 1.642. If {µj} is the sequence of iterates produced by

the Pegasus computation, starting with µ0 = α and µ1 = β, then we terminate this

phase of the computation at the first integer r such that

|µr − µr−1| < .5(1 + µr)10−K , (4)

where K is a positive integer dictated by machine precision and accuracy require-

ments.

For a full Hermitian Toeplitz matrix Tn the computations in Theorem 1 require

approximately n2 flops for each λ. Therefore, the computation of each eigenvalue

requires 0(n2) flops, where the “constant” buried in the “0” depends on the number

of iterations required for the given eigenvalue. Although this number depends upon

the eigenvalue itself and on the starting values (a and b), computational experi-

ence (see [9]) shows that for a given choice of K in (4), its average value over all

eigenvalues of a matrix of order n is essentially independent of n. Thus, we can say

that the cost of the procedure is roughly M(K)n2 flops per eigenvalue. (For the

computations reported in [9], M(10) ≈ 11.) However, the point of the present note

is that if Tn is banded, then the computations in Theorem 1 require only O(rn)

flops, so the algorithm in [9] yields eigenvalues of Tn at a cost of O(rn) flops per

eigenvalue. The reason for this is the following theorem, which is easily obtained

from Theorem 1. We omit the proof.

Theorem 2. In addition to the assumptions of Theorem 1, let Tn have band-

width r < n. Then q1(λ), . . . , qn(λ) can be computed recursively as in Theorem 1,

except that if m > r then (2) and (3) can be replaced by

xmm(λ) = − (qm(λ))
−1

r
∑

j=1

tjxm−j,m−1(λ), (5)
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and

xjm(λ) = xj,m−1(λ) − xmm(λ)x̄m−j,m−1(λ), 1 ≤ j ≤ r and m − r ≤ j ≤ m− 1

(6)

if m ≥ r + 1.

It is significant that the summation in (5) involves only r products rather than

m − 1 as in (2), and we compute only 2r (fewer if r < m < 2r) components

of Xn−1(λ) in (6), as compared to m in (3). Therefore, Theorem 2 implies that

for large n the algorithm of [9] requires approximately (3r + 1)n flops to compute

q0(λ), q1(λ), . . . , qn(λ) for a given λ if Tn has bandwidth r. Since numerical ex-

periments indicate no significant differences between convergence properties of the

algorithm for banded and full matrices, this means that the average cost of com-

puting a single eigenvalue of a banded Hermitian Toeplitz matrix is M(K)(3r+1)n

flops, where M(10) ≈ 11 if K = 10 in (4).

Having obtained λk by computations based on Theorems 1 and 2, we have as

a byproduct the first r + 1 components

y1n(λk) = −1, y2n(λk) = x1,n−1(λk), . . . , yr+1,n(λk) = xr,n−1(λk)

and the last r components

yn−r+1,n(λk) = xn−r,n−1(λk), . . . , ynn = xn−1,n−1(λk)

of the associated eigenvector Yn(λk). However, the last r components are not inde-

pendent, since if λk is a simple eigenvalue of Tn, then either

yn−i+1,n(λk) = yin(λk) or yn−i+1,n(λk) = −yin(λk), 1 ≤ i ≤ n,

[4]. In any case, even if λk has multiplicity greater than one, the first r components

of Yn(λk) determine the rest. To see this, we recall from [8] that the components of

Yn(λk) satisfy the difference equation

r
∑

j=−r

tjyi+j,n(λk) = λkyin(λk), 1 ≤ i ≤ n, (7)

subject to the boundary conditions

yin(λk) = 0, −r + 1 ≤ i ≤ 0, (8)
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and

yin(λk) = 0, n + 1 ≤ i ≤ n + r.

Therefore, if

y1n(λk), . . . , yrn(λk) (9)

are known, then the remaining components of Yn(λk) can in principle be obtained

by treating (8) as initial conditions and computing recursively from (7):

yi+r,n(λk) = −
1

tr

r−1
∑

j=−r

(tj − δ0jλk)yi+j,n(λk), i ≥ 1. (10)

Since the zeros of the characteristic polynomial

P (z) =
r

∑

j=−r

tjz
j − λk

of (7) occur in reciprocal pairs, the recursion (10) is unstable and therefore com-

putationally useless; nevertheless, it proves our assertion that the components (9)

completely determine Yn(λk).

From this it seems reasonable to make the (admittedly vague) conjecture that

any meaningful question depending upon the eigenvector Yn(λk) can in principle be

resolved from a knowledge of the components in (9), without actually computing

the remaining ones. However, if the remaining components are required, then it is

useful to recall from [9] that Xn−1(λk) is the solution of the banded Toeplitz system

(Tn−1 − λkIn−1)X =























t1
t2
...
tr
0
...
0























.
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This is a tractable problem, since there are several well known fast algorithms for

solving banded Toeplitz systems.
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