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ABSTRACT

Conditions are given for a functional perturbation of a nonoscillatory lin-

ear second order differential equation to have solutions which behave asymp-

totically like given solutions of the unperturbed equation. The general results

require no specific assumptions on the form of the functional perturbation,

and the integrability conditions imposed on the functional permit conditional

convergence. An application to a nonlinear integro–differential equation is

included, along with an example.

Published in Dynamical Systems, Proceedings of the Special Program

at Nankai Institute of Mathematics (held at Nankai University, Tianjin,

People’s Republic of China, 1991), pp. 221-236. (World Scientific, Singapore,

New Jersey, London , Hong Kong; edited by L. Shan-Tao, Y. Yan-Qian, D.

Tong-Ren).

1. Introduction.

We consider the functional differential equation

(p(t)y′)′ + q(t)y = F (t; y) (1)

as a perturbation of the linear differential equation

(p(t)x′)′ + q(t)x = 0. (2)

We give conditions on the functional F which imply that (1) has a solution y on an

interval [a,∞) that behaves in some sense (made precise below) as t → ∞ like a given

solution x of (2). In Section 2 we obtain general results without imposing specific

assumptions on the form of F ; thus, (1) may be an ordinary differential equation, it may

involve one or more deviating arguments, or it may be an integro–differential equation,

to name a few possibilities. In Section 3 we apply the general results to a specific kind

of nonlinear integro–differential equation. We give an example in Section 4.
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It is known [2, p. 355] that if (2) is nonoscillatory at ∞ then it has solutions x1

and x2 such that if a is sufficiently large then

x1(t), x2(t) > 0 (t ≥ a) and lim
t→∞

x2(t)

x1(t)
= ∞. (3)

For convenience we assume that

r(x1x
′
2 − x′

1x2) = 1. (4)

We will seek conditions on F which imply that (1) has a solution such that

y(t) − x(t)

xi(t)
= o(1)

with i = 1 or 2. (We use “O” and “o” in the usual way to indicate asymptotic behavior

as t → ∞.) In this case our conditions will also imply that

(

y(t) − x(t)

xi(t)

)′

= o

(

ρ′(t)

ρ(t)

)

,

where

ρ = x2/x1, t ≥ a. (5)

From (3) and (4), ρ′ = 1/rx2
1 > 0 and limt→∞ ρ(t) = ∞.

We demonstrate the existence of the desired solution as a fixed point of the trans-

formation

(T1y)(t) = x(t) +

∫ ∞

t

[x1(t)x2(s) − x1(s)x2(t)] F (s; y)ds (6)

if i = 1, or of

(T2y)(t) = x(t) − x1(t)

∫ t

a

ρ′(τ )

∫ ∞

τ

x1(s)F (s; y)ds dτ (7)

if i = 2. If the appropriate improper integral converges then

(p(t)(Tiy)′)
′
+ q(t)Tiy = F (t; y); (8)

hence, y satisfies (1) if Tiy = y.
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2. General Results

To obtain our results we impose integrability conditions on F and apply the fol-

lowing adaptation of the Schauder–Tychonoff theorem. The proof of this lemma is like

that of a similar lemma of Coppel [1, p. 9].

Lemma 1. If {yj} is a sequence of functions in C1[a,∞), we will say that yj → y

if

lim
j→∞

[

sup
a≤t≤T

|yj(t) − y(t)| + |y′
j(t) − y′(t)|

]

= 0

whenever a ≤ T < ∞. With this definition of convergence, let S be a closed convex

subset of C1[a,∞) and suppose that T : S → S is continuous and the families of

functions T (S) and {(T y)′ : y ∈ S} are uniformly bounded and equicontinuous on [a, T ]

for all T > a. Then T y = y for some y ∈ S.

The problems that we study and the use of the Schauder–Tychonoff theorem in

this way are not new; however, our results are new in that we consider a larger class

of functional perturbations F and the integrability conditions that we impose on them

allow conditional convergence. For related results on other kinds of functional equations,

see [3-5] and their references.

Throughout the rest of the paper it is to be understood that all equations and

inequalities involving functions of t are valid for t ≥ a. We make the following standing

assumption.

Assumption A. Let p and q be real–valued and continuous and p > 0 on [a,∞).

Suppose that (2) is nonoscillatory at ∞, and that x1 and x2 are solutions of (2) which

satisfy (3) and (4).

Theorem 1. Let x be a given solution of (2), φ be positive, continuous, and

nonincreasing on [a,∞), and i = 1 and j = 2 or i = 2 and j = 1. Suppose that

Assumption A holds and let S be the set of functions y in C1[a,∞) such that

∣

∣

∣

∣

y(t) − x(t)

xi(t)

∣

∣

∣

∣

≤ φ(t) and

∣

∣

∣

∣

∣

(

y(t) − x(t)

xi(t)

)′
∣

∣

∣

∣

∣

≤ 2φ(t)
ρ′(t)

ρ(t)
. (9)

Suppose that

3



(i) F (·; y) ∈ C [a,∞) if y ∈ S;

(ii) the family {F (·; y) | y ∈ S} is uniformly bounded on each finite subinterval of

[a,∞);

(iii) If {yj} is a sequence in S such that yj → y, then

lim
j→∞

F (t; yj) = F (t; y) (pointwise), t ≥ a.

Suppose also that
∫ ∞

a
xj(s)F (s; y)ds converges for every y in S, and there is a contin-

uous, nonincreasing function σ defined on [a,∞) such that

∣

∣

∣

∣

∫ ∞

t

xj(s)F (s; y)ds

∣

∣

∣

∣

≤ σ(t), y ∈ S, (10)

lim
t→∞

σ(t) = 0, (11)

and

σ(t) ≤ φ(t), if i = 1, (12)

or

max

(

σ(t),
1

ρ(t)

∫ t

a

ρ′(τ )σ(τ )dτ

)

≤ φ(t) if i = 2. (13)

Then (1) a has solution y on [a,∞) such that

∣

∣

∣

∣

y(t) − x(t)

xi(t)

∣

∣

∣

∣

≤ σ(t) and

∣

∣

∣

∣

∣

(

y(t) − x(t)

xi(t)

)′
∣

∣

∣

∣

∣

≤ 2σ(t)
ρ′(t)

ρ(t)
. (14)

Notice that S is a closed convex subset of C1[a,∞). We will prove Theorem 1 by

using Lemma 1 to show that there is a function y in S which is left fixed by one of the

transformations T1 or T2 defined by (6) and (7).

For the case where i = 1 we need the following lemma, which was proved in [3].
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Lemma 2. Suppose that u ∈ C [a,∞) and
∫ ∞

a
x2(s)u(s)ds converges, and let

ν(t) = sup
τ≥t

∣

∣

∣

∣

∫ ∞

τ

x2(s)u(s)ds

∣

∣

∣

∣

.

Then
∫ ∞

t
x1(s)u(s)ds also converges, and

∣

∣

∣

∣

∫ ∞

t

[x2(s) − x1(s)ρ(t)] u(s)ds

∣

∣

∣

∣

≤ ν(t),

∣

∣

∣

∣

∫ ∞

t

x1(s)u(s)ds

∣

∣

∣

∣

≤ 2ν(t)/ρ(t).

Proof of Theorem 1. Suppose that i = 1, j = 2 and y ∈ S. From (6),

(T1y)(t) − x(t)

x1(t)
=

∫ ∞

t

[x2(s) − x1(s)ρ(t)] F (s; y)ds (15)

and
(

(T1y)(t) − x(t)

x1(t)

)′

= −ρ′(t)

∫ ∞

t

x1(s)F (s; y)ds. (16)

Therefore, (10) and Lemma 2 with u = F (·; y) and ν = σ imply that

∣

∣

∣

∣

(T1y)(t) − x(t)

x1(t)

∣

∣

∣

∣

≤ σ(t) and

∣

∣

∣

∣

∣

(

(T1y)(t) − x(t)

x1(t)

)′
∣

∣

∣

∣

∣

≤ 2σ(t)
ρ′(t)

ρ(t)
. (17)

Now (12) and (17) imply that T1y ∈ S; i.e., T1(S) ⊂ S.

Now suppose that {yk} is a sequence in S such that yk → y. If ε > 0 choose T > a

such that σ(t) < ε/4 if t ≥ T . (This is possible because of (11).) Then (10) implies that

∣

∣

∣

∣

∫ ∞

t

x2(s) [F (s; yk) − F (s; y)] ds

∣

∣

∣

∣

< ε/2, t ≥ T, (18)

for all k. With T now fixed, choose k0 so that

∫ T

a

x2(s) |F (s; yk) − F (s; y)| ds < ε/2, k ≥ k0, (19)
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which is possible because of assumptions (ii) and (iii) and the bounded convergence

theorem. Now (18) and (19) imply that

∣

∣

∣

∣

∫ ∞

t

x2(s) [F (s; yk) − F (s; y)] ds

∣

∣

∣

∣

< ε, k ≥ k0. (20)

Therefore, (15), (16), and Lemma 2 with u = F (·; yk) − F (·; y) and ν = ε imply that

∣

∣

∣

∣

(T1yk)(t) − (T1y)(t)

x1(t)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ ∞

t

[x2(s) − x1(s)ρ(t)] (F (s; yk) − F (s; y)) ds

∣

∣

∣

∣

≤ ε, k ≥ k0,

and

∣

∣

∣

∣

∣

(

(T1yk)(t) − (T1y)(t)

x1(t)

)′
∣

∣

∣

∣

∣

= ρ′(t)

∣

∣

∣

∣

∫ ∞

t

x1(s) (F (s; yk) − F (s; y)) ds

∣

∣

∣

∣

≤
2ερ′(t)

ρ(t)
, k ≥ k0.

From this an elementary argument shows that T1yk → T1y; hence, T1 is continuous.

Now suppose that i = 2, j = 1 and y ∈ S. From (5) and (7),

(T2y)(t) − x(t)

x2(t)
= −

1

ρ(t)

∫ t

a

ρ′(τ )

∫ ∞

τ

x1(s)F (s; y)ds dτ,

and

(

(T2y)(t) − x(t)

x2(t)

)′

=
ρ′(t)

ρ2(t)

∫ t

a

ρ′(τ )

∫ ∞

τ

x1(s)F (s; y)ds dτ

−
ρ′(t)

ρ(t)

∫ ∞

t

x1(s)F (s; y)ds, t ≥ a.

Therefore, (10) implies that

∣

∣

∣

∣

(T2y)(t) − x(t)

x2(t)

∣

∣

∣

∣

≤
1

ρ(t)

∫ t

a

ρ′(τ )σ(τ )dτ, (21)
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and

∣

∣

∣

∣

∣

(

(T2y)(t) − x(t)

x2(t)

)′
∣

∣

∣

∣

∣

≤
ρ′(t)

ρ(t)

[

1

ρ(t)

∫ t

a

ρ′(τ )σ(τ )dτ + σ(t)

]

. (22)

Now (13), (21), and (22) imply that T2y ∈ S; that is, T2(S) ⊂ S.

Now suppose that {yk} is a sequence in S such that yk → y, and let ε > 0. The

argument used to obtain (20) shows that there is an integer k0 such that

∣

∣

∣

∣

∫ ∞

t

x1(s) [F (s; yk) − F (s, y)] ds

∣

∣

∣

∣

< ε, k ≥ k0,

and therefore, from (7),

∣

∣

∣

∣

(T2yk)(t) − (T2y)(t)

x1(t)

∣

∣

∣

∣

=

∫ t

a

ρ′(τ )

∫ ∞

τ

x1(s) [g1(s; yk) − g1(s; y)] ds dτ

≤ ε (ρ(t) − ρ(a)) , k ≥ k0,

and

∣

∣

∣

∣

∣

(

(T2yk)(t) − (T2y)(t)

x1(t)

)′
∣

∣

∣

∣

∣

= ρ′(t)

∫ ∞

t

x1(s) [g1(s; yk) − g1(s; y)] ds ≤ ερ′(t), k ≥ k0.

From this an elementary argument shows that T2yk → T2y; hence, T2 is continuous.

Now let T > a. Since Ti(S) ⊂ S, the definition of S implies that the families Ti(S)

and {(Tiy)′ : y ∈ S} are uniformly bounded on [a, T ]. The uniform boundedness of

the second family on [a, T ] implies the equicontinuity of the first on [a, T ]. From (8),

assumption (ii), and the boundedness of Ti(S) on [a, T ], the family {p(Tiy)′ : y ∈ S} is

equicontinuous on [a, T ]. Since p is bounded away from zero on [a, T ], this implies that

the family {(Tiy)′ : y ∈ S} is equicontinuous on [a, T ].

We have now verified that Ti satisfies the hypotheses of the Lemma 1 on S. There-

fore Tiy = y for some y ∈ S. To verify (14) we set y = y in (17) if i = 1 or in (21) and

(22) if i = 2. This completes the proof.
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3. An Application to an Integro–Differential Equation.

We now consider the integro–differential equation

(p(t)y′)′ + q(t)y = (ρ(t))−αg1(t)

∫ t

a

(y(τ ))γg2(τ )dτ, t ≥ a. (23)

Theorem 2. Suppose that Assumption A holds, γ (6= 0, 1) is real, and g1 and g2

are continuous and real–valued on [a,∞). Let the functions

G1(t) =

∫ t

a

x1(u)g1(u)du, (24)

G2(t) =

∫ t

a

(x1(u))γg2(u)du, (25)

and

G3(t) =

∫ t

a

(x1(u))γG1(u)g2(u)du (26)

be bounded on [a,∞) and c be a given positive constant. Suppose also that one of the

following hypotheses holds:

(H1) i = r = 1 and λ = α − 1 > 0.

(H2) i = 1, r = 2 and λ = α −max{γ + 1, 1} > 0.

(H3) i = r = 2 and 1 > λ = α − max{γ, 0} > 0.

Then (23) has a solution y on [a,∞) such that

y(t) − cxr(t)

xi(t)
= O((ρ(t))−λ) and

(

y(t) − cxr(t)

xi(t)

)′

= O((ρ(t))−λ−1ρ′(t)),

provided that cγ−1 is sufficiently small.

Proof. In (23) the functional F is

F (t; y) = (ρ(t))−αg1(t)

∫ t

a

(y(τ ))γg2(τ )dτ. (27)
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Let θ be a given constant in (0, 1), and define S to be the subset of C1[a,∞) consisting

of functions y such that

∣

∣

∣

∣

y(t) − cxr(t)

xi(t)

∣

∣

∣

∣

≤ θc(ρ(a))λ+r−i(ρ(t))−λ (28)

and

∣

∣

∣

∣

∣

(

y(t) − cxr(t)

xi(t)

)′
∣

∣

∣

∣

∣

≤ 2θc(ρ(a))λ+r−i(ρ(t))−λ−1ρ′(t). (29)

If y satisfies (28), then the monotonicity of ρ implies that

0 < c(1 − θ)(ρ(t))r−i ≤

∣

∣

∣

∣

y(t)

xi(t)

∣

∣

∣

∣

≤ c(1 + θ)(ρ(t))r−i ,

which implies assumptions (i) and (ii) of Theorem 1. Moreover, the bounded conver-

gence theorem implies assumption (iii) of Theorem 1.

Now let j = 1 if i = 2 or j = 2 if i = 1, as in Theorem 1. We must now verify (10)

for a suitable σ. First we consider

I(t) =

∫ ∞

t

xj(s)F (s;xr)ds =

∫ ∞

t

(ρ(s))j−α−1G′
1(s)

∫ s

a

(ρ(τ ))(r−1)γG′
2(τ )dτ. (30)

We will show that

I(t) = O((ρ(t))−λ). (31)

For convenience, define

h(t) =

∫ t

a

(ρ(τ ))(r−1)γG′
2(τ )dτ. (32)

From the boundedness of G2 and integration by parts (if r = 2)

h(t) =

{

O((ρ(t))(r−1)γ ) if γ > 0,

O(1) if γ ≤ 0.
(33)
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Integrating (30) by parts yields

I(t) = −(ρ(t))j−α−1h(t)G1(t) − (j − α − 1)

∫ ∞

t

(ρ(s))j−α−2ρ′(s)h(s)G1(s)ds

−

∫ ∞

t

(ρ(s))j−α−1h′(s)G1(s)ds.

(34)

Now it is important to note that under all three hypotheses (H1), (H2), and (H3),

λ =

{

α − j + 1 − (r − 1)γ if γ > 0,

α − j + 1 if γ ≤ 0.

From (33) and the boundedness of G1, the first two terms on the right of (34) are

O((ρ(t))−λ). From (24), (25), (26), and (32), the second integral on the right of (34)

can be written as
∫ ∞

t

(ρ(s))j−α−1+(r−1)γG′
3(s)ds.

Integrating by parts and invoking the boundedness of G3 shows that this integral is

O((ρ(t))j−α−1+(r−1)γ ). We have now verified (31) under all three hypotheses (H1),

(H2), (H3).

We now consider
∫ ∞

t
xj(s)F (s; y)ds for arbitrary y in S. Because of (24), (27),

and (30), this can be written as

∫ ∞

t

xj(s)F (s; y)ds = cγI(t) +

∫ t

a

(ρ(s))j−α−1G′
1(s)

∫ s

a

[(y(τ ))γ − cγ(xr(τ ))γ ]g2(τ )dτ.

(35)

If we introduce the new variable

z = y/xi (36)

and recall (25), then (35) can be rewritten as

∫ ∞

t

xj(s)F (s; y)ds = cγI(t) + W (t; z), (37)
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where

W (t; z) =

∫ ∞

t

(ρ(s))j−α−1G′
1(s)w(s; z)ds, (38)

with

w(t; z) =

∫ t

a

[

(z(τ ))γ − cγ(ρ(τ ))(r−i)γ
]

(ρ(τ ))(i−1)γG′
2(τ )dτ. (39)

From (28) and (36),

|z(t) − c(ρ(t))r−i| ≤ θc(ρ(a))λ+r−i(ρ(t))−λ. (40)

If z is any number between z(t) and c(ρ(t))(r−i), then (29) and the monotonicity of ρ

imply that

0 < (1 − θ)c(ρ(t))(r−i) ≤ |z| ≤ (1 + θ)c(ρ(t))(r−i) ,

and therefore, if k is any real number,

|z|k ≤ (1 ± θ)kck(ρ(t))(r−i)k , (41)

where the “±” is “+” if k > 0, or “−” if k < 0. Applying the mean value theorem to

A(z) = zγ and invoking (40) and (41) shows that

|(z(t))γ − cγ(ρ(t))(r−i)γ | ≤ K1c
γ(ρ(t))(r−i)(γ−1)−λ (42)

for some constant K which does not depend upon c or z. (Similar constants introduced

in the rest of this proof are also independent of c and z, but we will refrain from stating

this each time, to avoid repetition.) Also, (29) and (36) imply that

|z′(t)| ≤ 2θc(ρ(a))λ(ρ(t))−λ−1ρ′(t) if i = r, (43)

and

|z′(t) − cρ′(t)| ≤ 2θc(ρ(a))λ+1(ρ(t))−λ−1ρ′(t) if i = 1, r = 2. (44)

From (41) and (43),

|(z(t))γ−1z′(t)| ≤ K2c
γ(ρ(t))−λ−1ρ′(t) if i = r, (45)

for some constant K2. Applying the mean value theorem to B(z, z′) = zγ−1z′ and

invoking (40), (41), and (44) shows that

|(z(t))γ−1z′ − cγ(ρ(t))γ−1ρ′(t)| ≤ K2c
γ(ρ(t))γ−λ−2ρ′(t) if i = 1, r = 2. (46)
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We now consider the hypotheses (H1), (H2), and (H3) separately. In each case we

will show that

|W (t; z)| ≤ Jcγ(ρ(t))−λ, (47)

for some constant J . Once (47) is established then (31) and (37) will imply that

∣

∣

∣

∣

∫ ∞

t

xj(s)F (s; y)ds

∣

∣

∣

∣

≤ Hcγ(ρ(t))−λ

for some constant H. Then we can apply Theorem 1 with

φ(t) = θc(ρ(a))λ+r−i(ρ(t))−λ (48)

(compare (9) with (28) and (29)), and

σ(t) = Hcγ(ρ(t))−λ. (49)

If i = 1 then (48) and (49) imply (12) if cγ−1 is sufficiently small. If i = 2 then (48),

(49), and our assumption that λ < 1 imply (13) if cγ−1 is sufficiently small. Thus, our

proof will be complete when we have established (47).

Case 1. Let i = r = 1 (and therefore j = 2). Integrating (39) by parts yields

w(t; z) = [(z(τ ))γ − cγ] G2(τ )

∣

∣

∣

∣

t

a

− γ

∫ t

a

(z(τ ))γ−1z′(τ )G2(τ )dτ,

and therefore (42), (45), and the boundedness of G2 imply that

|w(t; z)| ≤ Kcγ (50)

for some constant K. Integrating (38) by parts and recalling that λ = α − 1 yields

W (t; z) = I1(t; z) + I2(t; z) + I3(t; z), (51)

with

I1(t; z) = −(ρ(t))−λG1(t)w(t; z),

I2(t; z) = λ

∫ ∞

t

(ρ(s))−λ−1ρ′(s)G1(s)w(s; z)ds,
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and

I3(t; z) = −

∫ ∞

t

(ρ(s))−λ [(z(s))γ − cγ]G′
3(s)ds.

From (50) and the boundedness of G1,

|Ik(t; z)| ≤ Jkcγ(ρ(t))−λ (k = 1, 2) (52)

for some constants J1 and J2. Integrating I3(t; z) by parts shows that

I3(t; z) = (ρ(t))−λ [(z(t))γ − cγ]G3(t) − λ

∫ ∞

t

(ρ(s))−λ−1ρ′(s) [(z(s))γ − cγ ]G3(s)ds

+ γ

∫ ∞

t

(ρ(s))−λ(z(s))γ−1z′(s)G3(s)ds;

hence, (42), (45), and the boundedness of G3 imply that

|I3(t; z)| ≤ J3c
γ(ρ(t))−2λ. (53)

Now (51), (52), and (53) imply (47).

Case 2. Let i = 1 and r = 2 (so that j = 2). Integrating (39) by parts yields

w(t; z) =
[

(z(τ ))γ−cγ(ρ(τ ))γ
]

G2(τ )

∣

∣

∣

∣

t

a

−γ

∫ t

a

[

(z(τ ))γ−1z′(τ )−cγ(ρ(τ ))γ−1ρ′(τ )
]

G2(τ )dτ,

and therefore (42) and (46) imply that

|w(t; z)| ≤

{

Kcγ(ρ(t))γ−λ−1 if γ > λ + 1,

Kcγ if γ ≤ λ + 1,
(54)

for some constant K. Integrating (38) by parts yields (51) with

I1(t; z) = −(ρ(t))−α+1w(t; z)G1(t),

I2(t; z) = −(1 − α)

∫ ∞

t

(ρ(s))−αρ′(s)w(s; z)G1(s)ds,
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and

I3(t; z) = −

∫ ∞

t

(ρ(s))−α+1 [(z(s))γ − cγ(ρ(s))γ ]G′
3(s)ds.

From (54) and the boundedness of G1,

|Ik(t; z)| ≤

{

J1c
γ(ρ(t))γ−α−λ if γ > λ + 1,

J1c
γ(ρ(t))−α+1 if γ ≤ λ + 1,

(k = 1, 2). (55)

Integrating I3(t; z) by parts shows that

I3(t; z) = (ρ(t))−α+1 [(z(t))γ − cγ(ρ(t))γ ]G3(t)

+ (1 − α)

∫ ∞

t

(ρ(s))−αρ′(s) [(z(s))γ − cγ(ρ(s))γ ]G3(s)ds

+ γ

∫ ∞

t

(ρ(s))−α+1
[

(z(s))γ−1z′(s) − cγ(ρ(s))γ−1ρ′(s)
]

G3(s)ds;

hence, (42), (46), and the boundedness of G3 imply that

|I3(t; z)| ≤ J3c
γ(ρ(t))γ−α−λ (56)

for some constant J3. Recalling that λ = α−max{γ + 1, 1} > 0, we can now infer (47)

from (51), (55), and (56).

Case 3. Let i = r = 2 (so that j = 1). Integrating (39) by parts yields

w(t; z) = [(z(τ ))γ − cγ] (ρ(τ ))γG2(τ )

∣

∣

∣

∣

t

a

− γ

∫ t

a

(z(τ ))γ−1z′(τ )(ρ(τ ))γG2(τ )dτ

− γ

∫ t

a

[(z(τ ))γ − cγ ] (ρ(τ ))γ−1ρ′(τ )G2(τ )dτ,

and therefore (42) and (45) imply that

|w(t; z)| ≤

{

Kcγ(ρ(t))γ−λ if γ > λ,

Kcγ if γ ≤ λ,
(57)
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for some constant K. Integrating (38) by parts yields (51) with

I1(t; z) = −(ρ(t))−αG1(t)w(t; z),

I2(t; z) = α

∫ ∞

t

(ρ(s))−α−1ρ′(s)G1(s)w(s; z)ds,

and

I3(t; z) = −

∫ ∞

t

(ρ(s))−α+γ [(z(s))γ − cγ]G′
3(s)ds.

From (57) and the boundedness of G1,

|Ik(t; z)| ≤

{

Jkcγ(ρ(t))γ−λ−α if γ > λ,

Jkcγ(ρ(t))−α if γ ≤ λ,
(k = 1, 2) (58)

for some constants J1 and J2. Integrating I3(t; z) by parts shows that

I3(t; z) = (ρ(t))−α+γ [(z(t))γ − cγ]G3(t) + γ

∫ ∞

t

(ρ(s))−α+γ (z(s))γ−1z′(s)G3(s)ds

+ (γ − α)

∫ ∞

t

(ρ(s))−α+γ−1ρ′(s) [(z(s))γ − cγ ]G3(s)ds;

hence, (42), (43), and the boundedness of G3 imply that

|I3(t; z)| ≤ J3c
γ(ρ(t))γ−λ−α. (59)

Recalling that λ = α−max{γ, 0} > 0, we can now infer (47) from (51), (58), and (59).

This completes the proof of Theorem 2.

4. An Example.

Consider the equation

(t−2y′)′ + 2t−4y = t−α−1 sin t

∫ t

a

τ−γ(y(τ ))γ sin τ dτ (a > 0). (60)
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The solutions of the unperturbed equation

(t−2x′)′ + 2t−4x = 0

are x1 = t and x2 = t2; hence ρ(t) = t, and (60) is of the form (23), with

g1(t) =
sin t

t
and g2(t) = t−γ sin t.

Therefore,

G1(t) = G2(t) = cos a − cos t

and

G3(t) = cos a(cos a − cos t) +
1

4
(cos 2t − cos 2a)

are all bounded, and Theorem 2 implies the following results if cγ−1 is sufficiently small.

(i) If α > 1 then (60) has a solution y on [a,∞) such that

y(t) = ct + O(t−α+2) and

(

y(t)

t

)′

= O(t−α).

(ii) If λ = α − max{γ + 1, 1} > 0 then (60) has a solution y on [a,∞) such that

y(t) = ct2 + O(t−λ+1) and

(

y(t) − ct2

t

)′

= O(t−λ−1).

(iii) If 1 > λ = α − max{γ, 0} > 0 then (60) has a solution y on [a,∞) such that

y(t) = ct2 + O(t−λ+2) and

(

y(t)

t2

)′

= O(t−λ−1).
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