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Abstract

Necessary conditions are given for the Hermitian Toeplitz matrix 15, =
(tr—s)rs=1 to have a repeated eigenvalue A with multiplicity m > 1,
and for an eigenpolynomial of T, associated with A to have a given
number of zeros off the unit circle |z] = 1. It is assumed that ¢, =
= fjﬂ f(@)e " df (0 < r < n—1), where f is real-valued and in L(—, ).
The conditions are given in terms of the number of changes in sign of

f(0) = A

1 Introduction
We consider the Hermitian Toeplitz matrix

T, = (tr—s)?,s:l,

where .
trzi 0)e= 0 do, r=0,1,...,n—1, (1)
2 J_,
and f is real-valued and Lebesgue integrable on (—m, ), and not constant on
a set of measure 2.

Let Ay < Xy < --- < A\, be the eigenvalues of T,,, with associated orthonor-
mal eigenvectors x1, %2, ..., 2Z,. Our first main result (Theorem 3) presents a
necessary condition on f for A\, to have multiplicity m > 1. To describe our
second main result we first recall some well known properties of eigenvectors of
Hermitian Toeplitz matrices. If J is the n xn matrix with ones on the secondary
diagonal and zeros elsewhere, then JT,,J = T,,. This implies that a vector z, is
a Ap-eigenvector of T, if and only if Jz, is. It follows that if A, has multiplicity
one then

Jz, =z, (2)

where & is a complex constant with modulus one. A stronger result holds if
T, is real and symmetric: Cantoni and Butler [1] have shown that in this case
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(even if T,, has repeated eigenvalues) R™ has an orthonormal basis consisting of

[n/2] eigenvectors of T, for which (2) holds with &€ = 1 and |n/2] for which (2)
holds with £ = —1.
The polynomial

X (2)=[1,2,...,2" Ya, (3)

is said to be an eigenpolynomial of T,, associated with A\.. The location of the
zeros of the eigenpolynomials of Hermitian Toeplitz matrices is of interest in
signal processing applications [2]-[5], [7]. If x, satisfies (2) then

Xr(2) = &1 X, (1/2);

hence, zeros of X, (z) that are not on the unit circle must occur in pairs ¢ and
1/¢.
Gueguen proved the following theorem in [5]. (See also [2] and [4].)

THEOREM 1 Let A\, be an eigenvalue of T),, but not of T,,_1. Then its associated
eigenpolynomial X, (z) has at least |n — 2r + 1| zeros on the unit circle |z| = 1.

Delsarte, Genin, and Kamp proved the following theorem in [3]. (See also

[4].)

THEOREM 2 Suppose that the eigenvalue A\, of T,, has multiplicity m and let s
be the largest integer < n such that A, is not an eigenvalue of Ts. Then any
eigenpolynomial X (z) of T,, corresponding to A, has at least |n —m — 2r + 2|
and at most m+ s — 1 zeros on the unit circle |z| = 1.

Our second main result (Theorem 7) gives a necessary condition on f for an
eigenpolynomial of T,, satisfying (2) to have a given number of zeros that are
not on the unit circle.

2 A necessary condition for repeated eigenval-
ues.

Let « and 3 be the essential upper and lower bounds of f; that is, « is the

largest number and 3 the smallest such that o < f(6) < 8 almost everywhere

on (—m, ). It is known ([6], p. 65) that all the eigenvalues of T are in («, ).
A proof of this is included naturally in the proof of the following theorem.

THEOREM 3 If X\, is an eigenvalue of T, with multiplicity m, then f(0) — A,
must change sign at least 2m — 1 times in (—m, ).
PROOF. Associate with each vector v = [v1, va, - - ~,vn]t in C™ the polynomial

n

V(z)=[l,2,...,2" o= Zvjzjfl.

j=1
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If w and v are in C" then
1 i —
(o) =5 [ UCTE, (4)

T™J—x

where z = €' whenever z appears in an integral. Moreover, (1) implies that

@) = 5 [ 1OUETE @, (5)

Now let A\; < Ao < --- < A\, be the eigenvalues of T;,, with corresponding
orthonormal eigenvectors x1, 2, . .., Ty, and let

X’L(Z) = [1525 <. ',anl]xi, 1 < { < n,

be the corresponding eigenpolynomials. From (4),

™ —T
and from (5),
1 (" —-—
o [ HOXETE b= 1<ii<n 7

The last two equations with ¢ = j show that the eigenvalues of T;, are in (a, ().
Therefore, f(0) — A, must change sign at some point in (—m, 7). This completes
the proof if m = 1.

Now suppose that m > 1 and f(8) — A\, changes sign only at the points
01 < 0y < -+ < O in (—m,7), where £ < 2m — 2. We will show that this
assumption leads to a contradiction.

Define
1

9(0) = 5= (7(0) = \,). (5)
T
For reference below note that if £ = 2p then the function

9(0) 1_1 sin (9 ‘2‘%‘) (9)

does not change sign in (—m, 7). This remains true if k = 2p — 1, if we define
02, = m. Now suppose that A, has multiplicity m; that is,

)\r = )\r+1 == )\r+m71- (10)

From (6), (7), and (10),

/7T 9(0)Xi(2)X;(z)dd=0(r<i<r+m-—1,1<j<n).

—T
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Therefore
T m—1
/ 9(0) (Z CeXrJre(Z)) Xj(z)d0=0,1<j<n,
- =0
if ¢y, ..., cm—1 are constants. This implies that
T m—1
/ mm(}ijwaw>Q@mo—o (1)
- =0

if @ is any polynomial of degree < n—1, since any such polynomial can be written
as a linear combination of X;(z2),..., X,(z). In particular, choose co, ..., ¢mn-1
— not all zero — so that

m—1

Z CEXT+E(€i0j) = Oa 1 S] S b,
£=0

(this is possible, since p < m), and let
m—1 P i0pyj
z — erti
e = (5 coxata) [T 55
=0

Substituting this into (11) yields

™ m-1 2 p E_e*igpﬂ
/ 90) > eXee(2)| ] 40 =0,
- =0 j=1

or, equivalently,

T p
/ g91(0) H(z — i) (z— e i) dh = 0, (12)
o ot
where )
Sy ceXrre(2)

Pz o)

91(0) = 9(0)

If 2 = ¢ then

; ; ; 6—0; 60— 0,
(z — €Y9)(z — e Wrti) = 4" 0= 0p+3)/2 gip (TJ> sin (Tpﬂ> :

hence, (12) implies that

T 2p 90— 0.
/ﬂgl(ﬁ)jl:llsin( 5 J) df =0,

which is impossible because of (8) and our observation that the function in (9)
is sign constant on (—m, 7). 0

Theorem 3 immediately implies the following theorems. Theorem 6 was
proved in [§].
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THEOREM 4 If f is monotonic on (—m, ) or there is a number ¢ in (—m,m)
such that f is monotonic on (—7,$) and (¢, ) then all eigenvalues of T,, have
multiplicity one.

THEOREM 5 Suppose that f(—0) = f(0), so that T,, is a real symmetric Toeplitz
matriz. If A, is an eigenvalue of T,, with multiplicity m then f(0) — A\, must
change sign at least m times in (0, )

THEOREM 6 Suppose that f(—0) = f(0) and f is monotonic on (0,7). Then
all the eigenvalues of T,, have multiplicity one.

3 Location of the zeros of eigenpolynomials
The following theorem is the main result of this section.

THEOREM 7 Suppose that the eigenvalue A\, has an associated eigenvector x,
such that JT, = Ex,, where £ is a constant, and the eigenpolynomial X, (z)
defined in (3) has 2m zeros (m > 1) that are not on the unit circle. Then
f(0) — A\ must change sign at least 2m + 1 times in (—m, 7).

PROOF. The proof is by contradiction. Suppose f(#) — A, changes sign only at
the points 61 < -+ < ), in (—m, 7), where 1 < k < 2m. Then, as in the proof
of Theorem 3, the function (9) does not change sign in (—m, 7). (Again, k = 2p
if k is even, and we define 0y, = 7 if kK =2p — 1.) From among the 2m zeros of
X,(2) not on the unit circle choose 2p distinct zeros (i, ..., ¢, 1/Cy,- - -, 1/Zp,
and define g as in (8).

From (6) and (7),

/7T 9(0) X, (2)Xs(2)d0 =0(1 < s <n),

—T
which implies that

| sox. @t -0 (13
if @ is any polynomial of degree < mn — 1.

Now define
(z — €¥i)(1 — e~ ¥0r+i )

(z = ¢)(1 = (52)

qj(2) = ,1<7<p,
and let

Then (13) implies that
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However, if z = €' then

4e4(05—0p+5)/2 0—0. 0—0. ..
gi(z) = 6_7_3111( J)sin (7104”) .
1= 2 2

This and (14) imply that

T g(0)| X (2))2 ﬁm(%) =0, (15)

o ?:1 |1 _ Zjew|2

j=1

which is impossible, since the function (9) is sign constant in (—m, 7). O
Theorem 7 immediately implies the following theorem.

THEOREM 8 If f satisfies the hypotheses of either Theorem 4 or Theorem 6
then all zeros of the eigenpolynomials of T,, are on the unit circle |z| = 1.
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