Some spectral properties of Hermitian Toeplitz matrices

William F. Trench*

SIAM J. Matrix Anal. Appl. 15 (1994), pp. 938-942

Abstract

Necessary conditions are given for the Hermitian Toeplitz matrix $T_n=(t_{r-s})_{r,s=1}^n$ to have a repeated eigenvalue λ with multiplicity m>1, and for an eigenpolynomial of T_n associated with λ to have a given number of zeros off the unit circle |z|=1. It is assumed that $t_r=\frac{1}{2\pi}\int_{-\pi}^{\pi}f(\theta)e^{-ir\theta}\,d\theta\,(0\leq r\leq n-1)$, where f is real-valued and in $L(-\pi,\pi)$. The conditions are given in terms of the number of changes in sign of $f(\theta)-\lambda$.

1 Introduction

We consider the Hermitian Toeplitz matrix

$$T_n = (t_{r-s})_{r,s=1}^n$$

where

$$t_r = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) e^{-ir\theta} d\theta, r = 0, 1, \dots, n - 1,$$
 (1)

and f is real–valued and Lebesgue integrable on $(-\pi, \pi)$, and not constant on a set of measure 2π .

Let $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ be the eigenvalues of T_n , with associated orthonormal eigenvectors x_1, x_2, \ldots, x_n . Our first main result (Theorem 3) presents a necessary condition on f for λ_r to have multiplicity m>1. To describe our second main result we first recall some well known properties of eigenvectors of Hermitian Toeplitz matrices. If J is the $n \times n$ matrix with ones on the secondary diagonal and zeros elsewhere, then $JT_nJ=\overline{T}_n$. This implies that a vector x_r is a λ_r -eigenvector of T_n if and only if $J\overline{x}_r$ is. It follows that if λ_r has multiplicity one then

$$J\overline{x}_r = \xi x_r,\tag{2}$$

where ξ is a complex constant with modulus one. A stronger result holds if T_n is real and symmetric: Cantoni and Butler [1] have shown that in this case

^{*}Trinity University, 715 Stadium Drive, San Antonio, TX 78212 (wtrench@trinity.edu).

2 William F. Trench

(even if T_n has repeated eigenvalues) R^n has an orthonormal basis consisting of $\lceil n/2 \rceil$ eigenvectors of T_n for which (2) holds with $\xi = 1$ and $\lfloor n/2 \rfloor$ for which (2) holds with $\xi = -1$.

The polynomial

$$X_r(z) = [1, z, \dots, z^{n-1}]x_r$$
 (3)

is said to be an eigenpolynomial of T_n associated with λ_r . The location of the zeros of the eigenpolynomials of Hermitian Toeplitz matrices is of interest in signal processing applications [2]-[5], [7]. If x_r satisfies (2) then

$$X_r(z) = \overline{\xi} z^{n-1} \overline{X_r(1/\overline{z})};$$

hence, zeros of $X_r(z)$ that are not on the unit circle must occur in pairs ζ and $1/\overline{\zeta}$.

Gueguen proved the following theorem in [5]. (See also [2] and [4].)

THEOREM 1 Let λ_r be an eigenvalue of T_n , but not of T_{n-1} . Then its associated eigenpolynomial $X_r(z)$ has at least |n-2r+1| zeros on the unit circle |z|=1.

Delsarte, Genin, and Kamp proved the following theorem in [3]. (See also [4].)

THEOREM 2 Suppose that the eigenvalue λ_r of T_n has multiplicity m and let s be the largest integer < n such that λ_r is not an eigenvalue of T_s . Then any eigenpolynomial X(z) of T_n corresponding to λ_r has at least |n-m-2r+2| and at most m+s-1 zeros on the unit circle |z|=1.

Our second main result (Theorem 7) gives a necessary condition on f for an eigenpolynomial of T_n satisfying (2) to have a given number of zeros that are not on the unit circle.

2 A necessary condition for repeated eigenvalues.

Let α and β be the essential upper and lower bounds of f; that is, α is the largest number and β the smallest such that $\alpha \leq f(\theta) \leq \beta$ almost everywhere on $(-\pi, \pi)$. It is known ([6], p. 65) that all the eigenvalues of T are in (α, β) . A proof of this is included naturally in the proof of the following theorem.

THEOREM 3 If λ_r is an eigenvalue of T_n with multiplicity m, then $f(\theta) - \lambda_r$ must change sign at least 2m - 1 times in $(-\pi, \pi)$.

PROOF. Associate with each vector $v = [v_1, v_2, \dots, v_n]^t$ in C^n the polynomial

$$V(z) = [1, z, \dots, z^{n-1}]v = \sum_{j=1}^{n} v_j z^{j-1}.$$

If u and v are in C^n then

$$(u,v) = \frac{1}{2\pi} \int_{-\pi}^{\pi} U(z) \overline{V(z)} \, d\theta, \tag{4}$$

where $z = e^{i\theta}$ whenever z appears in an integral. Moreover, (1) implies that

$$(T_n u, v) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) U(z) \overline{V(z)} d\theta.$$
 (5)

Now let $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ be the eigenvalues of T_n , with corresponding orthonormal eigenvectors x_1, x_2, \ldots, x_n , and let

$$X_i(z) = [1, z, \dots, z^{n-1}]x_i, 1 \le i \le n,$$

be the corresponding eigenpolynomials. From (4),

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} X_i(z) \overline{X_j(z)} d\theta = \delta_{ij}, \ 1 \le i, j \le n, \tag{6}$$

and from (5),

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) X_i(z) \overline{X_j(z)} \, d\theta = \delta_{ij} \lambda_j, \, 1 \le i, j \le n.$$
 (7)

The last two equations with i = j show that the eigenvalues of T_n are in (α, β) . Therefore, $f(\theta) - \lambda_r$ must change sign at some point in $(-\pi, \pi)$. This completes the proof if m = 1.

Now suppose that m>1 and $f(\theta)-\lambda_r$ changes sign only at the points $\theta_1<\theta_2<\cdots<\theta_k$ in $(-\pi,\pi)$, where $k\leq 2m-2$. We will show that this assumption leads to a contradiction.

Define

$$g(\theta) = \frac{1}{2\pi} \left(f(\theta) - \lambda_r \right). \tag{8}$$

For reference below note that if k = 2p then the function

$$g(\theta) \prod_{j=1}^{2p} \sin\left(\frac{\theta - \theta_j}{2}\right) \tag{9}$$

does not change sign in $(-\pi, \pi)$. This remains true if k = 2p - 1, if we define $\theta_{2p} = \pi$. Now suppose that λ_r has multiplicity m; that is,

$$\lambda_r = \lambda_{r+1} = \dots = \lambda_{r+m-1}. \tag{10}$$

From (6), (7), and (10),

$$\int_{-\pi}^{\pi} g(\theta) X_i(z) \overline{X_j(z)} d\theta = 0 \ (r \le i \le r + m - 1, \ 1 \le j \le n).$$

4 William F. Trench

Therefore

$$\int_{-\pi}^{\pi} g(\theta) \left(\sum_{\ell=0}^{m-1} c_{\ell} X_{r+\ell}(z) \right) \overline{X_j(z)} d\theta = 0, \ 1 \le j \le n,$$

if c_0, \ldots, c_{m-1} are constants. This implies that

$$\int_{-\pi}^{\pi} g(\theta) \left(\sum_{\ell=0}^{m-1} c_{\ell} X_{r+\ell}(z) \right) \overline{Q(z)} d\theta = 0$$
(11)

if Q is any polynomial of degree $\leq n-1$, since any such polynomial can be written as a linear combination of $X_1(z), \ldots, X_n(z)$. In particular, choose c_0, \ldots, c_{m-1} – not all zero – so that

$$\sum_{\ell=0}^{m-1} c_{\ell} X_{r+\ell}(e^{i\theta_j}) = 0, \ 1 \le j \le p,$$

(this is possible, since p < m), and let

$$Q(z) = \left(\sum_{\ell=0}^{m-1} c_{\ell} X_{r+\ell}(z)\right) \prod_{j=1}^{p} \frac{z - e^{i\theta_{p+j}}}{z - e^{i\theta_{j}}}.$$

Substituting this into (11) yields

$$\int_{-\pi}^{\pi} g(\theta) \left| \sum_{\ell=0}^{m-1} c_{\ell} X_{r+\ell}(z) \right|^{2} \prod_{j=1}^{p} \frac{\overline{z} - e^{-i\theta_{p+j}}}{\overline{z} - e^{-i\theta_{j}}} d\theta = 0,$$

or, equivalently,

$$\int_{-\pi}^{\pi} g_1(\theta) \prod_{j=1}^{p} (z - e^{i\theta_j}) (\overline{z} - e^{-i\theta_{p+j}}) d\theta = 0,$$
 (12)

where

$$g_1(\theta) = g(\theta) \left| \frac{\sum_{\ell=0}^{m-1} c_{\ell} X_{r+\ell}(z)}{\prod_{j=1}^{p} (z - e^{i\theta_j})} \right|^2.$$

If $z = e^{i\theta}$ then

$$(z - e^{i\theta_j})(\overline{z} - e^{-i\theta_{p+j}}) = 4e^{i(\theta_j - \theta_{p+j})/2} \sin\left(\frac{\theta - \theta_j}{2}\right) \sin\left(\frac{\theta - \theta_{p+j}}{2}\right);$$

hence, (12) implies that

$$\int_{-\pi}^{\pi} g_1(\theta) \prod_{i=1}^{2p} \sin\left(\frac{\theta - \theta_j}{2}\right) d\theta = 0,$$

which is impossible because of (8) and our observation that the function in (9) is sign constant on $(-\pi, \pi)$.

Theorem 3 immediately implies the following theorems. Theorem 6 was proved in [8].

THEOREM 4 If f is monotonic on $(-\pi, \pi)$ or there is a number ϕ in $(-\pi, \pi)$ such that f is monotonic on $(-\pi, \phi)$ and (ϕ, π) then all eigenvalues of T_n have multiplicity one.

THEOREM 5 Suppose that $f(-\theta) = f(\theta)$, so that T_n is a real symmetric Toeplitz matrix. If λ_r is an eigenvalue of T_n with multiplicity m then $f(\theta) - \lambda_r$ must change sign at least m times in $(0, \pi)$

THEOREM 6 Suppose that $f(-\theta) = f(\theta)$ and f is monotonic on $(0, \pi)$. Then all the eigenvalues of T_n have multiplicity one.

3 Location of the zeros of eigenpolynomials

The following theorem is the main result of this section.

THEOREM 7 Suppose that the eigenvalue λ_r has an associated eigenvector x_r such that $J\overline{x}_r = \xi x_r$, where ξ is a constant, and the eigenpolynomial $X_r(z)$ defined in (3) has 2m zeros $(m \geq 1)$ that are not on the unit circle. Then $f(\theta) - \lambda_r$ must change sign at least 2m + 1 times in $(-\pi, \pi)$.

PROOF. The proof is by contradiction. Suppose $f(\theta) - \lambda_r$ changes sign only at the points $\theta_1 < \dots < \theta_k$ in $(-\pi, \pi)$, where $1 \le k \le 2m$. Then, as in the proof of Theorem 3, the function (9) does not change sign in $(-\pi, \pi)$. (Again, k = 2p if k is even, and we define $\theta_{2p} = \pi$ if k = 2p - 1.) From among the 2m zeros of $X_r(z)$ not on the unit circle choose 2p distinct zeros $\zeta_1, \dots, \zeta_p, 1/\overline{\zeta}_1, \dots, 1/\overline{\zeta}_p$, and define g as in (8).

From (6) and (7),

$$\int_{-\pi}^{\pi} g(\theta) X_r(z) \overline{X_s(z)} d\theta = 0 (1 \le s \le n),$$

which implies that

$$\int_{-\pi}^{\pi} g(\theta) X_r(z) \overline{Q(z)} \, d\theta = 0 \tag{13}$$

if Q is any polynomial of degree $\leq n-1$.

Now define

$$q_j(z) = \frac{(z - e^{i\theta_j})(1 - e^{-i\theta_{p+j}}z)}{(z - \zeta_j)(1 - \overline{\zeta}_j z)}, \ 1 \le j \le p,$$

and let

$$Q(z) = X_r(z)q_1(z)\cdots q_p(z).$$

Then (13) implies that

$$\int_{-\pi}^{\pi} g(\theta) |X_r(z)|^2 \overline{q_1(z)} \cdots \overline{q_p(z)} \, d\theta = 0. \tag{14}$$

6 William F. Trench

However, if $z = e^{i\theta}$ then

$$q_j(z) = \frac{4e^{i(\theta_j - \theta_{p+j})/2}}{|1 - \overline{\zeta}_j e^{i\theta}|^2} \sin\left(\frac{\theta - \theta_j}{2}\right) \sin\left(\frac{\theta - \theta_{p+j}}{2}\right).$$

This and (14) imply that

$$\int_{-\pi}^{\pi} \frac{g(\theta)|X_r(z)|^2}{\prod_{j=1}^p |1 - \overline{\zeta}_j e^{i\theta}|^2} \prod_{j=1}^{2p} \sin\left(\frac{\theta - \theta_j}{2}\right) d\theta = 0, \tag{15}$$

which is impossible, since the function (9) is sign constant in $(-\pi, \pi)$. Theorem 7 immediately implies the following theorem.

THEOREM 8 If f satisfies the hypotheses of either Theorem 4 or Theorem 6 then all zeros of the eigenpolynomials of T_n are on the unit circle |z| = 1.

References

- [1] A. CANTONI AND F. BUTLER, Eigenvalues and eigenvectors of symmetric centrosymmetric matrices, Linear Algebra Appl., 13 (1976), pp. 275–288.
- [2] P. Delsarte and Y. Genin, Spectral properties of finite Toeplitz matrices, in Mathematical Theory of Networks and Systems, Proc. MTNS-83 International Symposium, Beer Sheva, Israel, (1983), pp. 194–213.
- [3] P. Delsarte, Y. Genin, and Y. Kamp, *Parametric Toeplitz Systems*, Circuits, Systems, Signal Processing, 3 (1984), pp. 207-223.
- [4] Y. Genin, A survey of the eigenstructure properties of finite Hermitian Toeplitz matrices, Integral Equations and Operator Theory, 10 (1987), pp. 621-639.
- [5] C. Gueguen, Linear prediction in the singular case and the stability of singular models, Proc. Int. Conf. Acoustics, Speech, Signal Processing, Atlanta (1981), pp. 881-885.
- [6] U. GRENANDER AND G. SZEGÖ, Toeplitz Forms and Their Applications, University of California Press, Berkeley and Los Angeles, CA, 1958.
- [7] J. MAKHOUL, On the eigenvectors of symmetric Toeplitz matrices, IEEE Trans. Acoustics Speech, Signal Proc., ASSP-29 (1981), pp. 868-872.
- [8] W. F. Trench, Interlacement of the even and odd spectra of real symmetric Toeplitz matrices, Linear Algebra Appl., 195 (1993), pp. 59-69.