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Abstract

Necessary conditions are given for the Hermitian Toeplitz matrix Tn =
(tr−s)

n
r,s=1 to have a repeated eigenvalue λ with multiplicity m > 1,

and for an eigenpolynomial of Tn associated with λ to have a given
number of zeros off the unit circle |z| = 1. It is assumed that tr =
1

2π

∫ π

−π
f(θ)e−irθ dθ (0 ≤ r ≤ n−1), where f is real–valued and in L(−π, π).

The conditions are given in terms of the number of changes in sign of
f(θ) − λ.

1 Introduction

We consider the Hermitian Toeplitz matrix

Tn = (tr−s)
n
r,s=1,

where

tr =
1

2π

∫ π

−π

f(θ)e−irθ dθ, r = 0, 1, . . . , n− 1, (1)

and f is real–valued and Lebesgue integrable on (−π, π), and not constant on
a set of measure 2π.

Let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of Tn, with associated orthonor-
mal eigenvectors x1, x2, . . . , xn. Our first main result (Theorem 3) presents a
necessary condition on f for λr to have multiplicity m > 1. To describe our
second main result we first recall some well known properties of eigenvectors of
Hermitian Toeplitz matrices. If J is the n×n matrix with ones on the secondary
diagonal and zeros elsewhere, then JTnJ = Tn. This implies that a vector xr is
a λr-eigenvector of Tn if and only if Jxr is. It follows that if λr has multiplicity
one then

Jxr = ξxr, (2)

where ξ is a complex constant with modulus one. A stronger result holds if
Tn is real and symmetric: Cantoni and Butler [1] have shown that in this case
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(even if Tn has repeated eigenvalues) Rn has an orthonormal basis consisting of
dn/2e eigenvectors of Tn for which (2) holds with ξ = 1 and bn/2c for which (2)
holds with ξ = −1.

The polynomial

Xr(z) = [1, z, . . . , zn−1]xr (3)

is said to be an eigenpolynomial of Tn associated with λr . The location of the
zeros of the eigenpolynomials of Hermitian Toeplitz matrices is of interest in
signal processing applications [2]-[5], [7]. If xr satisfies (2) then

Xr(z) = ξzn−1Xr(1/z);

hence, zeros of Xr(z) that are not on the unit circle must occur in pairs ζ and
1/ζ.

Gueguen proved the following theorem in [5]. (See also [2] and [4].)

Theorem 1 Let λr be an eigenvalue of Tn, but not of Tn−1. Then its associated

eigenpolynomial Xr(z) has at least |n − 2r + 1| zeros on the unit circle |z| = 1.

Delsarte, Genin, and Kamp proved the following theorem in [3]. (See also
[4].)

Theorem 2 Suppose that the eigenvalue λr of Tn has multiplicity m and let s
be the largest integer < n such that λr is not an eigenvalue of Ts. Then any

eigenpolynomial X(z) of Tn corresponding to λr has at least |n − m − 2r + 2|
and at most m + s − 1 zeros on the unit circle |z| = 1.

Our second main result (Theorem 7) gives a necessary condition on f for an
eigenpolynomial of Tn satisfying (2) to have a given number of zeros that are
not on the unit circle.

2 A necessary condition for repeated eigenval-

ues.

Let α and β be the essential upper and lower bounds of f ; that is, α is the
largest number and β the smallest such that α ≤ f(θ) ≤ β almost everywhere
on (−π, π). It is known ([6], p. 65) that all the eigenvalues of T are in (α, β).
A proof of this is included naturally in the proof of the following theorem.

Theorem 3 If λr is an eigenvalue of Tn with multiplicity m, then f(θ) − λr

must change sign at least 2m − 1 times in (−π, π).

Proof. Associate with each vector v = [v1, v2, · · · , vn]
t

in Cn the polynomial

V (z) = [1, z, . . ., zn−1]v =

n
∑

j=1

vjz
j−1.
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If u and v are in Cn then

(u, v) =
1

2π

∫ π

−π

U(z)V (z) dθ, (4)

where z = eiθ whenever z appears in an integral. Moreover, (1) implies that

(Tnu, v) =
1

2π

∫ π

−π

f(θ)U(z)V (z) dθ. (5)

Now let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of Tn, with corresponding
orthonormal eigenvectors x1, x2, . . . , xn, and let

Xi(z) = [1, z, . . . , zn−1]xi, 1 ≤ i ≤ n,

be the corresponding eigenpolynomials. From (4),

1

2π

∫ π

−π

Xi(z)Xj(z) dθ = δij , 1 ≤ i, j ≤ n, (6)

and from (5),

1

2π

∫ π

−π

f(θ)Xi(z)Xj(z) dθ = δijλj , 1 ≤ i, j ≤ n. (7)

The last two equations with i = j show that the eigenvalues of Tn are in (α, β).
Therefore, f(θ)−λr must change sign at some point in (−π, π). This completes
the proof if m = 1.

Now suppose that m > 1 and f(θ) − λr changes sign only at the points
θ1 < θ2 < · · · < θk in (−π, π), where k ≤ 2m − 2. We will show that this
assumption leads to a contradiction.

Define

g(θ) =
1

2π
(f(θ) − λr) . (8)

For reference below note that if k = 2p then the function

g(θ)

2p
∏

j=1

sin

(

θ − θj

2

)

(9)

does not change sign in (−π, π). This remains true if k = 2p − 1, if we define
θ2p = π. Now suppose that λr has multiplicity m; that is,

λr = λr+1 = · · · = λr+m−1 . (10)

From (6), (7), and (10),

∫ π

−π

g(θ)Xi(z)Xj(z) dθ = 0 (r ≤ i ≤ r + m− 1, 1 ≤ j ≤ n).
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Therefore
∫ π

−π

g(θ)

(

m−1
∑

`=0

c`Xr+`(z)

)

Xj(z) dθ = 0, 1 ≤ j ≤ n,

if c0, . . . , cm−1 are constants. This implies that

∫ π

−π

g(θ)

(

m−1
∑

`=0

c`Xr+`(z)

)

Q(z) dθ = 0 (11)

if Q is any polynomial of degree ≤ n−1, since any such polynomial can be written
as a linear combination of X1(z), . . . , Xn(z). In particular, choose c0, . . . , cm−1

– not all zero – so that

m−1
∑

`=0

c`Xr+`(e
iθj ) = 0, 1 ≤ j ≤ p,

(this is possible, since p < m), and let

Q(z) =

(

m−1
∑

`=0

c`Xr+`(z)

)

p
∏

j=1

z − eiθp+j

z − eiθj
.

Substituting this into (11) yields

∫ π

−π

g(θ)

∣

∣

∣

∣

∣

m−1
∑

`=0

c`Xr+`(z)

∣

∣

∣

∣

∣

2 p
∏

j=1

z − e−iθp+j

z − e−iθj
dθ = 0,

or, equivalently,

∫ π

−π

g1(θ)

p
∏

j=1

(z − eiθj )(z − e−iθp+j ) dθ = 0, (12)

where

g1(θ) = g(θ)

∣

∣

∣

∣

∣

∑m−1
`=0 c`Xr+`(z)
∏p

j=1(z − eiθj)

∣

∣

∣

∣

∣

2

.

If z = eiθ then

(z − eiθj)(z − e−iθp+j ) = 4ei(θj−θp+j)/2 sin

(

θ − θj

2

)

sin

(

θ − θp+j

2

)

;

hence, (12) implies that

∫ π

−π

g1(θ)

2p
∏

j=1

sin

(

θ − θj

2

)

dθ = 0,

which is impossible because of (8) and our observation that the function in (9)
is sign constant on (−π, π).

Theorem 3 immediately implies the following theorems. Theorem 6 was
proved in [8].
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Theorem 4 If f is monotonic on (−π, π) or there is a number φ in (−π, π)
such that f is monotonic on (−π, φ) and (φ, π) then all eigenvalues of Tn have

multiplicity one.

Theorem 5 Suppose that f(−θ) = f(θ), so that Tn is a real symmetric Toeplitz

matrix. If λr is an eigenvalue of Tn with multiplicity m then f(θ) − λr must

change sign at least m times in (0, π)

Theorem 6 Suppose that f(−θ) = f(θ) and f is monotonic on (0, π). Then

all the eigenvalues of Tn have multiplicity one.

3 Location of the zeros of eigenpolynomials

The following theorem is the main result of this section.

Theorem 7 Suppose that the eigenvalue λr has an associated eigenvector xr

such that Jxr = ξxr, where ξ is a constant, and the eigenpolynomial Xr(z)
defined in (3) has 2m zeros (m ≥ 1) that are not on the unit circle. Then

f(θ) − λr must change sign at least 2m + 1 times in (−π, π).

Proof. The proof is by contradiction. Suppose f(θ) − λr changes sign only at
the points θ1 < · · · < θk in (−π, π), where 1 ≤ k ≤ 2m. Then, as in the proof
of Theorem 3, the function (9) does not change sign in (−π, π). (Again, k = 2p
if k is even, and we define θ2p = π if k = 2p − 1.) From among the 2m zeros of
Xr(z) not on the unit circle choose 2p distinct zeros ζ1, . . . , ζp, 1/ζ1, . . . , 1/ζp,
and define g as in (8).

From (6) and (7),

∫ π

−π

g(θ)Xr(z)Xs(z) dθ = 0 (1 ≤ s ≤ n),

which implies that
∫ π

−π

g(θ)Xr(z)Q(z) dθ = 0 (13)

if Q is any polynomial of degree ≤ n − 1.
Now define

qj(z) =
(z − eiθj )(1 − e−iθp+j z)

(z − ζj)(1 − ζjz)
, 1 ≤ j ≤ p,

and let
Q(z) = Xr(z)q1(z) · · ·qp(z).

Then (13) implies that

∫ π

−π

g(θ)|Xr(z)|2q1(z) · · ·qp(z) dθ = 0. (14)
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However, if z = eiθ then

qj(z) =
4ei(θj−θp+j)/2

|1 − ζje
iθ|2

sin

(

θ − θj

2

)

sin

(

θ − θp+j

2

)

.

This and (14) imply that

∫ π

−π

g(θ)|Xr(z)|2
∏p

j=1 |1− ζje
iθ|2

2p
∏

j=1

sin

(

θ − θj

2

)

dθ = 0, (15)

which is impossible, since the function (9) is sign constant in (−π, π).
Theorem 7 immediately implies the following theorem.

Theorem 8 If f satisfies the hypotheses of either Theorem 4 or Theorem 6
then all zeros of the eigenpolynomials of Tn are on the unit circle |z| = 1.

References

[1] A. Cantoni and F. Butler, Eigenvalues and eigenvectors of symmetric

centrosymmetric matrices, Linear Algebra Appl., 13 (1976), pp. 275–288.

[2] P. Delsarte and Y. Genin, Spectral properties of finite Toeplitz matri-

ces, in Mathematical Theory of Networks and Systems, Proc. MTNS–83
International Symposium, Beer Sheva, Israel, (1983), pp. 194–213.

[3] P. Delsarte, Y. Genin, and Y. Kamp, Parametric Toeplitz Systems,
Circuits, Systems, Signal Processing, 3 (1984), pp. 207-223.

[4] Y. Genin, A survey of the eigenstructure properties of finite Hermitian

Toeplitz matrices, Integral Equations and Operator Theory, 10 (1987),
pp. 621-639.

[5] C. Gueguen, Linear prediction in the singular case and the stability of sin-

gular models, Proc. Int. Conf. Acoustics, Speech, Signal Processing, Atlanta
(1981), pp. 881-885.
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