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Abstract. H.J. Landau has recently given a nonconstructive proof of an existence theorem for
the inverse eigenvalue problem for real symmetric Toeplitz (RST) matrices. This paper presents a
procedure for the numerical solution of this problem. The procedure is based on an implementation
of Newton’s method that exploits Landau’s theorem and other special spectral properties of RST
matrices. With this version of Newton’s method, together with the strategy proposed for applying
it, the method appears to be globally convergent; however, this is not proved.
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1. Introduction. Let t = [t0 t1 · · · tn−1] where t0, t1, . . . , tn−1 are real numbers,
and let T(t) be the real symmetric Toeplitz (RST) matrix

T(t) = (t|i−j|)
n
i,j=1.

We say that t generates T(t). We denote the eigenvalues of T(t) by

λ1(t) ≤ λ2(t) ≤ · · · ≤ λn(t).

The inverse eigenvalue problem for RST matrices is as follows.

Problem 1. Given n real numbers λ̂1 ≤ λ̂2 ≤ · · · ≤ λ̂n, find an n–vector t̂ such

that λi(t̂) = λ̂i, 1 ≤ i ≤ n.

We will call λ̂1, λ̂2, . . . , λ̂n the target eigenvalues and Λ̂ = [λ̂1 λ̂2 · · · λ̂n] the target

spectrum.
Problem 1 is a special case of an inverse eigenvalue problem for symmetric matrices

considered by Friedland, Nocedal, and Overton [5]. We present a numerical method
for solving Problem 1.

2. Normalization. If t = [t0 t1 · · · tn−1] then the trace of T(t) equals nt0;
therefore, if t̂ is a solution of Problem 1 then

t̂0 =
λ̂1 + λ̂2 + · · ·+ λ̂n

n
.

If λ̂1 = λ̂2 = · · · = λ̂n = λ̂ then t̂ = [λ̂ 0 · · · 0] is a solution of Problem 1; therefore
we assume that the target eigenvalues are not all equal. For computational purposes
it is convenient to assume that the target spectrum is normalized so that

λ̂1 + λ̂2 · · ·+ λ̂n = 0(1)
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and

λ̂2
1 + λ̂2

2 + · · ·+ λ̂2
n = 1.(2)

This implies no loss of generality, since if either (1) or (2) does not hold, we can
introduce the new target eigenvalues λ̃1, λ̃2, . . . , λ̃n defined by

λ̃i =
λ̂i − t̂0

S
, 1 ≤ i ≤ n,

where

S =

(

n
∑

i=1

(λ̂i − t̂0)
2

)1/2

.

These modified target eigenvalues satisfy conditions analogous to (1) and (2). A solu-
tion of Problem 1 for the modified spectrum must be of the form t̃ = [0 t̃1 · · · t̃n−1],
and t̂ = [t̂0 St̃1 · · · St̃n−1] is a solution of the original problem.

3. Laurie’s algorithm. Laurie [8] has proposed an algorithm for solving Prob-
lem 1. In order to state this algorithm, suppose that T(t) has distinct eigenvalues
λ1(t) < λ2(t) < · · · < λn(t) with associated unit eigenvectors

pi(t) = [pi1(t) pi2(t) . . . pin(t)]T , 1 ≤ i ≤ n.

(The ambiguity in the direction of pi(t) is not important.) Laurie’s algorithm obtains
t̂ as the limit of a sequence {tm}∞m=0, where t0 is chosen arbitrarily and

pi(t
m−1)TT(tm)pi(t

m−1) = λ̂i, 1 ≤ i ≤ n.(3)

(Laurie also suggested a variation of this implementation, which we will discuss in §6.)
Thus, the Rayleigh quotients of T(tm) with respect to the eigenvectors of T(tm−1) are
equal to the respective target eigenvalues. For this reason Laurie called this method
“the reverse Rayleigh quotient algorithm.” However, (3) can be written as

n
∑

k=1

cik(tm−1)tmk−1 = λ̂i, 1 ≤ i ≤ n,(4)

where

ci1(t
m−1) = 1

cik(tm−1) = 2

n−k+1
∑

l=1

pil(t
m−1)pi,l+k−1(t

m−1), 2 ≤ k ≤ n, 1 ≤ i ≤ n,

and it can be shown by specializing the arguments of Friedland, Nocedal, and Overton
[5] that

cik(tm−1) =
∂λi

∂tk−1

(tm−1), 1 ≤ i, k ≤ n.

Therefore the matrix of (4) is the Jacobian matrix of λ1(t
m−1), λ2(t

m−1), . . . , λn(tm−1)
with respect to t0, t1, . . . , tn−1, which implies that Laurie’s algorithm is equivalent to
Newton’s method, as Laurie acknowledged in a note added in proof to [8].
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Laurie used the starting generator

t0 = [0 1 0 · · · 0].(5)

He reported success in all computations in which he started with (5) and used full ma-
chine precision in diagonalizing the matrices {T(tm)}. However, since his algorithm
is Newton’s method, it is not globally convergent for the inverse eigenvalue problem.
Moreover, it does not exploit the special spectral structure of RST matrices, or the
current state of knowledge concerning the existence of a solution of Problem 1. We
will review these matters in the next two sections.

4. Spectral properties of RST matrices. Following Andrew [1], we say that
an n–vector x = [x1 x2 · · · xn]T is symmetric if

xj = xn−j+1, 1 ≤ j ≤ n,

or skew–symmetric if

xj = −xn−j+1, 1 ≤ j ≤ n.

(Some authors call such vectors reciprocal and anti-reciprocal .)
Throughout this paper we let

r = dn/2e and s = bn/2c.

We now state four theorems that are special cases of results of Cantoni and Butler [2]
for symmetric centrosymmetric matrices. As noted by Cantoni and Butler, these
theorems imply that if T is an RST matrix of order n then Rn has an orthonormal
basis consisting of r symmetric and s skew–symmetric eigenvectors of T. They also
lead to computational efficiency in our reformulation of Laurie’s algorithm.

We will say that an eigenvalue λ of T is even (odd) if T has a symmetric (skew–
symmetric) λ–eigenvector. In the following theorems Jm is the m × m matrix with
ones on the secondary diagonal and zeros elsewhere.

Theorem 4.1. Suppose that n = 2m and µ is an eigenvalue of

A = (t|i−j| + ti+j−1)
m
i,j=1,

with associated unit eigenvector x. Then µ is an even eigenvalue of T, with associated

symmetric unit eigenvector

p =
1√
2

[

Jmx
x

]

.

Theorem 4.2. Suppose that n = 2m and ν is an eigenvalue of

B = (t|i−j| − ti+j−1)
m
i,j=1,

with associated unit eigenvector y. Then ν is an odd eigenvalue of T, with associated

skew-symmetric unit eigenvector

q =
1√
2

[

−Jmy
y

]

.
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Theorem 4.3. Suppose that n = 2m + 1 and µ is an eigenvalue of the matrix

A = (aij)
m
i,j=0 defined by

aij =















t0 if i = j = 0,√
2ti if j = 0,√
2tj if i = 0,

t|i−j| + ti+j 1 ≤ i, j ≤ m,

with unit eigenvector

[

x0

x

]

, where x0 is a scalar. Then µ is an even eigenvalue of

T, with associated symmetric unit eigenvector

p =
1√
2





Jmx

x0

√
2

x



 .

Theorem 4.4. Suppose that n = 2m + 1 and ν is an eigenvalue of

B = (t|i−j| − ti+j)
m
i,j=1,

with associated unit eigenvector y. Then ν is an odd eigenvalue of T, with associated

skew–symmetric unit eigenvector

p =
1√
2





−Jmy
0
y



 .

We will denote the even and odd eigenvalues of T(t) by

µ1(t) ≤ µ2(t) ≤ · · · ≤ µr(t) and ν1(t) ≤ ν2(t) ≤ · · · ≤ νs(t),

respectively.
The last four theorems imply the following result.
Theorem 4.5. The even and odd eigenvalues {µi(t)}r

i=1 and {νj(t)}s
j=1 of T(t)

are continuous functions of t.
As noted in [10], the well–known continuity of λ1(t), λ2(t), . . . , λn(t) does not

imply Theorem 4.5, since for a given i the eigenvalue λi(t) is even for some t and odd
for others.

The following result of Delsarte and Genin [3] implies that a repeated eigenvalue
of an RST matrix T is both even and odd.

Theorem 4.6. If λ is an eigenvalue of an RST matrix T with multiplicity

k > 1 then the λ–eigenspace of T has an orthonormal basis consisting of either dk/2e
symmetric and bk/2c skew–symmetric λ–eigenvectors of T, or bk/2c symmetric and

dk/2e skew–symmetric λ–eigenvectors of T.

5. Reformulation of Problem 1. The statement of Problem 1 does not reflect
the current knowledge concerning the existence of its solution or the special spectral
properties of RST matrices. We therefore reformulate Problem 1 as follows.

Problem 2. Given n real numbers µ̂1 ≤ µ̂2 ≤ · · · ≤ µ̂r and ν̂1 ≤ ν̂2 ≤ · · · ≤ ν̂s,

find an n–vector t̂ such that

µi(t̂) = µ̂i, 1 ≤ i ≤ r and νj(t̂) = ν̂j, 1 ≤ j ≤ s.
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We will call µ̂1, µ̂2, . . . , µ̂r the even target eigenvalues and ν̂1, ν̂2, . . . , ν̂s the odd

target eigenvalues.
If t̂ is a solution of Problem 2 and t̃ is obtained from t̂ by replacing tr by (−1)rtr,

then t̃ is also a solution of Problem 2 if n is odd, or of Problem 2 with {µi} and {νj}
interchanged if n is even.

We say that the even and odd target eigenvalues {µ̂i} and {ν̂j} are interlaced if
n = 2m + 1 and

µ̂i ≤ ν̂i ≤ µ̂i+1, 1 ≤ i ≤ m,

or if n = 2m and either

µ̂i ≤ ν̂i ≤ µ̂i+1 ≤ ν̂m, 1 ≤ i ≤ m − 1,(6)

or

ν̂i ≤ µ̂i ≤ ν̂i+1 ≤ µ̂m, 1 ≤ i ≤ m − 1.(7)

A similar definition applies to the even and odd eigenvalues of an RST matrix T(t).
By a nonconstructive argument based on topological degree (as proposed by Fried-

land [4]) Landau [7] has recently proved that Problem 2 always has a solution if {µ̂i}
and {ν̂j} are interlaced. Delsarte and Genin [3] and Friedland [4] had established this
earlier for n ≤ 4.

In this paper we give a numerical procedure for solving Problem 2. We do not
prove convergence; however, numerical experiments indicate that the procedure is
globally convergent if {µ̂i} and {ν̂j} are interlaced, although in some instances it
requires interaction on the part of the user, as explained in §9.

6. Newton’s method for Problem 2. Since the eigenvectors

p1(t
m−1), p2(t

m−1), . . . ,pn(tm−1)

are associated with the λ1(t
m−1) < λ2(t

m−1) < · · · < λn(tm−1), it follows that

(3) relates λi(t
m−1) to λ̂i for i = 1, . . . , n. This association is not appropriate for

Problem 2, since in general λi(t
m) may be even for some values of m and odd for

others. Laurie mentioned an alternative association, which we paraphrase as follows,
to be consistent with our terminology and notation: “the even and odd eigenvectors
of T(tm−1) are independently ordered, and interlaced afterwards, while still retain-
ing the order of the target eigenvalues.” This is appropriate in the important special
case where the even and odd target spectra are interlaced; however, Laurie’s stated
motivation for proposing this procedure was his mistaken belief that Delsarte and
Genin [3] had conjectured that the even and odd spectra of RST matrices are always

interlaced. This is false (Laurie himself gave a counterexample in [8]), and Delsarte
and Genin did not make this conjecture. Rather, by using Theorem 4.6 and a conti-
nuity argument, they showed that Problem 2 may fail to have a solution if n ≥ 4 and
{µ̂i} and {ν̂j} are not interlaced.

The results stated in the last two sections suggest that the iterative step indicated
in (3) should be modified to associate µi(t

m−1) with µ̂i for 1 ≤ i ≤ r and νj(t
m−1)

with ν̂j for 1 ≤ j ≤ s. We will now describe this modification.
Let p1(t), . . . ,pr(t), q1(t), . . . ,qs(t) be orthonormal symmetric and skew-symmetric

eigenvectors of an RST matrix T(t); thus,

T(t)pi(t) = µi(t)pi(t), 1 ≤ i ≤ r, and T(t)qj(t) = νj(t)qj(t), 1 ≤ j ≤ s.
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(Theorem 4.6 implies that if T(t) has no eigenvalues of multiplicity greater than two
then p1(t), . . . ,pr(t) and q1(t), . . . ,qs(t) are uniquely defined up to sign.)

Henceforth Λ will denote a vector

Λ = [µ1 µ2 · · · µr ν1 ν2 · · · νs](8)

in which

µ1 ≤ µ2 ≤ · · · ≤ µr and ν1 ≤ ν2 ≤ · · · ≤ νs.(9)

Thus,

Λ(t) = [µ1(t) µ2(t) · · · µr(t) ν1(t) ν2(t) · · · νs(t)].

For a given t and Λ define

σ(t; Λ) = ‖Λ(t)− Λ‖ =





r
∑

i=1

(µi(t) − µi)
2 +

s
∑

j=1

(νj(t) − νj)
2





1/2

.(10)

The following algorithm is an adaptation of Newton’s method for Problem 2;
however, for flexibility of notation below, we denote the starting generator and target
spectrum by s0 and Λ rather than t0 and Λ̂.

Algorithm 6.1. Let s0 be a given n-vector, and let Λ be as in (8) and (9).
Define s0 = s and compute sm for m ≥ 1 as the solution of the system

pi(s
m−1)TT(sm)pi(s

m−1) = µi, 1 ≤ i ≤ r,

qj(s
m−1)TT(sm)qj(s

m−1) = νj, 1 ≤ j ≤ s.
(11)

If the even and odd target spectra are interlaced then the association between the
eigenvectors of T(sm−1) indicated in (11) is equivalent to Laurie’s alternate ordering
procedure, discussed at the beginning of this section.

For computational purposes we write (11) more explicitly as

n
∑

k=1

aik(sm−1)sm
k−1 = µi, 1 ≤ i ≤ r,

n
∑

k=1

bjk(sm−1)sm
k−1 = νj, 1 ≤ j ≤ s,

where

ai1(s
m−1) = 1, 1 ≤ i ≤ r,

bi1(s
m−1) = 1, 1 ≤ j ≤ s,

aik(sm−1) = 2

n−k+1
∑

l=1

pil(s
m−1)pi,l+k−1(s

m−1), 2 ≤ k ≤ n, 1 ≤ i ≤ r,(12)

bjk(s
m−1) = 2

n−k+1
∑

l=1

qjl(s
m−1)qj,l+k−1(s

m−1), 2 ≤ k ≤ n, 1 ≤ j ≤ s.(13)
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If T(sm−1) has an eigenvalue of multiplicity greater than two then the eigenvectors
in (11) are not uniquely defined; however, this never caused difficulty in literally
thousands of experiments, even in cases where the target spectra contained elements
of multiplicity greater than two.

We define Algorithm 6.1 to be successful if

σ(sm; Λ) < ε0(14)

for some integer m, where ε0 defines the accuracy requirement. We must also define
failure. We experimented with two kinds of definitions of failure, as follows.

(A) Algorithm 6.1 fails if (14) does not occur for some m ≤ M , where M is a

given integer.

(B) Algorithm 6.1 fails if the inequalities

σ(sm; Λ) ≥ σ(sm−1; Λ̂) ≥ ε0(15)

occur a specified number MB of times. (Here MB is an integer; the subscript B
connotes “bad.”)

Extensive numerical experimentation with the computational procedure described
below has led us to conclude that criterion (B) with MB = 1 is the most efficient
criterion for failure. Thus, we have concluded empirically that if

σ(sm; Λ̂) < σ(sm−1; Λ̂), m = 1, 2, . . . ,(16)

then

lim
m→∞

σ(sm; Λ) = 0,(17)

and that even though (16) is not necessary for (17) it is, on the average, better to
adopt a modified procedure (described below) if (15) occurs even once.

We cannot prove that (16) implies (17), but in thousands of trials we never en-
countered a case where (16) occurred while (17) did not; therefore, from a practical
point of view, it seems safe to proceed on the assumption that (16) implies (17). The
next definition is based on this assumption.

Definition 6.2. Suppose that s0 is a given n-vector, Λ is as in (8) and (9),
and ε > 0 where σ(s0; Λ) ≥ ε. Let {sm} be as defined in Algorithm 6.1. If M is the

smallest integer such that

σ(sm; Λ) < σ(sm−1; Λ) for 1 ≤ m ≤ M and σ(sM ; Λ) < ε,

then define t(Λ; s0; ε) = sM ; if there is no such integer M then t(Λ; s0; ε) is undefined.

Now suppose that we agree to accept a generator t̂ as a solution of Problem 2 if
σ(t̂; Λ̂) < ε0. Then we would accept

t̂ = t(Λ̂; t0; ε0)

as a solution if the vector on the right exists. Computational experiments with Al-
gorithm 6.1 confirm what one would expect of Newton’s method: if {sm} converges
then it converges quadratically. (This is true even if the target spectrum has repeated
elements of multiplicity greater than two, which is consistent with results reported in
[5].) Since Newton’s method is not globally convergent, t(Λ̂; t0; ε0) may fail to exist.

The following lemma provides the basis for our procedure in this case.
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Lemma 6.3. Suppose that the vector Λ̂ is the target spectrum in Problem 2, ρ is

a number in (0, 1), and t0 is an arbitrary n-vector. For k ≥ 1 suppose that tk is an

n-vector such that

Λ(tk) = (1 − ρ)Λ̂ + ρΛ(tk−1).(18)

Then

σ(tk; Λ̂) = ρσ(tk−1; Λ̂).

Proof. Since Λ̂ = (1 − ρ)Λ̂ + ρΛ̂, (10) and (18) imply that

σ(tk; Λ̂) = ‖Λ(tk) − Λ̂‖ = ρ‖Λ(tk−1) − Λ̂‖ = ρσ(tk−1; Λ̂).

We propose the following algorithm for the case where Algorithm 6.1 fails with
s0 = t0 and Λ = Λ̂.

Algorithm 6.4. Suppose that we agree to accept a generator t̂ as a solution to

Problem 2 if σ(t̂; Λ̂) < ε0, but Algorithm 6.1 fails with s = t0 and Λ = Λ̂. Let ε1 ≥ ε0
and ρ, α ∈ (0, 1). (We will be more specific below about ε1, α, and ρ.) For k ≥ 1, let

tk = t
(

(1 − ρ)Λ̂ + ρΛ(tk−1); tk−1; ασ(tk−1; Λ̂)
)

.(19)

Continue this procedure while σ(tk; Λ̂) ≥ ε1. If K is the first integer such that

σ(tK ; Λ̂) < ε1,(20)

apply Algorithm 6.1 with s0 = tK and Λ = Λ̂, and accept

t̂ = t(Λ̂; tK; ε0)

as a solution of Problem 2.
Algorithm 6.4 has two phases. In the first we obtain tk for 1 ≤ k ≤ K by solving

Problem 2 with Λ̂ and t0 replaced by (1 − ρ)Λ̂ + ρΛ(tk−1) and tk−1, subject to the
accuracy requirement

σ(tk; Λ̂) < ασ(tk−1; Λ̂).(21)

(This form for the accuracy requirement was motivated by experimental results.)
Since

σ(tk−1; (1 − ρ)Λ̂ + ρΛ(tk−1)) = (1 − ρ)σ(tk−1; Λ̂),

it is reasonable to expect Algorithm 6.1 to yield a solution of this version of Problem 2
if (1 − ρ) is sufficiently small. We call this phase of Algorithm 6.4 the linear phase,
since if the sequence {tk}∞1 exists for some ρ then it converges linearly (with order
ρ) to a solution of Problem 2. However, we continue the linear phase only until we
obtain an iterate tK that will serve as a successful starting generator for switching
to Newton’s method for Problem 2 with target spectrum λ̂. We call this second
phase of Algorithm 6.4 the quadratic phase, since Newton’s method exhibits quadratic
convergence.

Algorithm 6.4 fails if any of the applications of Algorithm 6.1 that it calls for fail.
Our experiments indicate that there are generators t0 with the following remarkable
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property: given an arbitrary target spectrum Λ̂ with interlaced even and odd spectra,
it is always possible to find ρ in (0, 1) such that Algorithm 6.4 yields a solution
to Problem 2. We cannot prove this assertion, and we hesitate to present it as a
conjecture; however, we will discuss the computational evidence for it in §9.

We should point out that this is not the first attempt at formulating a global
algorithm for the inverse eigenvalue problem for RST matrices. Laurie [9] proposed
an algorithm that monitors the eigenvectors of the RST matrices produced in the it-
eration, rather than the matrices themselves. For reasons of length we will not go into
the details of this algorithm, except to say that at each step the progress of the proce-
dure is monitored and an appropriate choice is made between a locally quadratically
convergent iterative method and a more cautious, locally linearly convergent method.
The procedure does not exploit the special spectral properties of RST matrices, and
is in fact proposed for a general class of inverse eigenvalue problems that contains
Problem 1 as a special case. Numerical results with this algorithm are included for
only one RST matrix of order 20, and compared with results obtained with Newton’s
method. For that example both methods converged. Laurie states that Newton’s
method was slightly faster.

7. Choosing a starting generator. Our earliest experiments convinced us
that the version of Laurie’s algorithm discussed in §3 is virtually certain to fail if
{µi(t

0)} and {νj(t
0)} are not interlaced. Similarly, except in contrived problems

where {µ̂i} and {ν̂j} are sufficiently small perturbations of {µi(t
0)} and {νj(t

0)},
Algorithms 6.1 and 6.4 are virtually certain to fail if either {µ̂i} and {ν̂j} are not
interlaced or {µi(t

0)} and {νj(t
0)} are not interlaced. Fortunately, Landau’s theorem

suggests that the most important case of Problem 2 is where {µ̂i} and {ν̂j} are
interlaced. We consider only this case henceforth, and we require that T(t0) have
n distinct eigenvalues and that {µi(t

0)} and {νj(t
0)} be interlaced. Results of the

author [10] imply that t0 has these properties if

t0r =

∫ π

0

f(θ) cos rθ dθ, 1 ≤ r ≤ n − 1,(22)

where f is monotonic on [0, π]; if n = 2m then (6) applies if f is nondecreasing, while
(7) applies if f is nonincreasing. Although monotonicity of f is not necessary for this
conclusion, computational experiments indicate that the best starting generators are
of the form (22) where f is continuous and strictly monotonic on [0, π].

Laurie’s starting generator (5) satisfies (22) with f(θ) = (2/π) cos θ. It is well
known (see, for example, [11]) that the eigenvalues of the associated RST matrix are

λk = − 2

π
cos

(

kπ

n + 1

)

, 1 ≤ k ≤ n,

with associated eigenvectors

xk = [x1k, x2k, . . . , xnk]
T , 1 ≤ k ≤ n,

where

xmk = (−1)m sin

(

kmπ

n + 1

)

, 1 ≤ m ≤ n.(23)

Although it is not stated in [8] that the tridiagonal RST matrix generated by (5)
has interlaced even and odd spectra (Laurie said he chose (5) because of the simple
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formula (23) for the eigenvectors), this undoubtedly explains Laurie’s success with
(5).

However, it seems reasonable that a starting generator t0 such that T (t0) has es-
sentially equally spaced eigenvalues would be better on the average, and experimental
results confirm this. Szegö’s theory on the asymptotic distribution of the eigenvalues
of Hermitian Toeplitz matrices [6] implies that generators obtained from (22) with
f(θ) = θ have this property for large n. In fact, for practical purposes, this is true for
all n of interest.

Consistent with our normalization (1), (2), we used starting generators of the
form

t0 = [0 t01 · · · t0n−1](24)

satisfying (22) with monotonic f , where

2

n−1
∑

r=1

(n − r)(t0r)
2 = 1,(25)

so that T(t0) has trace zero and Frobenius norm one.
In this paper we report only on results obtained with with starting generators

satisfying (22) with f(θ) = Jn cos θ and f(θ) = −Knθ, where Jn and Kn are both
positive and chosen so that the corresponding generator satisfies (25). (We choose
the minus sign in the second function merely so that both functions are decreasing on
(0, π) and the relative orderings of the interlaced even and odd spectra of the RST
matrices that they generate are the same; that is, the largest eigenvalue is even for
any n.) Thus, the two generators are of the form (24), with

tr =







1

2(n − 1)
if r = 1,

0 if r 6= 1,
,(26)

which is Laurie’s generator (normalized), and

tr =







1

Mnr2
if r is odd,

0 if r is even,
with Mn =

(

n−1
∑

r=1

[1 + (−1)r]

(

n − r

r2

)

)1/2

.(27)

We also experimented with several other starting generators associated as in (22)
with monotonic functions. Our results indicated that (27) is probably the best “gen-
eral purpose” starting generator. For reasons of length we do not include results of
experiments with the starting generators other than (26) and (27).

8. Computational strategy. Our program is written in MATLAB. To obtain
the eigenvalues and eigenvectors of RST matrices we apply standard MATLAB proce-
dures to the associated matrices A and B defined in Theorems 4.1–4.4. By exploiting
the symmetry and skew–symmetry of the eigenvectors the number of operations re-
quired to compute the the coefficients aik(sm−1) and bjk(sm−1) by means of (12) and
(13) is approximately halved.

The primary inputs to the program are the target spectrum Λ̂ and the starting
generator t0. (It is to be understood in the following that these are normalized as in
(1) and (2), since this is the first step in the computation.) The other inputs are the
parameters ρ, α, ε0, and ε1 defined in Algorithm 6.4, and a number ∆ρ ∈ (0, 1).
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The default mode for the computation is as follows.
Step 1. If ρ = 0 execute Algorithm 6.1 with s0 = t0 and Λ = Λ̂. If t(Λ̂; t0; ε0)

(Definition 6.2) exists then accept it as a solution of Problem 2. If t(Λ̂; t0; ε0) does

not exist then set ρ = ∆ρ and proceed with Step 2.
Step 2. If 0 < ρ < 1 then execute Algorithm 6.4. If the vector t(Λ̂; tK; ε0) defined

in Algorithm 6.4 exists, then accept it as a solution of Problem 2. If t(Λ̂; tK; ε0) does

not exist then replace ρ by ρ+ ∆ρ. If this new value of ρ is ≥ 1 then cease computing

and admit defeat; if it is < 1 then repeat Step 2.
In §9 we will also discuss a variation of this procedure that is useful for solving

Problem 2 with “pathological” target spectra, as defined there.
In each pass through Step 2 we use the original starting generator t0. This may

seem wasteful, since the failed computation will in general have produced generators
that are closer to a solution of Problem 2 than t0; however, computational experiments
show that it is not good to use a generator obtained in a failed attempt with Step 1 as
a starting generator for Step 2, or to use a generator obtained in a failed pass through
Step 2 as a starting generator for the next pass (with a larger value of ρ).

9. Experimental results. In all of the experiments reported here we worked
with interlaced even and odd target spectra normalized as in (1) and (2), and took

ε0 = 10−14 and ∆ρ = .1.

All computations were performed on personal computers equipped with Intel 486
chips. Because of memory limitations we took n ≤ 200 in all experiments.

In the first set of experiments that we will report on the target spectra were
generated as follows.

1. Start with x = [x1 x2 · · · xn]T , in which the components are independent
normally distributed random numbers with mean 0 and variance 1, computed with
MATLAB’s “randn” function.

2. Rearrange the components of x to obtain y = [y1 y2 · · · yn]T , in which

yi ≤ yi+1, 1 ≤ i ≤ n − 1.

3. Compute

y =
1

n
(y1 + y2 + · · ·+ yn) and S =

(

n
∑

i=1

(yi − y)2

)1/2

.

4. Let the target spectrum be Λ̂ = [λ̂1 λ̂2 · · · λ̂n] with λ̂i = (yi − y)/S (so that

Λ̂ satisfies (1) and (2)) and allocate λ̂1, λ̂2, . . . , λ̂n alternately between the even and

odd target spectra, so that λ̂n is even.
We considered target spectra of this kind for n = 25, 50, 100, 150, and 200, and

solved Problem 2 for 100 target spectra of each order. The results are shown in
Tables 1–4, all of which deal with the same target spectra. In these computations we
took ε1 = 10−4 in (20); that is, we stayed in the linear phase of Algorithm 6.4 until

we obtained a starting generator tK such that σ(tK ; λ̂) < 10−4. We took α in (19)
to be either .01 or .1. For these choices of α, obtaining tk from tk−1 by means of
(19) was usually accomplished with one (sometimes two, rarely more) passes through
Algorithm 6.1, once the appropriate value of ρ was found by means of the procedure
outlined in Step 2.
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Table 1

100 Randomly Generated Target Spectra of Order n; α = .01; Starting Generator (26)

ρ n = 25 n = 50 n = 100 n = 150 n = 200

0.0 76 6.03 64 7.05 40 7.68 25 8.32 15 8.20
0.1 17 11.18 28 11.93 29 12.66 30 12.83 27 14.11
0.2 4 16.75 6 16.33 15 16.93 10 17.40 14 18.57
0.3 1 23.00 2 18.00 6 21.00 10 22.40 11 21.82
0.4 2 24.50 0 00.00 4 26.50 7 25.86 9 24.89
0.5 0 00.00 0 00.00 3 28.67 5 32.00 8 30.38
0.6 0 00.00 0 00.00 1 33.00 5 36.60 5 36.40
0.7 0 00.00 0 00.00 1 41.00 2 41.50 3 45.00
0.8 0 00.00 0 00.00 0 00.00 4 59.25 7 58.14
0.9 0 00.00 0 00.00 1 99.00 2 100.50 1 100.00

c 7.87 9.19 14.19 20.36 22.95

Table 2

100 Randomly Generated Targets of Order n; α = .01; Starting Generator (27)

ρ n = 25 n = 50 n = 100 n = 150 n = 200
0.0 86 5.93 68 6.66 56 7.25 45 7.82 26 8.15
0.1 13 11.23 28 11.71 38 11.82 39 12.59 57 12.60
0.2 1 17.00 4 15.75 5 16.60 10 15.30 10 16.20
0.3 0 00.00 0 00.00 1 18.00 5 19.60 6 19.00
0.4 0 00.00 0 00.00 0 00.00 1 22.00 1 27.00

c 6.72 8.43 9.56 11.16 12.33

Table 1 shows the results obtained with α = .01 and Laurie’s (normalized) starting
generator (26). The first column of the table shows the possible choices of ρ. Since
we start with ρ = 0 and we have taken ∆ρ = .1, there are ten possibilities: with
ρ = 0 in Step 1 or with ρ = .1, .2, . . . , .9 in Step 2. Note that there are two columns
in the table corresponding to each value of n. The first column shows the number
of solutions obtained with the corresponding values of ρ, while the second column
shows the average total number of iterations required to obtain them. (The number
of iterations required to obtain a solution is defined to be the total number of times
it is required to solve the system (11), starting with Step 1.) Thus, with n = 50, 64
solutions were obtained with ρ = 0, with an average of 7.05 iterations per solution; 28
solutions were obtained with ρ = .1, with an average of 11.93 iterations per solution;
6 solutions were obtained with ρ = .2, with an average of 16.33 iterations per solution;
and 2 solutions were obtained with ρ = .3, with an average of 18.00 iterations per
solution. The number c in the bottom row of the table is the overall average number
of iterations required per solution; thus, c = 9.19 for n = 50. Tables 2–4 are to be
interpreted similarly.

Table 2 shows the results obtained with α = .01 and the starting generator (27);
thus, the only difference between the results summarized in Tables 1 and 2 is the choice
of starting generator. Comparing Tables 1 and 2 shows that the starting generator
(27) is on the average superior to Laurie’s generator (26).

Table 3 presents results obtained under the same conditions as those in Table 2,
except that α has been increased from .01 to .1; thus the accuracy requirement (21) in
the linearly convergent phase of Algorithm 6.4 has been relaxed. Comparing Tables 2
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Table 3

100 Randomly Generated Targets of Order n; α = .1; Starting Generator (27)

ρ n = 25 n = 50 n = 100 n = 150 n = 200

0.0 86 5.93 68 6.65 56 7.25 45 7.82 26 8.15
0.1 13 9.23 31 10.16 41 10.51 46 11.24 63 11.48
0.2 1 14.00 1 12.00 3 15.33 8 15.88 8 14.75
0.3 0 00.00 0 00.00 0 00.00 1 19.00 3 18.00

c 6.43 7.79 8.83 10.15 11.07

Table 4

100 Randomly Generated Targets of Order n; α = .1; Initial ρ = .1; Starting Generator (27)

ρ n = 25 n = 50 n = 100 n = 150 n = 200

0.1 98 6.91 97 7.38 97 7.81 89 8.15 88 8.41
0.2 2 10.00 3 10.33 3 11.67 10 12.90 9 12.11
0.3 0 00.00 0 00.00 0 00.00 1 17.00 3 16.00

c 6.97 7.47 7.93 8.71 8.97

and Table 3 shows that this yielded a slight improvement.
It can be seen from Table 3 that Step 1 fails to produce a solution in a significant

number of cases, and this number increases with n. Table 4 presents results obtained
under the same conditions as those of Table 3, except that Step 1 is omitted; that is
ρ = .1 initially. Comparing Tables 3 and 4 shows that this resulted in improvement
for n = 50, 100, 150, and 200, but not for n = 25, for which there were many (86)
successes with ρ = 0.

Table 3 shows that our procedure produced solutions of Problem 2 with errors
less than 10−14 for all 500 of the randomly generated normalized spectra, starting
with t0 as in (27) and taking α = .1 and ε1 = 10−4. The solutions were obtained in
Step 1 (ρ = 0) in 281 cases, while the other 219 were obtained in Step 2 with ρ ≤ .4.

In these computations ε1 = 10−4 is much larger than ε0 = 10−14; that is, we
switch from the linear to the quadratic phase of Algorithm 6.4 while still quite far
from a solution of Problem 2. Our results show that this procedure is effective with
randomly generated target spectra. However, it must to be modified in some cases
where there are repeated target eigenvalues or – worse – clusters of target eigenvalues
very close to each other. In many such cases – particularly those in which there are
multiple exactly equal (i.e., to full machine precision) target eigenvalues, Step 1 still
produces a solution. However, it is often necessary to invoke Step 2. In this case it
may be necessary to handle the transition from the linear to the quadratic phase of
Algorithm 6.4 more carefully, since the quadratic phase may fail if ε1 is larger than
the the difference between “almost equal” target eigenvalues. If this happens with a
given value of ρ, we restart the linear phase of Algorithm 6.4 with the same value of
ρ and a smaller value of ε1, taking the starting generator to be the vector tK that
satisfied (20) with the previous choice of ε1. There are then two possibilities:

(a) The linear phase of Algorithm 6.4 is successful with the new choice of ε1, so
we enter the quadratic phase. If this is successful, then we are finished; if not, we
repeat the procedure just described with a still smaller ε1.

(b) The linear phase of Algorithm 6.4 fails with the new choice of ε1. In this case
we replace ρ by ρ + ∆ρ, retain the new choice of ε1, and restart Algorithm 6.4 with
the original starting generator t0.
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Table 5

Results for prolate spheroidal target spectra with starting generator (26)

n 25 50 75 100 150

ρ .1 .3 .3 .3 .4
ε1 10−6 10−11 10−9 10−12 10−12

cρ 12 25 23 27 35

Table 6

Results for prolate spheroidal target spectra with starting generator (27)

n 25 50 75 100 150

ρ .1 .3 .3 .4 .4
ε1 10−9 10−12 10−12 10−12 10−12

cρ 14 26 27 35 35

In every experiment with pathological target spectra in which we used (27) as
a starting generator, we were able to find combinations of ρ and ε1 such that Algo-
rithm 6.4 produced a solution to Problem 2. There were some extreme cases in which
we were forced to take ε1 so close to ε0 = 10−14 that Algorithm 6.4 never entered its
quadratic phase; that is, the sequence {tk} defined by (19) converged linearly (with
order of convergence ρ) to t̂.

Among the numerous experiments that we performed with pathological target
spectra were some in which the target spectra were obtained by normalizing the
spectra of the modified prolate spheroidal matrices Pn = (p|i−j|)

n
i,j=1, where

pr =







0, r = 0,

sin rπ/2

rπ
, 1 ≤ r ≤ n − 1,

for which the eigenvalue problem is notoriously difficult because the eigenvalues of
P are clustered equally about λ = −1/2 and λ = 1/2, and the tightness of the
clustering increases very rapidly with n. By applying our algorithm interactively as
just described, we were able to solve Problem 2 with n = 25, 50, 75, 100, and 150
for these target spectra, with ε0 = 10−14. We took α = .1 in all cases. Tables 5
and 6 summarize the results obtained with using the starting generators (26) and
(27), respectively. The second column of Table 5, for example, indicates that with
n = 25 we obtained a solution with cρ = 12 iterations after determining that the
appropriate choices for ρ and ε1 were .1 and 10−6, respectively. The other columns
are to be interpreted similarly. It is interesting to note that Laurie’s starting generator
outperformed (27) for these target spectra.

10. Summary. We believe that the main contributions of this paper are as
follows:

1. It presents a formulation of Newton’s method for the solution of the inverse
eigenvalue problem for RST matrices which takes account of the special spectral
properties of RST matrices, including the separation of their spectra into even and
odd parts, Landau’s existence theorem [7] for the existence of a solution with inter-
laced even and odd spectra, the related possible nonexistence result of Delsarte and
Genin [3], and the computational efficiency implicit in the results of Cantoni and
Butler [2] (Theorems 4.1–4.4).
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2. It emphasizes that the starting generator should generate an RST matrix with
interlaced even and odd spectra. In particular, it proposes a new starting generator
(27) which seems to be superior to the previously suggested starting generator (26)
for most target spectra.

3. It presents a criterion for abandoning Newton’s method with a given starting
generator and a locally linearly convergent procedure for determining a new starting
generator if Newton’s method shows signs of failure.

4. It reports the results of extensive numerical experimentation.
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