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ON THE INVERSION OF A HILBERT TYPE MATRIX*
WILLIAM F. TRENCHt axp PERRY A. SCHEINOK]

1. Introduction. In this paper we shall be interested in inverting the matrix

(1.1) A(x) = ((41-— imyn = 1,2, - )) 5 z nonintegral.

m—mn-+x’

The solution to this can be considered as a generalization of the problem in
[7], where the case z = } was emphasized. Here we shall consider both the finite
and the infinite case via different methods, and we shall show that a particular
inverse to the infinite matrix can be obtained as the limit as n — o« of the in-
verse of the finite case.

We note that A (z) resembles a Hilbert type matrix, the classic Hilbert matrix
being

(12) H(z) = ((nﬁ e ] ))

However, one of the principal differences between (1.1) and (1.2) is that
H(z) is symmetric while A (z) is not. One of the important similarities between
the two forms is that it was shown in [4] that for fixed nonintegral z both (1.1)
and (1.2) are bounded operators in I, , the linear vector space of square summable
sequences. In both cases the bound is =| cse =z |.

2. Finite considerations. Consider the k X k submatrix of (1.1) formed from
the elements in the upper left hand corner and denoted by

Ay(z) = ((m—_—;T} smyn = 1,---, .’.:)) 3 2 nonintegral.

Ai(x) can be easily inverted using the following lemma.
LeEmMa 2.1. Let C be a k X k matrix of the form

e l . —— R
(= ((m,?n,ﬂ l, ,k)).

Then the elements of the inverse D = C™" are given by

l:I1 (aq + bw)(an + by)

(2.1) . = i P ,
(au + bm) 1:,[1 (br iz bm) I—I_'. (aa - an)
:#m :)ﬁn
provided @y, + -+ , @, —by, + -+ , —bi are pairwise distinct.
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Proof. From a result of Pélya and Szegé [3, vol. 2, pp. 98, 299] it is known
that
H (a, — a,) (b, — b.)
(2_2) det C = lsr<ssk ‘

k
II (a + b))

rs=1

Since all the minors of C are of the same form as det C, but of order & — 1,
(2.1) follows readily from (2.2).

To apply the result of Lemma 1 to Ax(z) we let a,, = m + x, b, = —n. Then,
if BY¥)(2) is the element in the mth row and nth column of A;'(x),

3
IT@g—m+2)(n—q+ 2)

Br(::(m) =- - k k ®
n—m+2) [ (m—r) Il (s — n)
T m

This can be rewritten as
2 m—1 k—m n—1 k—mn
L T - & % i ¥
Buin () a:+n—mqll(1 Q)H(I+T)H(1+S)H(l t)'
Now, if we let k — «, we can formally obtain the limit function
1 zsinwz 37 EAR= T .
(23) Bilz)= R ;IJ:: (1 €_l) ;[11 (1 + Q)’ x nonintegral,

as the (m, n)th term of B(z), the inverse of (1.1), where we used the product

representation
. E-
sin =& z
=[I(1-%).
T w1 ( n?

Although a number of results are known [1, p. 24] which deal with the con-
ditions under which passage to the limit is valid, they do not seem to apply in
this case, and another approach will be considered in the next section.

3. The infinite case. In this section it is our intention to prove the following
theorem for the inverse of the infinite case.

THEOREM. The matriz B(z) = ((Bma(x), m,n = 1)), where

B,.(z) = 28 1 (m—*z-—l)(n:izl)

T z+n—m m — 1

is (a) a left inverse of A () for nonintegral & < 1, and (b) a right inverse of A (x)
for nonintegral x > —1. It is thus an inverse of A(x) m 0 < |z | < 1.
To prove this theorem, we shall need the following lemmas. We first have the
following modification of an identity from Whittaker and Watson [4, p. 260].
Lemuma 3.1. If a > 0, then

I'(z + 1)T(a) _ i(r—a—l)z 1

Bk TetatD S\ r—1 )i%7
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Note the restriction on a. The only restriction on z is that z cannot be a nega-
tive integer.

Writing (3.1) for two distinet values of z, say 2 and 2, and subtracting one
from the other leads to

I'(z + 1)T(a) _ T(z + 1)I(a)
(3.2) i(r—a—l) 1 _Teta+l) Tat+at+l)
r—1 Ja+ne+n 72—z '

which is, of course, valid for a > 0.

Lemma 3.2, The equation (3.2) is valid for @ > —1.

Proof. By inspection, the right side of (3.2) is an analytic function of a
(with removable singularity at a = 0) for Re ¢ > —1. If one uses Raabe’s
test for convergence [2, p. 285] and Stirling’s approximation to I'(z), one notes
that on the left hand side of (3.2),

(r-—a)_ T'(r —a+1) o r
r TTr+1rd—a T(l-—a)

Thus, the left side of (3.2) converges for Re @ > —1 and is analytic for
Re a > —1, provided 2z, 2. are not negative integers. Thus, by analytic con-
tinuation the equality must hold for Re @ > —1, even though the original rela-
tionship (3.1) holds only in Re a > 0.

If in (3.2) one sets z; = z and lets zz — 21, then one gets

=1

—~(r—a—1 s d{ T(z+1) ) _
(3.3) }_;;( S )__(z+w')’_ r(a)a‘_z(l"(z+a,+ 5) a>—1l.
The connection between the problem at hand and (3.2) and (3.3) is as fol-
lows. If in (3.2) weseta = —x,2zp = —m + &, and 2 = —n + x, where m # n

and m, n = 1, we obtain, for # nonintegral,

~fr+ax—1 1 =
(3.4) ;( o )(3—+—r—m)(x+?'——ﬂ)_0

This is, of course, due to I'(z + @ + 1) having a simple pole when z + @ + 1
equals 1 — m, or 1 — n. By the same token, if in (3.3) we set @ = —=x and
z = —n + x, forn = 1 and nonintegral < 1, we get

. oo r+x_1 1 _ _ . d F(Z+l)
o (121 emrmmp- in % (e )

To evaluate the limit on the right hand side of (3.5) we write

d{ Te+1) \_ -Te+Dr'z—z+1) I'(z+ 1)
(88) E!_z(l‘(z—:r%-l))P Tz —z + 1) "'+1‘(z~z+1)'

The second term in (3.6) can be ignored, as it goes to zero when z goes to
—n + 2. To evaluate the first term, we again use the fact that for every integer
m = 0, I'(z) has a simple pole at z = —m.
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Denote the residue at such a pole by 7. It can then be shown that
rm = (—1)"ml.
From (3.6) and the value of . it follows that for nonintegral z < 1 andn = 1,

—~ (r+2z—1 1 _ n
(3.7) ;( iy )m—(-—l) r(—=z)I(—n + z + 1)T'(n).

By using the fundamental property I'(z) = (z — I'(z — 1) again and
again, as well as the identity I'(z)['(1 — z) = x/sin wz, one reduces (3.7) to

(3.8) é(rt—z—;l)(z—l—:—ﬂ)’:x ) (nr—x-wl)'
sin 7z

Equations (3.4) and (3.8) can be combined to yield
m —z — 1\xsin mx r+z—1 1 _
DN (i B (bl T e R

for nonintegral £ < 1 and m, n = 1, where 8, denotes the Kronecker delta*
In re-examining (2.3) we note that Bna(x) can also be written as

B Bl si: - 1 (m -z — 1)(n +z - 1) )

r+n—m m—1 n—1

Equation (3.10) thus shows that B(z), with terms Boa(2), is a left inverse
of A(z) for nonintegral x < 1, ie.,, B(z)4(z) = L. If in (3.9) we replace x
by —=z, and interchange m and n, we obtain

(3.11) (n+x— l)z sinm:i(r -z — 1) 1 -

n—1 r =1\ r—1 (.ﬂ:+n—r){:c+m--r)=

for m, n = 1 and nonintegral x > —1. But (3.11) then says that B(z) is a
right inverse of A(x), i.e., A(x)B(x) = I for nonintegral x > —1. Thus for
0 < |z| < 1, B(z) is both a right and a left inverse of A (x). This proves our
theorem.

Unfortunately, the inverse obtained in our theorem is not unique, and a whole
host of different left and right inverses can be generated from the expression
(3.10). We see this in the following lemma.

Lemma 3.3. Let BE)(x) = Buipal(z + p), where Bn () is defined by (3.10).
Then the matriz B® (z) with elements BF)(z) is a left inverse of A(x) in
r < 1 — p, x nonintegral.

Proof. From (3.9) we have that

S Bao(z)
—T+r—mn

= by, m,n =z 1 and z <1,

where by <’ we mean less than, and nonintegral. Clearly

-~ Bn.{z + p)

e = by > LY o
mz+r—(n—p) b, mnzl and z<1-=7p
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If we replace n by n 4 p, and m by m + p, we get
(3-12) Z Bm‘f‘p.r(x + P)

2=y dr o - ety = dnsy mmnzl—pandz<'1—p.

would show that Bu,,.(z + p) is different from By, ().

It is, of course, clear that a suitably modified lemma could have been proved for
right inverses. It is interesting to note that a completely different set of right
inverses ean be obtained from (3.12). For, replace * by —z and interchange m
and n. Then

In particular (3.12) holds for m, n = 1, proving the lemma. A quick check

= 13,.1-,,.,('—:6 + P} _ > ! —
;mw—amm, mn=1 and > p—1,

or

=0

Bn'l-p.r(_z + P) g

“Om,n = ¥ - 1.
S tm—r bmmy, mn=1 and z>"p

Hence ((—Burpm(—2 + p), m, n = 1)) is a right inverse for = >"p— 1.

Note that by a theorem in [5, p. 224] the multiplicity of right and left inverses
tells us that these inverses are all unbounded in l;.

4, Acknowledgment. The authors wish to thank the referees for their most
helpful comments relating to the present state of this paper. In particular, the
proof of Lemma 3.2 is due to one of the referees and replaces our own proof
which was erroneous.
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