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In this article we revisit the classical subject of infinite products. For stan-
dard definitions and theorems on this subject see [1] or almost any textbook
on complex analysis. We will restate parts of this material required to set the
stage for our results, as follows.

The infinite product P =
∏

∞

(1+an) of complex numbers is said to converge

if there is an integer N such that 1 + an 6= 0 for n ≥ N and limn→∞

∏n
m=N (1 +

am) is finite and nonzero. This occurs if and only if the series
∑

∞

m=N log(1+am)
converges.

We say that P converges absolutely if
∏

∞

(1+|an|) converges. If P converges
absolutely then P converges, but the converse is false. The following theorem
[1, p. 223] settles the question of absolute convergence of infinite products.

Theorem 1 The infinite product
∏

∞

(1 + an) converges absolutely if and only

if
∑

∞

|an| < ∞.

If P converges but
∏

∞

(1 + |an|) does not, then we say that P converges

conditionally . Conditional convergence of
∑

∞

an does not imply conditional
convergence of P . The following theorem [1, p. 225] seems to be the only
general result along these lines, at least in the textbook literature.

Theorem 2 If
∑

∞

|an|
2 < ∞ then

∑

∞

an and
∏

∞

(1+an) converge or diverge

together.

Here we offer some other results concerning convergence of infinite products.
Because of Theorem 1, these results are of interest only in the case where
∑

∞ |an| = ∞.

Theorem 3 If there is a sequence {rn} such that

lim
n→∞

rn = 1 (1)

and
∞
∑

|rn(1 + an) − rn+1| < ∞, (2)

then
∏

∞

(1 + an) converges.
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Proof: Let gn = rn(1 + an) − rn+1. Then

∞
∑

|gn| < ∞ (3)

from (2), so limn→∞ gn = 0 and therefore limn→∞ an = 0 by (1). Choose N so
that rn, 1 + an and 1 + gn/rn+1 are nonzero if n ≥ N . Now define pN−1 = 1
and

pn =

n
∏

m=N

(1 + am), n ≥ N.

If n ≥ N then 1 + an = pn/pn−1, so gn = (rnpn/pn−1) − rn+1, and therefore
pn = rn+1pn−1(1 + gn/rn+1)/rn, which implies that

pn =
rn+1

rN

n
∏

m=N

(1 + gm/rm+1). (4)

Since (1) and (3) imply that
∑

∞

|gm/rm+1| < ∞, Theorem 1 implies that the
infinite product

Q =

∞
∏

m=N

(1 + gm/rm+1)

converges; moreover Q 6= 0 because 1 + gm/rm+1 6= 0 if m ≥ N . Now (1) and
(4) imply that limn→∞ pn = Q/rN is finite and nonzero.

To apply this theorem we must exhibit a sequence {rn} that will enable us
to obtain results even if

∑

∞

|an| = ∞. The following theorem provides a way
to do this.

Theorem 4 Suppose that for some positive integer q the sequences

a(k)
n =

∞
∑

m=n

ama(k−1)
m , k = 1, . . . , q (with a

(0)
m = 1),

are all defined, and
∞
∑

|ana(q)
n | < ∞. (5)

Then
∏

∞

(1 + an) converges.

Proof: Define

r(k)
n = 1 +

k
∑

j=1

(−1)ja(j)
n , 1 ≤ k ≤ q.

We show by finite induction on k that

r(k)
n (1 + an) − r

(k)
n+1 = (−1)kana(k)

n (6)
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for 1 ≤ k ≤ q. Since limn→∞ r
(q)
n = 1 we can then set k = q and conclude from

(5) and Theorem 3 with rn = r
(q)
n that

∏

∞

(1 + an) converges.

Since r
(1)
n = 1 − a

(1)
n the left side of (6) with k = 1 is

(1 − a(1)
n )(1 + an) − (1 − a

(1)
n+1) = an − a(1)

n − ana(1)
n + a

(1)
n+1 = −ana(1)

n ,

since a
(1)
n+1 + an = a

(1)
n . This proves (6) for k = 1.

Now suppose that (6) holds if 1 ≤ k < q − 1. Since r
(k)
n = r

(k+1)
n +

(−1)ka
(k+1)
n , (6) implies that

(

r(k+1)
n + (−1)ka(k+1)

n

)

(1 + an) − r
(k+1)
n+1 − (−1)ka

(k+1)
n+1 = (−1)kana(k)

n .

Therefore

r(k+1)
n (1 + an) − r

(k+1)
n+1 = (−1)k

(

ana(k)
n − a(k+1)

n − ana(k+1)
n + a

(k+1)
n+1

)

= (−1)(k+1)ana(k+1)
n ,

since a
(k+1)
n+1 + ana

(k)
n = a

(k+1)
n . This completes the induction.

We now prepare for a specific application of Theorem 4. Henceforth ∆ is the
forward difference operator; thus, if {gm} is a sequence, then ∆gm = gm+1−gm,
while if G is a function of the continuous variable x then ∆G(x) = G(x + 1) −
G(x). Higher order forward differences are defined inductively; thus, if ν ≥ 2 is
an integer, then

∆νgm = ∆ν−1gm+1 − ∆ν−1gm =

ν
∑

r=0

(−1)r−ν

(

ν

r

)

gm+r .

A similar definition yields ∆νG(x).

Lemma 1 Suppose that t is a real number, not an integral multiple of 2π, and

{gm}∞m=0 is a sequence such that limm→∞ gm = 0 and

∞
∑

|∆νgm| < ∞ (7)

for some positive integer ν. Then
∑

∞ gmeimt converges and

∞
∑

m=0

gmeimt = (1 − eit)−ν

[

ν−1
∑

s=0

Asgs + eiνt

∞
∑

m=0

(∆νgm) eimt

]

, (8)

where

As =

ν−1
∑

m=s

(−1)m−s

(

ν

m − s

)

eimt, 0 ≤ s ≤ ν − 1. (9)
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Proof: Suppose that M > 2ν and let

SM = (1 − eit)ν

M
∑

m=0

gmeimt. (10)

Since

(1 − eit)νeimt =

ν
∑

r=0

(−1)r

(

ν

r

)

ei(m+r)t,

we have

SM =

M
∑

m=0

gm

ν
∑

r=0

(−1)r

(

ν

r

)

ei(m+r)t =

ν
∑

r=0

(−1)r

(

ν

r

) M
∑

m=0

gmei(m+r)t

=

ν
∑

r=0

(−1)r

(

ν

r

)M+r
∑

m=r

gm−re
imt.

Reversing the order of summation in the last sum yields

SM =

ν−1
∑

m=0

(

m
∑

r=0

(−1)r

(

ν

r

)

gm−r

)

eimt +

M
∑

m=ν

(

ν
∑

r=0

(−1)r

(

ν

r

)

gm−r

)

eimt

+

M+ν
∑

m=M+1

(

ν
∑

r=m−M

(−1)r

(

ν

r

)

gm−r

)

eimt.

Since limm→∞ gm = 0 the last sum on the right converges to 0 as M → ∞. The
second sum on the right is

M
∑

m=ν

(∆νgm−ν) eimt = eiνt

M−ν
∑

m=0

(∆νgm) eimt,

which converges as M → ∞ because of (7). Therefore

lim
M→∞

SM = S ≡

ν−1
∑

m=0

(

m
∑

r=0

(−1)r

(

ν

r

)

gm−r

)

eimt + eiνt

∞
∑

m=0

(∆νgm) eimt,

which can also be written as

S =

ν−1
∑

s=0

Asgs + eiνt

∞
∑

m=0

(∆νgm) eimt,

with As as in (9). This and (10) imply (8).
Henceforth we write G(x) = O(x−α) to indicate that xαG(x) remains bounded

as x → ∞.
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Definition 1 Let Fα be the set of infinitely differentiable functions F on [1,∞)
such that

F (ν)(x) = O(x−α−ν), ν = 0, 1, . . . . (11)

For example, let F (x) = uγ(x), where u is a rational function with positive
values on [1,∞) and a zero of order p > 0 at ∞; then F satisfies (11) with
α = pγ. To see this, we first recall that if f = f(u) and u = u(x), the formula
of Faa di Bruno [2] for the derivatives of a composite function says that

dν

dxν
f(u(x)) =

ν
∑

r=1

dr

dur
f(u)

∑

r

r!

r1! · · ·rν!

(

u′

1!

)r1
(

u′′

2!

)r2

· · ·

(

u(ν)

ν !

)rν

, (12)

where the prime denotes differentiation with respect to x. We are assuming here
that the derivatives on the right of (12) exist. Here u, . . . , u(ν) are evaluated at
x, and

∑

r is over all partitions of r as a sum of nonnegative integers,

r1 + r2 + · · ·+ rν = r, (13)

such that
r1 + 2r2 + · · ·+ νrν = ν. (14)

Applying (12) with f(u) = uγ yields

F (ν)(x) =

ν
∑

r=1

(γ)(r)uγ−r(x)
∑

r

r!

r1! · · ·rν!

(

u′(x)

1!

)r1
(

u′′(x)

2!

)r2

· · ·

(

u(ν)(x)

ν !

)rν

,

where (γ)(r) = γ(γ − 1) · · · (γ − r + 1). Since u(l)(x) = O(x−p−l), it follows that

uγ−r(x))(u′(x))r1(u′′(x))r2 · · · (u(ν)(x))rν = O(x−λ),

where

λ = p(γ − r) + (p + 1)r1 + (p + 2)r2 + · · ·+ (p + ν)rν = pγ + ν

because of (13) and (14). This verifies (11) with α = pγ.
For our purposes it is important to note that Fα is a vector space over the

complex numbers. Moreover, if Fi ∈ Fαi
, i = 1, 2, then F1F2 ∈ Fα1+α2

.

Lemma 2 If F ∈ Fα then

∆νF (x) = O(x−α−ν), ν = 0, 1, 2, . . . .

Proof: We show that

|∆νF (x)| ≤ K max
x<ξ<x+ν

|F (ν)(ξ)|, (15)
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where K is a constant independent of F . Since F (ν)(x) = O(x−α−ν) this implies
the conclusion.

To verify (15), we note that if x > 1 and r > 0 then Taylor’s theorem implies
that

F (x + r) =

ν−1
∑

m=0

F (m)(x)

m!
rm +

F (ν)(ξr)

ν !
rν,

where x < ξr < x + r. Since ∆νF (x) =
∑ν

r=0(−1)r−ν
(

ν
r

)

F (x + r), it follows
that

∆νF (x) =

ν−1
∑

m=0

F (m)(x)

m!

(

ν
∑

r=0

(−1)r−ν

(

ν

r

)

rm

)

+
1

ν !

ν
∑

r=0

(−1)r−ν

(

ν

r

)

rνF (ν)(ξr).

Since
∑ν

r=0(−1)r−ν
(

ν
r

)

rm = 0 for m = 0, . . . , ν − 1, we can now infer (15) with

K =
(
∑ν

r=0

(

ν
r

)

rν
)

/ν !.

Lemma 3 Suppose that F ∈ Fα. Let ν be a fixed positive integer and let t be a

real number, not an integral multiple of 2π. Then

∞
∑

m=n

F (m)eimt = G(n)eint + O(n−α−ν+1),

where G ∈ Fα (and G depends upon ν).

Proof: We write

∞
∑

m=n

F (m)eimt = eint

∞
∑

m=0

F (n + m)eimt. (16)

From Lemma 2, ∆νF (n + m) = O((n + m)−α−ν); that is, there is a constant A
such that |∆νF (n + m)| < A(n + m)−α−ν if n + m > 0. Therefore, if n > 2,

∞
∑

m=0

|∆νF (n + m)| < A

∞
∑

m=0

1

(n + m)α
< A

∞
∑

m=0

∫ n+m

n+m−1

dx

(x + α)ν

= A

∫

∞

n−1

dx

(x + α)ν
= O(n−α−ν+1).

Applying Lemma 1 (specifically, (8)) with gm = F (n + m) and n fixed shows
that

∞
∑

m=0

F (n + m)eimt = G(n) + O(n−α−ν+1)

with

G(x) = (1 − eit)−ν

ν−1
∑

s=0

AsF (x + s),

6



so G ∈ Fα. Now (16) implies the conclusion.
The following theorem shows that Theorem 4 has nontrivial applications for

every positive integer q.

Theorem 5 Suppose that

an = f(n)einθ, n = 1, 2, 3, . . . , (17)

where f ∈ Fγ for some γ ∈ (0, 1], and let q be the smallest integer such that

(q + 1)γ > 1. (18)

Then the infinite product P =
∏

∞

(1 + an) converges if θ is not of the form

2kπ/r with k an integer and r ∈ {1, . . . , q}.

Proof: We show by finite induction on p that if p = 1, . . . , q then

ana(p)
n = fp(n)ei(p+1)nθ + O(n−(p+1)γ−q+p) (19)

where fp ∈ F(p+1)γ . In particular, (19) with p = q implies that ana
(q)
n =

O(n−(q+1)γ), so (18) implies (5) and P converges, by Theorem 4.
From (17) and Lemma 3 with t = θ, F = f , α = γ, and ν = q,

a(1)
n =

∞
∑

m=n

f(m)eimθ = G1(n)einθ + O(n−γ−q+1),

with G1 ∈ Fγ . Therefore ana
(1)
n = f(n)einθ

(

G1(n)einθ + O(n−γ−q+1)
)

. Since

f ∈ Fγ , this can be rewritten as ana
(1)
n = f1(n)e2inθ + O(n−2γ−q+1), with

f1 = fG1 ∈ F2γ. This establishes (19) with p = 1, so we are finished if q = 1.
Now suppose that q > 1 and (19) holds if 1 ≤ p < q. Since (p + 1)θ is by

assumption not an integral multiple of 2π, Lemma 3 with t = (p + 1)θ, F = fp,
α = (p + 1)γ, and ν = q − p implies that

∞
∑

m=n

fp(m)ei(p+1)mθ = Gp(n)ei(p+1)nθ + O(n−(p+1)γ−q+p+1),

where Gp ∈ F(p+1)γ . This and (19) imply that

a(p+1)
n ≡

∞
∑

m=n

ama(p)
m = Gp(n)ei(p+1)nθ + O(n−(p+1)γ−q+p+1),

so
ana(p+1)

n = f(n)einθ
(

Gp(n)ei(p+1)nθ + O(n−(p+1)γ−q+p+1)
)

.

Since f ∈ Fγ , this can be rewritten as

ana(p+1)
n = fp+1(n)ei(p+2)nθ + O(n−(p+2)γ−q+p+1),

with fp+1 = fGp ∈ F(p+2)γ . This completes the induction.
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Corollary 1 Suppose that {an}
∞ is as defined in Theorem 5. Then the infinite

product
∏

∞

(1 + an) converges if θ is not a rational multiple of 2π.

Corollary 2 Suppose that α > 0 and R is a rational function such that R(x) >
0 on [N,∞) (N = integer) and limn→∞ R(x) = 0. Then the infinite product
∏

∞

n=N(1 + (R(n))
α

einθ) converges if θ is not a rational multiple of 2π.

Corollary 3 The infinite product
∏

∞
(

1 + n−αeinθ
)

converges if α > 0 and θ
is not a rational multiple of 2π.
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