Conditional Convergence of Infinite Products

William F. Trench

American Mathematical Monthly 106 (1999), 646-651

In this article we revisit the classical subject of infinite products. For standard definitions and theorems on this subject see [1] or almost any textbook on complex analysis. We will restate parts of this material required to set the stage for our results, as follows.

The infinite product $P = \prod^{\infty} (1+a_n)$ of complex numbers is said to *converge* if there is an integer N such that $1+a_n \neq 0$ for $n \geq N$ and $\lim_{n \to \infty} \prod_{m=N}^n (1+a_m)$ is finite and nonzero. This occurs if and only if the series $\sum_{m=N}^{\infty} \log(1+a_m)$ converges.

We say that P converges absolutely if $\prod^{\infty} (1+|a_n|)$ converges. If P converges absolutely then P converges, but the converse is false. The following theorem [1, p. 223] settles the question of absolute convergence of infinite products.

Theorem 1 The infinite product $\prod^{\infty} (1 + a_n)$ converges absolutely if and only if $\sum^{\infty} |a_n| < \infty$.

If P converges but $\prod^{\infty} (1 + |a_n|)$ does not, then we say that P converges conditionally. Conditional convergence of $\sum^{\infty} a_n$ does not imply conditional convergence of P. The following theorem [1, p. 225] seems to be the only general result along these lines, at least in the textbook literature.

Theorem 2 If $\sum^{\infty} |a_n|^2 < \infty$ then $\sum^{\infty} a_n$ and $\prod^{\infty} (1+a_n)$ converge or diverge together.

Here we offer some other results concerning convergence of infinite products. Because of Theorem 1, these results are of interest only in the case where $\sum_{n=0}^{\infty} |a_n| = \infty$.

Theorem 3 If there is a sequence $\{r_n\}$ such that

$$\lim_{n \to \infty} r_n = 1 \tag{1}$$

and

$$\sum_{n=0}^{\infty} |r_n(1+a_n) - r_{n+1}| < \infty, \tag{2}$$

then $\prod^{\infty} (1 + a_n)$ converges.

Proof: Let $g_n = r_n(1 + a_n) - r_{n+1}$. Then

$$\sum_{n=0}^{\infty} |g_n| < \infty \tag{3}$$

from (2), so $\lim_{n\to\infty} g_n = 0$ and therefore $\lim_{n\to\infty} a_n = 0$ by (1). Choose N so that r_n , $1 + a_n$ and $1 + g_n/r_{n+1}$ are nonzero if $n \ge N$. Now define $p_{N-1} = 1$ and

$$p_n = \prod_{m=N}^n (1+a_m), \quad n \ge N.$$

If $n \ge N$ then $1 + a_n = p_n/p_{n-1}$, so $g_n = (r_n p_n/p_{n-1}) - r_{n+1}$, and therefore $p_n = r_{n+1} p_{n-1} (1 + g_n/r_{n+1})/r_n$, which implies that

$$p_n = \frac{r_{n+1}}{r_N} \prod_{m=N}^n (1 + g_m/r_{m+1}). \tag{4}$$

Since (1) and (3) imply that $\sum_{m=0}^{\infty} |g_m/r_{m+1}| < \infty$, Theorem 1 implies that the infinite product

$$Q = \prod_{m=N}^{\infty} (1 + g_m/r_{m+1})$$

converges; moreover $Q \neq 0$ because $1 + g_m/r_{m+1} \neq 0$ if $m \geq N$. Now (1) and (4) imply that $\lim_{n\to\infty} p_n = Q/r_N$ is finite and nonzero.

To apply this theorem we must exhibit a sequence $\{r_n\}$ that will enable us to obtain results even if $\sum_{n=0}^{\infty} |a_n| = \infty$. The following theorem provides a way to do this.

Theorem 4 Suppose that for some positive integer q the sequences

$$a_n^{(k)} = \sum_{m=n}^{\infty} a_m a_m^{(k-1)}, \quad k = 1, \dots, q \text{ (with } a_m^{(0)} = 1),$$

are all defined, and

$$\sum_{n=0}^{\infty} |a_n a_n^{(q)}| < \infty. \tag{5}$$

Then $\prod^{\infty} (1 + a_n)$ converges.

Proof: Define

$$r_n^{(k)} = 1 + \sum_{j=1}^k (-1)^j a_n^{(j)}, \quad 1 \le k \le q.$$

We show by finite induction on k that

$$r_n^{(k)}(1+a_n) - r_{n+1}^{(k)} = (-1)^k a_n a_n^{(k)}$$
(6)

for $1 \le k \le q$. Since $\lim_{n\to\infty} r_n^{(q)} = 1$ we can then set k = q and conclude from (5) and Theorem 3 with $r_n = r_n^{(q)}$ that $\prod_{n=0}^{\infty} (1+a_n)$ converges.

Since $r_n^{(1)} = 1 - a_n^{(1)}$ the left side of (6) with k = 1 is

$$(1 - a_n^{(1)})(1 + a_n) - (1 - a_{n+1}^{(1)}) = a_n - a_n^{(1)} - a_n a_n^{(1)} + a_{n+1}^{(1)} = -a_n a_n^{(1)},$$

since $a_{n+1}^{(1)} + a_n = a_n^{(1)}$. This proves (6) for k = 1.

Now suppose that (6) holds if $1 \le k < q-1$. Since $r_n^{(k)} = r_n^{(k+1)} + (-1)^k a_n^{(k+1)}$, (6) implies that

$$\left(r_n^{(k+1)} + (-1)^k a_n^{(k+1)}\right) (1+a_n) - r_{n+1}^{(k+1)} - (-1)^k a_{n+1}^{(k+1)} = (-1)^k a_n a_n^{(k)}.$$

Therefore

$$r_n^{(k+1)}(1+a_n) - r_{n+1}^{(k+1)} = (-1)^k \left(a_n a_n^{(k)} - a_n^{(k+1)} - a_n a_n^{(k+1)} + a_{n+1}^{(k+1)} \right)$$
$$= (-1)^{(k+1)} a_n a_n^{(k+1)},$$

since $a_{n+1}^{(k+1)} + a_n a_n^{(k)} = a_n^{(k+1)}$. This completes the induction.

We now prepare for a specific application of Theorem 4. Henceforth Δ is the forward difference operator; thus, if $\{g_m\}$ is a sequence, then $\Delta g_m = g_{m+1} - g_m$, while if G is a function of the continuous variable x then $\Delta G(x) = G(x+1) - G(x)$. Higher order forward differences are defined inductively; thus, if $\nu \geq 2$ is an integer, then

$$\Delta^{\nu} g_m = \Delta^{\nu-1} g_{m+1} - \Delta^{\nu-1} g_m = \sum_{r=0}^{\nu} (-1)^{r-\nu} {\nu \choose r} g_{m+r}.$$

A similar definition yields $\Delta^{\nu}G(x)$.

Lemma 1 Suppose that t is a real number, not an integral multiple of 2π , and $\{g_m\}_{m=0}^{\infty}$ is a sequence such that $\lim_{m\to\infty} g_m = 0$ and

$$\sum_{m=0}^{\infty} |\Delta^{\nu} g_m| < \infty \tag{7}$$

for some positive integer ν . Then $\sum_{m=0}^{\infty} g_m e^{imt}$ converges and

$$\sum_{m=0}^{\infty} g_m e^{imt} = (1 - e^{it})^{-\nu} \left[\sum_{s=0}^{\nu-1} A_s g_s + e^{i\nu t} \sum_{m=0}^{\infty} (\Delta^{\nu} g_m) e^{imt} \right], \tag{8}$$

where

$$A_s = \sum_{m=s}^{\nu-1} (-1)^{m-s} \binom{\nu}{m-s} e^{imt}, \quad 0 \le s \le \nu - 1.$$
 (9)

Proof: Suppose that $M > 2\nu$ and let

$$S_M = (1 - e^{it})^{\nu} \sum_{m=0}^{M} g_m e^{imt}.$$
 (10)

Since

$$(1 - e^{it})^{\nu} e^{imt} = \sum_{r=0}^{\nu} (-1)^r {\nu \choose r} e^{i(m+r)t},$$

we have

$$S_{M} = \sum_{m=0}^{M} g_{m} \sum_{r=0}^{\nu} (-1)^{r} {\nu \choose r} e^{i(m+r)t} = \sum_{r=0}^{\nu} (-1)^{r} {\nu \choose r} \sum_{m=0}^{M} g_{m} e^{i(m+r)t}$$
$$= \sum_{r=0}^{\nu} (-1)^{r} {\nu \choose r} \sum_{m=r}^{M+r} g_{m-r} e^{imt}.$$

Reversing the order of summation in the last sum yields

$$S_{M} = \sum_{m=0}^{\nu-1} \left(\sum_{r=0}^{m} (-1)^{r} {\nu \choose r} g_{m-r} \right) e^{imt} + \sum_{m=\nu}^{M} \left(\sum_{r=0}^{\nu} (-1)^{r} {\nu \choose r} g_{m-r} \right) e^{imt} + \sum_{m=M+1}^{M+\nu} \left(\sum_{r=m-M}^{\nu} (-1)^{r} {\nu \choose r} g_{m-r} \right) e^{imt}.$$

Since $\lim_{m\to\infty} g_m = 0$ the last sum on the right converges to 0 as $M\to\infty$. The second sum on the right is

$$\sum_{m=\nu}^{M} \left(\Delta^{\nu} g_{m-\nu}\right) e^{imt} = e^{i\nu t} \sum_{m=0}^{M-\nu} \left(\Delta^{\nu} g_{m}\right) e^{imt},$$

which converges as $M \to \infty$ because of (7). Therefore

$$\lim_{M \to \infty} S_M = S \equiv \sum_{m=0}^{\nu-1} \left(\sum_{r=0}^m (-1)^r \binom{\nu}{r} g_{m-r} \right) e^{imt} + e^{i\nu t} \sum_{m=0}^{\infty} (\Delta^{\nu} g_m) e^{imt},$$

which can also be written as

$$S = \sum_{s=0}^{\nu-1} A_s g_s + e^{i\nu t} \sum_{m=0}^{\infty} (\Delta^{\nu} g_m) e^{imt},$$

with A_s as in (9). This and (10) imply (8).

Henceforth we write $G(x) = O(x^{-\alpha})$ to indicate that $x^{\alpha}G(x)$ remains bounded as $x \to \infty$.

Definition 1 Let \mathcal{F}_{α} be the set of infinitely differentiable functions F on $[1, \infty)$ such that

$$F^{(\nu)}(x) = O(x^{-\alpha - \nu}), \quad \nu = 0, 1, \dots$$
 (11)

For example, let $F(x) = u^{\gamma}(x)$, where u is a rational function with positive values on $[1, \infty)$ and a zero of order p > 0 at ∞ ; then F satisfies (11) with $\alpha = p\gamma$. To see this, we first recall that if f = f(u) and u = u(x), the formula of Faa di Bruno [2] for the derivatives of a composite function says that

$$\frac{d^{\nu}}{dx^{\nu}}f(u(x)) = \sum_{r=1}^{\nu} \frac{d^{r}}{du^{r}}f(u) \sum_{r} \frac{r!}{r_{1}! \cdots r_{\nu}!} \left(\frac{u'}{1!}\right)^{r_{1}} \left(\frac{u''}{2!}\right)^{r_{2}} \cdots \left(\frac{u^{(\nu)}}{\nu!}\right)^{r_{\nu}}, \quad (12)$$

where the prime denotes differentiation with respect to x. We are assuming here that the derivatives on the right of (12) exist. Here $u, \ldots, u^{(\nu)}$ are evaluated at x, and \sum_r is over all partitions of r as a sum of nonnegative integers,

$$r_1 + r_2 + \dots + r_{\nu} = r, \tag{13}$$

such that

$$r_1 + 2r_2 + \dots + \nu r_{\nu} = \nu.$$
 (14)

Applying (12) with $f(u) = u^{\gamma}$ yields

$$F^{(\nu)}(x) = \sum_{r=1}^{\nu} (\gamma)^{(r)} u^{\gamma-r}(x) \sum_{r} \frac{r!}{r_1! \cdots r_{\nu}!} \left(\frac{u'(x)}{1!} \right)^{r_1} \left(\frac{u''(x)}{2!} \right)^{r_2} \cdots \left(\frac{u^{(\nu)(x)}}{\nu!} \right)^{r_{\nu}},$$

where $(\gamma)^{(r)} = \gamma(\gamma - 1) \cdots (\gamma - r + 1)$. Since $u^{(l)}(x) = O(x^{-p-l})$, it follows that

$$u^{\gamma-r}(x))(u'(x))^{r_1}(u''(x))^{r_2}\cdots(u^{(\nu)}(x))^{r_\nu}=O(x^{-\lambda}),$$

where

$$\lambda = p(\gamma - r) + (p+1)r_1 + (p+2)r_2 + \cdots + (p+\nu)r_{\nu} = p\gamma + \nu$$

because of (13) and (14). This verifies (11) with $\alpha = p\gamma$.

For our purposes it is important to note that \mathcal{F}_{α} is a vector space over the complex numbers. Moreover, if $F_i \in \mathcal{F}_{\alpha_i}$, i = 1, 2, then $F_1F_2 \in \mathcal{F}_{\alpha_1+\alpha_2}$.

Lemma 2 If $F \in \mathcal{F}_{\alpha}$ then

$$\Delta^{\nu} F(x) = O(x^{-\alpha - \nu}), \quad \nu = 0, 1, 2, \dots$$

Proof: We show that

$$|\Delta^{\nu} F(x)| \le K \max_{x < \xi < x + \nu} |F^{(\nu)}(\xi)|,$$
 (15)

where K is a constant independent of F. Since $F^{(\nu)}(x) = O(x^{-\alpha-\nu})$ this implies the conclusion.

To verify (15), we note that if x>1 and r>0 then Taylor's theorem implies that

$$F(x+r) = \sum_{m=0}^{\nu-1} \frac{F^{(m)}(x)}{m!} r^m + \frac{F^{(\nu)}(\xi_r)}{\nu!} r^{\nu},$$

where $x < \xi_r < x + r$. Since $\Delta^{\nu} F(x) = \sum_{r=0}^{\nu} (-1)^{r-\nu} {\nu \choose r} F(x+r)$, it follows that

$$\Delta^{\nu} F(x) = \sum_{m=0}^{\nu-1} \frac{F^{(m)}(x)}{m!} \left(\sum_{r=0}^{\nu} (-1)^{r-\nu} \binom{\nu}{r} r^m \right) + \frac{1}{\nu!} \sum_{r=0}^{\nu} (-1)^{r-\nu} \binom{\nu}{r} r^{\nu} F^{(\nu)}(\xi_r).$$

Since $\sum_{r=0}^{\nu} (-1)^{r-\nu} {\nu \choose r} r^m = 0$ for $m = 0, \dots, \nu - 1$, we can now infer (15) with $K = \left(\sum_{r=0}^{\nu} {\nu \choose r} r^{\nu}\right) / \nu!$.

Lemma 3 Suppose that $F \in \mathcal{F}_{\alpha}$. Let ν be a fixed positive integer and let t be a real number, not an integral multiple of 2π . Then

$$\sum_{m=n}^{\infty} F(m)e^{imt} = G(n)e^{int} + O(n^{-\alpha-\nu+1}),$$

where $G \in \mathcal{F}_{\alpha}$ (and G depends upon ν).

Proof: We write

$$\sum_{m=n}^{\infty} F(m)e^{imt} = e^{int} \sum_{m=0}^{\infty} F(n+m)e^{imt}.$$
 (16)

From Lemma 2, $\Delta^{\nu}F(n+m) = O((n+m)^{-\alpha-\nu})$; that is, there is a constant A such that $|\Delta^{\nu}F(n+m)| < A(n+m)^{-\alpha-\nu}$ if n+m>0. Therefore, if n>2,

$$\sum_{m=0}^{\infty} |\Delta^{\nu} F(n+m)| < A \sum_{m=0}^{\infty} \frac{1}{(n+m)^{\alpha}} < A \sum_{m=0}^{\infty} \int_{n+m-1}^{n+m} \frac{dx}{(x+\alpha)^{\nu}}$$

$$= A \int_{n-1}^{\infty} \frac{dx}{(x+\alpha)^{\nu}} = O(n^{-\alpha-\nu+1}).$$

Applying Lemma 1 (specifically, (8)) with $g_m = F(n+m)$ and n fixed shows that

$$\sum_{m=0}^{\infty} F(n+m)e^{imt} = G(n) + O(n^{-\alpha-\nu+1})$$

with

$$G(x) = (1 - e^{it})^{-\nu} \sum_{s=0}^{\nu-1} A_s F(x+s),$$

so $G \in \mathcal{F}_{\alpha}$. Now (16) implies the conclusion.

The following theorem shows that Theorem 4 has nontrivial applications for every positive integer q.

Theorem 5 Suppose that

$$a_n = f(n)e^{in\theta}, \quad n = 1, 2, 3, \dots,$$
 (17)

where $f \in \mathcal{F}_{\gamma}$ for some $\gamma \in (0,1]$, and let q be the smallest integer such that

$$(q+1)\gamma > 1. (18)$$

Then the infinite product $P = \prod_{n=0}^{\infty} (1 + a_n)$ converges if θ is not of the form $2k\pi/r$ with k an integer and $r \in \{1, \ldots, q\}$.

Proof: We show by finite induction on p that if p = 1, ..., q then

$$a_n a_n^{(p)} = f_p(n)e^{i(p+1)n\theta} + O(n^{-(p+1)\gamma - q + p})$$
(19)

where $f_p \in \mathcal{F}_{(p+1)\gamma}$. In particular, (19) with p = q implies that $a_n a_n^{(q)} = O(n^{-(q+1)\gamma})$, so (18) implies (5) and P converges, by Theorem 4.

From (17) and Lemma 3 with $t = \theta$, F = f, $\alpha = \gamma$, and $\nu = q$,

$$a_n^{(1)} = \sum_{m=n}^{\infty} f(m)e^{im\theta} = G_1(n)e^{in\theta} + O(n^{-\gamma - q + 1}),$$

with $G_1 \in \mathcal{F}_{\gamma}$. Therefore $a_n a_n^{(1)} = f(n)e^{in\theta} \left(G_1(n)e^{in\theta} + O(n^{-\gamma-q+1})\right)$. Since $f \in \mathcal{F}_{\gamma}$, this can be rewritten as $a_n a_n^{(1)} = f_1(n)e^{2in\theta} + O(n^{-2\gamma-q+1})$, with $f_1 = fG_1 \in \mathcal{F}_{2\gamma}$. This establishes (19) with p = 1, so we are finished if q = 1.

Now suppose that q > 1 and (19) holds if $1 \le p < q$. Since $(p+1)\theta$ is by assumption not an integral multiple of 2π , Lemma 3 with $t = (p+1)\theta$, $F = f_p$, $\alpha = (p+1)\gamma$, and $\nu = q - p$ implies that

$$\sum_{m=n}^{\infty} f_p(m)e^{i(p+1)m\theta} = G_p(n)e^{i(p+1)n\theta} + O(n^{-(p+1)\gamma - q + p + 1}),$$

where $G_p \in \mathcal{F}_{(p+1)\gamma}$. This and (19) imply that

$$a_n^{(p+1)} \equiv \sum_{m=n}^{\infty} a_m a_m^{(p)} = G_p(n)e^{i(p+1)n\theta} + O(n^{-(p+1)\gamma - q + p + 1}),$$

SO

$$a_n a_n^{(p+1)} = f(n)e^{in\theta} \left(G_p(n)e^{i(p+1)n\theta} + O(n^{-(p+1)\gamma - q + p + 1}) \right).$$

Since $f \in \mathcal{F}_{\gamma}$, this can be rewritten as

$$a_n a_n^{(p+1)} = f_{p+1}(n)e^{i(p+2)n\theta} + O(n^{-(p+2)\gamma - q + p + 1}),$$

with $f_{p+1} = fG_p \in \mathcal{F}_{(p+2)\gamma}$. This completes the induction.

Corollary 1 Suppose that $\{a_n\}^{\infty}$ is as defined in Theorem 5. Then the infinite product $\prod^{\infty} (1 + a_n)$ converges if θ is not a rational multiple of 2π .

Corollary 2 Suppose that $\alpha > 0$ and R is a rational function such that R(x) > 0 on $[N, \infty)$ (N = integer) and $\lim_{n \to \infty} R(x) = 0$. Then the infinite product $\prod_{n=N}^{\infty} (1 + (R(n))^{\alpha} e^{in\theta})$ converges if θ is not a rational multiple of 2π .

Corollary 3 The infinite product $\prod^{\infty} (1 + n^{-\alpha}e^{in\theta})$ converges if $\alpha > 0$ and θ is not a rational multiple of 2π .

REFERENCES

- 1. K. Knopp, *Theory and Application of Infinite Series*, Hafner Publishing Company, New York, 1947.
- 2. Ch.-J. de La Vallee Poussin, *Cours d'analyse infinitesimale*, Vol. 1, 12th Ed., Libraire Universitaire Louvain, Gauthier-Villars, Paris, 1959.

413 Lake Drive West, Divide, CO 80814 wtrench@trinity.edu