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In this article we revisit the classical subject of infinite products. For stan-
dard definitions and theorems on this subject see [1] or almost any textbook
on complex analysis. We will restate parts of this material required to set the
stage for our results, as follows.

The infinite product P = [[*(1+a,) of complex numbers is said to converge
if there is an integer N such that 1+ a, # 0 for n > N and lim, oo [])"_ 5 (1 +
am) is finite and nonzero. This occurs if and only if the series > °_\ log(1+am,)
converges.

We say that P converges absolutely if [ (1+|a,|) converges. If P converges
absolutely then P converges, but the converse is false. The following theorem
[1, p. 223] settles the question of absolute convergence of infinite products.

Theorem 1 The infinite product [[™ (1 + an) converges absolutely if and only
if .7 |an| < .

If P converges but [[*(1 + |a,|) does not, then we say that P converges
conditionally. Conditional convergence of > a,, does not imply conditional
convergence of P. The following theorem [1, p. 225] seems to be the only
general result along these lines, at least in the textbook literature.

Theorem 2 If "% |a,|? < oo then Y. a,, and [[*(1+ay) converge or diverge
together.

Here we offer some other results concerning convergence of infinite products.
Because of Theorem 1, these results are of interest only in the case where

Zoo lan| = oc.

Theorem 3 If there is a sequence {ry,} such that

lim r, =1 (1)
and -
D Ira(l+ an) = rogal < oo, (2)

then T1°(1 + ay) converges.



Proof: Let g, = (1 4+ a,) — rpy1. Then

S gl < o0 (3)

from (2), so lim,,—,+ g, = 0 and therefore lim,, . a, = 0 by (1). Choose N so
that r,, 1 + a, and 1 + g¢,,/7,41 are nonzero if n > N. Now define py_1 = 1

and
n

pn:H(l—Fam), n > N.
m=N

If n > N then 1+ a, = pn/Pn-1, 0 gn = (TnPn/Pn-1) — Tn+1, and therefore
Prn = Tnt1Pn—1(1 + gn/rns1)/7n, which implies that

n

Tn+1
Pn = * H (L4 gm/Tm+1). (4)
TN m=N

Since (1) and (3) imply that >°° |gym/Tm+1] < 00, Theorem 1 implies that the
infinite product

Q= H (1 "’gm/Terl)
m=N

converges; moreover ) # 0 because 1 + g, /Tmy1 # 0if m > N. Now (1) and
(4) imply that lim,, . pp, = Q/rn is finite and nonzero. [ |

To apply this theorem we must exhibit a sequence {r,} that will enable us
to obtain results even if Y. |a,| = co. The following theorem provides a way
to do this.

Theorem 4 Suppose that for some positive integer q the sequences
o0
aﬂ“ = Z amagifl), k=1,...,q (with oY = ),
m=n

are all defined, and

2_ lanaif’] < oo. (5)
Then [I°(1 + ay) converges.

Proof: Define

k
r=14>"(-1)ay), 1<k<q
j=1
We show by finite induction on k that
(1 an) =il = (<) anall? (©)



for 1 < k < q. Since lim, . r,(f) =1 we can then set k = ¢ and conclude from

(5) and Theorem 3 with r,, = ri? that [T%°(1 + an) converges.
Since n(ll) =1- a%l) the left side of (6) with k =1 is

(1- ag))(l +ay)—(1-— agllJ)rl) =a, — ag) - anag) + aSJ)rl = —anag),

since aSJ)rl + a, = a”. This proves (6) for k = 1.

Now suppose that (6) holds if 1 < k < ¢ — 1. Since r = pHD 4
(=1)*a{f | (6) implies that

(P (=1RalH) (1 @) = Y = (—DFalY = (<1)Fagall.

Therefore
P 4 a,) — rEED = (21 (anag@) — U g (kD) agkﬂl))

= (=1)*Hg, gD

since aflkfll) + anaglk) = agﬁl). This completes the induction. ]

We now prepare for a specific application of Theorem 4. Henceforth A is the

forward difference operator; thus, if {g,,} is a sequence, then Ag,, = gm+1 —gm,

while if G is a function of the continuous variable x then AG(z) = G(z + 1) —

G(z). Higher order forward differences are defined inductively; thus, if v > 2 is
an integer, then

v vV— vV— . r—v v
A Im = A 1gm+1 -A lgm = Z(_l) (T) Im+r-
r=0
A similar definition yields AYG(z).

Lemma 1 Suppose that t is a real number, not an integral multiple of 27, and
{gm}55_0 is a sequence such that lim,, .o gm = 0 and

S A g < oo (7)

t

for some positive integer v. Then Y™ gme'™ converges and

o) v—1 o)
Z gmeimt — (1 _ eit)fu ZAsgs + et Z (Augm) eimt , (8)
m=0 s=0 m=0
where
v—1 U
As = (—1)m5< )e“”t, 0<s<v-1 (9)
m — S

3
]l

S



Proof: Suppose that M > 2v and let

Sy=(1—e" nge (10)
Since ,
_ityv imt _1\" V\ i(m4r)t
(1= etprem = Sy (V) e,
r=0
we have
v v M
— i(m4r)t _ 1\ i(m+r)t
Sy = Z gmz (T>e —Z( 1) (T> nge
r=0 r=0 m=0
v v M+r .
_ Z(_l)r (T> Z gmiTelmt
r=0 m=r

Reversing the order of summation in the last sum yields

- 5 (Z ( )9’“7“) 25> @(—w (j)gm> it

m=0 — ) m_u.
+ Z < Z 1)T (T) gmr) e,
m=M-+1 \r=m—M

Since lim,,— 00 gm = 0 the last sum on the right converges to 0 as M — oo. The
second sum on the right is

M M—v
(Aug 1mt ’Ll/t 1mt
m— 1/

m=v m:O

which converges as M — oo because of (7). Therefore

hIIl Sy =8= Z (Z ( )gmr> etmt 4 etvt i (Aygm) eimt,

r=0 m=0

which can also be written as

v—1 o)
S = ZAsgs + eiut Z (Augm) eimt,
s=0 m=0
with A, as in (9). This and (10) imply (8). [ |

Henceforth we write G(z) = O(z~%) to indicate that #*G(x) remains bounded
as r — 00.



Definition 1 Let F, be the set of infinitely differentiable functions F' on [1,00)
such that
FW(z)=0@="*7"), v=0,1,.... (11)

For example, let F(z) = u”(x), where u is a rational function with positive
values on [1,00) and a zero of order p > 0 at oo; then F satisfies (11) with
a = p7y. To see this, we first recall that if f = f(u) and v = u(x), the formula
of Faa di Bruno [2] for the derivatives of a composite function says that

diyf(u(x))—gdgrf(u)gﬁ(%)h (1;_'>(u:|)> (12)

where the prime denotes differentiation with respect to . We are assuming here
that the derivatives on the right of (12) exist. Here u,...,u*) are evaluated at
x, and ). is over all partitions of r as a sum of nonnegative integers,

rtreot-4r, =71, (13)

such that
T+ 2+ vr, = (14)

Applying (12) with f(u) = u” yields

) = i(y)“)zﬂ*’”(x) 5 ! .T.!.T,,! (u’l(fc)yl (u”z(!x)yz . (u(:)!(m)>m :

r
r=1 T 1

where (7)) = ~y(y = 1)---(y —r +1). Since u)(2) = O(z~P~1), it follows that
W (@) (' () (u ()72 - (@ (@) = O,
where
A=p(y—r)+ @+ i+ @+2)re+---+@+v)r, =py+v

because of (13) and (14). This verifies (11) with o = pry.
For our purposes it is important to note that F, is a vector space over the
complex numbers. Moreover, if F; € F,,,© = 1,2, then F1Fs € Fo,1a,-

Lemma 2 If F € F, then
A'F(z)=0(z"“""), v=0,1,2,....
Proof: We show that

AYF(z)| < K F®) 1
| (z)] < Krgg;;UI I, (15)



where K is a constant independent of F. Since F*)(x) = O(z~*~") this implies
the conclusion.

To verify (15), we note that if z > 1 and r > 0 then Taylor’s theorem implies
that

v—1
F(m) FW(e,
Flz+r) = Z m'(x) r™+ Vfg >r”,
m=0 ’ ’

where z < & < x +r. Since AYF(z) = >0 (—=1)"""(¥)F(x + r), it follows
that

AVF(z) = ;z_:z F(:;!(x) (g(_l)ru (’;) Tm) n % g(_l)ru (’;) (S,

Since > v o (—=1)"“(¥)r™ =0 for m = 0,...,v — 1, we can now infer (15) with
K= (X720 () /v! m
Lemma 3 Suppose that F' € F,. Let v be a fized positive integer and let t be a
real number, not an integral multiple of 2. Then

> F(m)e™ = G(n)e™ + O(n~ """,

where G € Fo, (and G depends upon v).
Proof: We write

o0

Z F(m)e'™ = ¢t Z F(n+m)e™. (16)
m=n m=0

From Lemma 2, AYF(n+m) = O((n+m)~“"¥); that is, there is a constant A
such that |AYF(n+m)| < A(n+m)~*" if n+m > 0. Therefore, if n > 2,

S AYF(n+m)| < AZ TEsmE <AZ/

m=0 m= 0

Applying Lemma 1 (specifically, (8)) with g, = F(n + m) and n fixed shows
that

+m—1 $+O[

Z F(n+m)e™ = G(n) +O(n~ ")
m=0

with
G(z)=(1—€e") "> AF(x+5),



so G € F,. Now (16) implies the conclusion. [ |
The following theorem shows that Theorem 4 has nontrivial applications for
every positive integer q.

Theorem 5 Suppose that
an = f(n)e™?, n=1,2,3,..., (17)
where f € F., for some v € (0,1], and let g be the smallest integer such that
(¢g+ 1)y > 1. (18)

Then the infinite product P = [[™(1 + ay) converges if 0 is not of the form
2km/r with k an integer and r € {1,...,q}.

Proof: We show by finite induction on p that if p=1,..., ¢ then
anaP) = f,(n)e!Prin? L o(p=(Prhy—atp) (19)
where f, € F(pt1)y. In particular, (19) with p = ¢ implies that anagfn =

O(n~=(a+1)7) 50 (18) implies (5) and P converges, by Theorem 4.
From (17) and Lemma 3 with t =0, F = f, a = ~, and v = g,

alt) = Z f(m)e'™ =G (n)e™? + O(n= 71,

with Gy € F,. Therefore anall) = f(n)ein? (Gi(n)e™? + O(n=779%1)). Since
f € F,, this can be rewritten as anal’ = fi(n)e?™? + O(n=27-7+1), with
fi = fG1 € Fay. This establishes (19) with p =1, so we are finished if ¢ = 1.

Now suppose that ¢ > 1 and (19) holds if 1 < p < ¢. Since (p + 1)0 is by
assumption not an integral multiple of 27, Lemma 3 with ¢t = (p+1)0, F = f,,
a= (p+ 1)y, and v = ¢ — p implies that

Z fp(m)ez‘(pﬂ)me — Gp(n)ei(p“)"(’ + O(nf(p+l)'yfq+p+1),
where G, € F(p41)y- This and (19) imply that

alPtl) = Z amal?) = Gp(n)ei(pﬂ)n@ + O(n~(PHy—atptly,

SO
anaP™) = f(n)e? (Gp(n)ei(p“)"e + O(nf(p“)'yfﬁp“)) .
Since f € F,, this can be rewritten as

anaPtl) = fp+1(n)ei(p+2)n9 + O(n~ (P2 7—atptly,

with fy11 = fG, € Fpya)y. This completes the induction. [ ]



Corollary 1 Suppose that {a,}>° is as defined in Theorem 5. Then the infinite
product [ (1 + ay) converges if 6 is not a rational multiple of 2.

Corollary 2 Suppose that a > 0 and R is a rational function such that R(x) >
0 on [N,00) (N = integer) and lim,_,oc R(z) = 0. Then the infinite product
I (1+ (R(n))" e™?) converges if 6 is not a rational multiple of 2.

Corollary 3 The infinite product [[~ (1 + nfo‘eme) converges if o > 0 and 0
is not a rational multiple of 2m.
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