
c©1998 OPA (Overseas Publishing Association) N.V.

Linear Asymptotic Equilibrium of Nilpotent Systems of
Linear Difference Equations

William F. Trench

Trinity University

San Antonio,TX 78212

J. Difference Equations Appl. 5 (1999), 549-556

Abstract

We give sufficient conditions for a k×k linear system of difference equa-
tions ∆xn = Anxn, n = 0, 1, . . . , to have linear asymptotic equilibrium if
An = a1(n)Q+· · ·+ap(n)Qp, where Qp+1 = 0 for some p ∈ {1, 2, . . . , k−1}
and {a1(n)}∞n=0, . . . , {ap(n)}∞n=0 are sequences of scalars. The conditions
involve convergence (perhaps conditional) of certain iterated sums involv-
ing these sequences.
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A k × k linear system of difference equations

∆xn = Anxn (1)

is said to have linear asymptotic equilibrium if limn→∞ xn exists and is nonzero
whenever x0 6= 0. Since (1) can be written as

xn+1 = (I + An)xn, n = 0, 1, . . . ,

its solution is xn = Pnx0, where

Pn =
n−1
∏

m=0

(I +Am) = (I + An−1) · · · (I + A0). (2)

Therefore (1) has linear asymptotic equilibrium if and only if I+An is invertible
for every n ≥ 0 and limn→∞ Pn exists and is invertible. If it is assumed that
I + An is invertible for every n then the most well known sufficient condition
for (1) to have linear asymptotic equilibrium is that

∞
∑

‖An‖ <∞,

where ‖·‖ is any matrix norm such that ‖AB‖ ≤ ‖A‖‖B‖ for all square matrices
A and B. (See [2, 4]). The following weaker condition for linear asymptotic
equilibrium is given in [3]. For related results, see [1].
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Theorem 1 Suppose that I + An is invertible for every n ≥ 0 and either

∞
∑

n=0

‖An‖ <∞

or there is an integer R ≥ 1 such that the sequences
{

B
(r)
n

}∞

n=0
given by

B(r)
n =

∞
∑

m=n

B
(r−1)
m+1 Am, n = 0, 1, 2, . . . (3)

(with B
(0)
n = I) are defined for 1 ≤ r ≤ R, and

∞
∑

n=0

‖B
(R)
n+1An‖ <∞. (4)

Then (1) has linear asymptotic equilibrium.

In [2] the author proved Theorem 1 with R = 1. In its full generality
Theorem 1 is an analog of a result of Wintner [5] for a linear differential system
y′ = A(t)y.

In this paper we consider a class of systems that have linear asymptotic
equilibrium under conditions that require only convergence – which may be
conditional – of certain iterated series derived from {An}. As we point out at
the end of the paper, whether or not the conditions that we impose here actually
imply the hypotheses of Theorem 1 for these systems is an open question which
is in a way irrelevant, since the results given here provide a constructive way
to obtain limn→∞ Pn for these systems, as opposed to Theorem 1, which is a
nonconstructive existence theorem.

We assume henceforth that k ≥ 2 and Q is a k×k nonzero nilpotent matrix;
that is, there is an integer p in {1, 2, . . . , k − 1} such that

Qp 6= 0 and Qp+1 = 0. (5)

For example, any strictly upper triangular matrix is nilpotent.
We will say that (1) is a nilpotent system if

An = a1(n)Q+ · · ·+ ap(n)Qp, n = 0, 1, 2, . . . , (6)

where Q is k×k nilpotent matrix satisfying (5) and {a1(n)}∞n=0, . . . , {ap(n)}∞n=0

are sequences of scalars. We will show that the nilpotent system (1) has lin-
ear asymptotic equilibrium if certain iterated sums involving these sequences
converge. The convergence may be conditional.

Any matrix of the form

Z = I + u1Q+ · · ·+ upQ
p
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is invertible, and any two matrices of this form commute. Therefore, the product
Pn in (2) is of the form

Pn =

n−1
∏

m=0

(I + Am) = I + b1(n)Q+ · · ·+ bp(n)Qp,

with
b1(0) = b2(0) = · · · = bp(0) = 0,

and limn→∞ Pn exists if and only if the limits

lim
n→∞

bi(n) = bi, i = 1, . . . , p,

exist (finite), in which case

∞
∏

m=0

(I + Am) = I + b1Q+ · · ·+ bpQ
p.

Hence, (1) has linear asymptotic equilbrium if and only if b1, . . . , bp exist (finite).
We will now introduce some notation which will enable us to give recursive

formulas for b1(n), . . . , bp(n). If i1, i2, . . . are integers in {1, 2, . . . , r} and n is an
arbitrary positive integer, let

σ(n; i1) =

n−1
∑

m=0

ai1(m),

σ(n; i2, i1) =

n−1
∑

m=0

ai2(m)σ(m; i1),

...

σ(n; is, is−1, . . . , i1) =

n−1
∑

m=0

ais(m)σ(m; is−1, . . . , i1).

We say that an s-tuple (is, is−1, . . . , i1) of positive integers is an ordered partition

of r if
is + is−1 + · · ·+ i1 = r.

We denote an ordered partition of r by ψr. For each positive integer r let Or

be the set of all ordered partitions of r.

Lemma 1 If the sequence {An} is as defined in (6) then

Pn =

n−1
∏

m=0

(I + Am) = I + b1(n)Q+ · · ·+ bp(n)Qp,
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with

br(n) =
∑

ψr∈Or

σ(n;ψr) (7)

for 1 ≤ r ≤ p.

Proof: We will establish (7) by finite induction on r. Since Pn+1 = (I+An)Pn,

Pn+1 = [I + a1(n)Q + · · ·+ ap(n)Qp] [I + b1(n)Q + · · ·+ bp(n)Qp] .

Since Qp+1 = 0 we are interested in

bi(n + 1) = bi(n) + ai(n) +

i−1
∑

q=1

aq(n)bi−q(n), 1 ≤ i ≤ p,

or

∆bi(n) = ai(n) +

i−1
∑

q=1

aq(n)bi−q(n), 1 ≤ i ≤ p,

so

bi(n) = σ(n; i) +

i−1
∑

q=1

n−1
∑

m=0

aq(m)bi−q(m), 1 ≤ i ≤ p.

Letting i = 1 here yields
b1(n) = σ(n; 1),

which confirms (7) with r = 1. Now suppose that 2 ≤ i < p and (7) has been
established for 1 ≤ r ≤ i− 1. Then

bi−q(m) =
∑

ψi−q∈Oi−q

σ(m;ψi−q), 1 ≤ q ≤ i− 1,

so

bi(n) = σ(n, i) +

i−1
∑

q=1

∑

ψi−q∈Oi−q

n−1
∑

m=0

aq(m)σ(m,ψi−q). (8)

For a given q,

∑

ψi−q∈Oi−q

n−1
∑

m=0

aq(m)σ(m,ψi−q) =
∑

ψi∈O
q

i

σ(n;ψi)

where Oq
i is the set of all ordered partitions (is, is−1, . . . , i1) of i for which is = q.

Therefore (8) implies that

bi(n) = σ(n, i) +
i−1
∑

q=1

∑

ψi∈O
q

i

σ(n;ψi)
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Since Oi =
⋃i

q=1 O
q
i and Oi

i = {(i)}, it now follows that

bi(n) =

i
∑

q=1

∑

ψi∈O
q

i

σ(n;ψi) =
∑

ψi∈Oi

σ(n;ψi),

which implies (7) with r = i, completing the induction.
The following theorem is our main result.

Theorem 2 Let Q be a k × k matrix such that

Qp 6= 0 and Qp+1 = 0.

Let

An = a1(n)Q+ · · ·+ ap(n)Qp,

where {a1(n)}∞n=0, . . . , {ap(n)}∞n=0 are sequences of scalars such that all the lim-

its

lim
n→∞

σ(n;ψr), ψr ∈ Or , 1 ≤ r ≤ p,

exist. (Convergence may be conditional.) Then the system

∆xn = Anxn, n = 0, 1, . . . , (9)

has linear asymptotic equilibrium, and

∞
∏

n=0

(I + An) = I + b1Q+ · · ·+ bpQ
p, (10)

where

br = lim
n→∞

∑

ψr∈Or

σ(n;ψr), 1 ≤ r ≤ p. (11)

The following example will motivate our discussion of the connection between
Theorem 1 (as it applies to nilpotent systems) and Theorem 2.
Example. Suppose that k ≥ 3 and let

An = (−1)nαnQ+ (−1)nβnQ
2,

where {αn} and {βn} are nonincreasing null sequences and

∞
∑

α2
n <∞. (12)

Then the series Sα =
∑∞

n=0(−1)nαn and Sβ =
∑∞

n=0(−1)nβn converge by the
alternating series test. Now consider

Sαα =

∞
∑

n=0

(−1)nαn

n−1
∑

m=0

(−1)mαm = S2
α −

∞
∑

n=0

(−1)nαn

∞
∑

m=n

(−1)mαm. (13)
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Since

0 < (−1)n
∞
∑

m=n

(−1)mαm < αn,

(12) implies that the last series in (13) converges. Therefore Theorem 2 implies
that (9) has linear asymptotic equilibrium, and that

∞
∏

n=0

(I + An) = I + SαQ+ (Sβ + Sαα)Q2. (14)

We note that Sα, Sβ, and Sαα may all converge conditionally.
Theorem 1 is also applicable under the assumptions of this example, since

(see (3)),

B(1)
n =

(

∞
∑

m=n

(−1)mαm

)

Q+

(

∞
∑

m=n

(−1)mβm

)

Q2

is defined, as is

B(2)
n =

(

∞
∑

m=n

(−1)mαm

∞
∑

l=m+1

(−1)lαl

)

Q2.

(Recall that Q3 = 0.) Moreover, (4) obviously holds, since B
(2)
n+1 = 0. However,

Theorem 1 does not imply (14).
It is natural to ask whether the hypotheses of Theorem 2 in general imply

those of Theorem 1. To establish this it would be sufficient to verify that the

hypotheses of Theorem 2 imply that the sequences {B
(r)
n }∞n=0, r = 1, . . . , p in

(3) are all defined. However, to verify this – if it is true – would surely be at
least as difficult as the proof of Lemma 1. If it is true then these sequences
would necessarily be of the form

B(r)
n =

p
∑

s=r

crs(n)Qs, 1 ≤ r ≤ p,

so B
(p)
n = 0 for all n, and (4) would hold automatically with R = p. Therefore,

we could conclude that (9) has linear asymptotic equilibrium, but we would not
have proved (10) and (11).
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