SYSTEMS OF DIFFERENCE EQUATIONS WITH ASYMPTOTICALLY CONSTANT SOLUTIONS

William F. Trench
Trinity University, San Antonio, Texas, USA
Nonlinear Analysis, Theory, Methods, and Applications 40 (2000) 611-615

Dedicated to Professor V. Lakshmikantham on his 75th birthday

Key words: Difference equations, Asymptotically constant, Conditional convergence, Banach space, Schauder-Tychonoff theorem

We consider the system

$$
\begin{equation*}
\Delta x_{n}=A_{n} x_{n}+f\left(n, x_{n}\right) \tag{1}
\end{equation*}
$$

where x_{n} and f are k-vectors (real or complex) and A_{n} is a $k \times k$ matrix. We give conditions implying that (1) has a solution $\left\{\hat{x}_{n}\right\}$ such that $\lim _{n \rightarrow \infty} \hat{x}_{n}=c$, a given constant vector.

If u is a k-vector and B is a $k \times k$ matrix, then $|u|$ and $|A|$ are the ∞-norms of u and A.

THEOREM 1 Let c be a given k-vector, and suppose there is a constant $M>0$ and an integer N such that $f(n, x)$ is continuous with respect to x and

$$
\begin{equation*}
|f(n, x)-f(n, c)| \leq R(n,|x-c|) \tag{2}
\end{equation*}
$$

on the set

$$
S=\{(n, x)|n \geq N,|x-c| \leq M\},
$$

where $R=R(n, \lambda)$ is defined on the set

$$
\{(n, x) \mid n \geq N, 0 \leq \lambda \leq M\}
$$

and nondecreasing in λ for each n, and

$$
\begin{equation*}
\sum_{n=N}^{\infty}|R(n, M)|<\infty \tag{3}
\end{equation*}
$$

Suppose that either

$$
\begin{equation*}
\sum_{n=N}^{\infty}\left|A_{n}\right|<\infty \tag{4}
\end{equation*}
$$

or there is a positive integer q such that the sequences

$$
\begin{equation*}
A_{n}^{(r)}=\sum_{m=n}^{\infty} A_{m+1}^{(r-1)} A_{m}, \quad r=1,2, \ldots, q \quad\left(\text { with } A_{m}^{(0)}=I\right) \tag{5}
\end{equation*}
$$

are all defined for $n \geq N$, and

$$
\begin{equation*}
\sum_{n=N}^{\infty}\left|A_{n+1}^{(q)} A_{n}\right|<\infty \tag{6}
\end{equation*}
$$

(If (4) holds we let $q=0$ and (5) is vacuous; note that (4) and (6) are equivalent in this case, since $A_{m+1}^{(0)}=I$.)

Define

$$
\begin{equation*}
\Gamma_{n}=\sum_{r=0}^{q} A_{n}^{(r)}, \tag{7}
\end{equation*}
$$

and suppose that $\sum_{n=N}^{\infty} \Gamma_{n+1} f(n, c)$ converges (perhaps conditionally).
Then, if n_{0} is sufficiently large, there is a solution $\hat{X}=\left\{\hat{x}_{n}\right\}_{n=n_{0}}^{\infty}$ of (1) such that

$$
\begin{equation*}
\left|\hat{x}_{n}-c\right| \leq M, \quad n \geq n_{0} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \hat{x}_{n}=c \tag{9}
\end{equation*}
$$

Proof. Since $A_{n}^{(0)}=I$ and $\lim _{n \rightarrow \infty} A_{n}^{(r)}=0$ if $r>0, \lim _{n \rightarrow \infty} \Gamma_{n}=I$. Therefore Γ_{n} is invertible for large n. For now, choose $n_{0} \geq N$ so that Γ_{n} is invertible if $n \geq n_{0}$; we will impose another condition on n_{0} later. Define

$$
\begin{equation*}
h_{n}=\left(\Gamma_{n}^{-1}-I\right) c-\Gamma_{n}^{-1}\left(\sum_{m=n}^{\infty} A_{m+1}^{(q)} A_{m} c+\Gamma_{m+1} f(m, c)\right) \tag{10}
\end{equation*}
$$

Let B be the Banach space of bounded sequences $U=\left\{u_{n}\right\}_{n_{0}}^{\infty}$ of k-vectors, with norm $\|U\|=\sup _{n \geq n_{0}}\left|u_{n}\right|$. Let B_{M} be the closed convex subset

$$
B_{M}=\{U \in B \mid\|U\| \leq M\}
$$

of B. From (2) and our assumption that $R(n, \lambda)$ is nondecreasing with respect to λ, if $U \in B_{M}$ then

$$
\begin{equation*}
\left|f\left(m, u_{m}+c\right)-f(m, c)\right| \leq R\left(m,\left|u_{m}\right|\right) \leq R(m, M) . \tag{11}
\end{equation*}
$$

Therefore (3) and (6) imply that if $U \in B_{M}$ then the sequence $T U$, with

$$
\begin{equation*}
(T U)_{n}=h_{n}-\Gamma_{n}^{-1} \sum_{m=n}^{\infty}\left[A_{m+1}^{(q)} A_{m} u_{m}+\Gamma_{m+1}\left[f\left(m, u_{m}+c\right)-f(m, c)\right]\right] \tag{12}
\end{equation*}
$$

is well defined. We will show that if n_{0} is sufficiently large then T is a continuous mapping of B_{M} into itself and $T\left(B_{M}\right)$ has compact closure. Given this, the SchauderTychonoff theorem [1, p. 405] implies that $T \hat{U}=\hat{U}$ for some $\hat{U} \in B_{M}$. We will then show that $\hat{X}=C+\hat{U}$ (with $C=\{c, c, c, \ldots,\}_{n_{0}}^{\infty}$) satisfies (1), (8), and (9).

Let

$$
\mu\left(n_{0}\right)=\sup _{m \geq n_{0}}\left|\Gamma_{m}^{-1}\right| \quad \text { and } \quad v\left(n_{0}\right)=\sup _{m \geq n_{0}}\left|\Gamma_{m+1}\right|
$$

From (11) and (12), if $U \in B_{M}$ then

$$
\begin{equation*}
\left|(T U)_{n}\right| \leq\left|h_{n}\right|+\mu\left(n_{0}\right) \sum_{m=n}^{\infty}\left[\left|A_{m+1} A_{m}^{(q)}\right| M+v\left(n_{0}\right) R(m, M) \mid\right] \tag{13}
\end{equation*}
$$

Since $\lim _{n_{0} \rightarrow \infty} \mu\left(n_{0}\right)=\lim _{n_{0} \rightarrow \infty} v\left(n_{0}\right)=1$, (3) and (6) enable us to choose n_{0} so that the quantity on the right side of (13) is less than M if $n \geq n_{0}$. Then $T\left(B_{M}\right) \subset$ B_{M}.

We will now show that T is continuous on B_{M}. Suppose that $U=\lim _{r \rightarrow \infty} U^{(r)}$ where $\left\{U^{(r)}\right\} \subset B_{M}$. Let $V=T U$ and $V^{(r)}=T U^{(r)}$. Then
$v_{n}^{(r)}-v_{n}=\Gamma_{n}^{-1} \sum_{m=n}^{\infty}\left[A_{m+1}^{(q)} A_{m}\left(u_{m}-u_{m}^{(r)}\right)+\Gamma_{m+1}\left(f\left(m, u_{m}+c\right)-f\left(m, u_{m}^{(r)}+c\right)\right)\right]$.
Therefore

$$
\begin{equation*}
\left\|v^{(r)}-v\right\| \leq \mu\left(n_{0}\right) \sum_{m=n_{0}}^{\infty} \sigma_{m}^{(r)} \tag{14}
\end{equation*}
$$

where

$$
\sigma_{m}^{(r)}=\left|A_{m+1}^{(q)} A_{m}\right|\left|u_{m}^{(r)}-u_{m}\right|+v\left(n_{0}\right)\left|f\left(m, u_{m}^{(r)}+c\right)-f\left(m, u_{m}+c\right)\right| .
$$

Note that

$$
\lim _{r \rightarrow \infty} \sigma_{m}^{(r)}=0, \quad m \geq n_{0}
$$

because of the continuity assumption on f, and

$$
\begin{equation*}
\sigma_{m}^{(r)} \leq \sigma_{m}=2\left(M\left|A_{m+1}^{(q)} A_{m}\right|+\left|v\left(n_{0}\right)\right| R(m, M)\right) \tag{15}
\end{equation*}
$$

(see (11), applied to U and $U^{(r)}$) because U and $U^{(r)}$ are in B_{M}. Because of (3) and (6), $\sum_{m=n_{0}}^{\infty} \sigma_{m}<\infty$. Given $\epsilon>0$, choose $n_{1} \geq n_{0}$ so that $\sum_{m=n_{1}+1}^{\infty} \sigma_{m}<\epsilon$. Then (14) and (15) imply that

$$
\begin{equation*}
\left\|v^{(r)}-v\right\| \leq \mu\left(n_{0}\right)\left(\sum_{m=n_{0}}^{n_{1}} \sigma_{m}^{(r)}+\epsilon\right) \tag{16}
\end{equation*}
$$

Now choose r_{0} so that

$$
\sigma_{m}^{(r)}<\frac{\epsilon}{\left(n_{1}-n_{0}+1\right)} \text { for } m=n_{0}, \ldots, n_{1} \text { if } r \geq r_{0}
$$

Then (16) implies that

$$
\left\|v^{(r)}-v\right\|<2 \mu\left(n_{0}\right) \epsilon \text { if } r \geq r_{0}
$$

which shows that T is continuous on B_{M}.

We will now show that $\overline{T\left(B_{M}\right)}$ (the closure of $T\left(B_{M}\right)$) is compact. From (11) and (12), $\overline{T\left(B_{M}\right)}$ is a subset of

$$
A=\left\{v \in B| | v_{n} \mid \leq \rho(n), n \geq n_{0}\right\}
$$

where

$$
\rho(n)=\left|h_{n}\right|+\mu\left(n_{0}\right)\left(M \sum_{m=n}^{\infty}\left|A_{m+1}^{(q)} A_{m}\right|+\sum_{m=n}^{\infty} v\left(n_{0}\right) R(m, M)\right) .
$$

Therefore, it suffices to show that A is compact. From [2, pp. 51-53], this is true if A is totally bounded; that is, for every $\epsilon>0$ there is a finite subset A_{ϵ} of B such that for each $v \in A$ there is a $\tilde{v} \in A_{\epsilon}$ that satisfies the inequality $\|v-\tilde{v}\|<\epsilon$. To establish the existence of A_{ϵ}, choose an integer $n_{1} \geq n_{0}$ such that $\rho(n)<\epsilon$ if $n>n_{1}$, and let p be an integer such that $p \epsilon>M$. Then, since $\left|v_{n}\right| \leq M$ for all $n \geq n_{0}$, the finite set A_{ϵ} consisting of sequences of the form

$$
a=\left(a_{n_{0}}, \ldots, a_{n_{1}}, 0,0, \ldots\right)
$$

where the components of the k-vectors $\left\{a_{n_{0}}, \ldots, a_{n_{1}}\right\}$ are all in the set

$$
\{-p \epsilon,-(p-1) \epsilon, \ldots, 0, \ldots(p-1) \epsilon, p \epsilon\}, \quad n=n_{0}, \ldots, n_{1}
$$

has the desired property.
Now the Schauder-Tychonoff theorem implies that T has a fixed point \hat{U}. Since $\hat{U}=T \hat{U},(10)$ and (12) imply that if $\hat{X}=C+\hat{U}$ then

$$
\begin{equation*}
\hat{x}_{n}=\Gamma_{n}^{-1}\left(c-\sum_{m=n}^{\infty}\left[A_{m+1}^{(q)} A_{m} \hat{x}_{m}+\Gamma_{m+1} f\left(m, \hat{x}_{m}\right)\right]\right) \tag{17}
\end{equation*}
$$

Therefore, $\lim _{n \rightarrow \infty} \hat{x}_{n}=c$. If $q=0$ then (17) reduces to

$$
\hat{x}_{n}=c-\sum_{m=n}^{\infty}\left(A_{m} \hat{x}_{m}+f\left(m, x_{m}\right)\right)
$$

so

$$
\begin{equation*}
\Delta \hat{x}_{n}=A_{n} \hat{x}_{n}+f\left(n, \hat{x}_{n}\right) \tag{18}
\end{equation*}
$$

If $q>0$ then (17) implies that

$$
\begin{equation*}
\Delta \hat{x}_{n}=\Gamma_{n+1}^{-1} A_{n+1}^{(q)} A_{n} \hat{x}_{n}+f\left(n, \hat{x}_{n}\right)+\left(\Delta \Gamma_{n}^{-1}\right) \Gamma_{n} \hat{x}_{n} \tag{19}
\end{equation*}
$$

Since $\Delta \Gamma_{n}^{-1}=-\Gamma_{n+1}^{-1}\left(\Delta \Gamma_{n}\right) \Gamma_{n}^{-1}$, (19) implies that

$$
\begin{equation*}
\Delta \hat{x}_{n}=\Gamma_{n+1}^{-1}\left[A_{n+1}^{(q)} A_{n}-\Delta \Gamma_{n}\right] \hat{x}_{n}+f\left(n, \hat{x}_{n}\right) \tag{20}
\end{equation*}
$$

However, (5) and (7) imply that

$$
\Delta \Gamma_{n}=-\sum_{r=1}^{q} A_{n+1}^{(r-1)} A_{n}
$$

so

$$
A_{n+1}^{(q)} A_{n}-\Delta \Gamma_{n}=\Gamma_{n+1} A_{n}
$$

and therefore (20) implies (18).
The hypotheses of Theorem 1 may hold for some constant vectors c and fail to hold for others. In the following corollary c may be chosen arbitrarily.

Corollary 1 Let A_{n} satisfy the hypotheses of Theorem 1. Suppose there is an integer N such that $f(n, x)$ is continuous with respect to x for all $n \geq N$ and all x, and

$$
\left|f\left(n, x_{1}\right)-f\left(n, x_{2}\right)\right| \leq R\left(n,\left|x_{1}-x_{2}\right|\right)
$$

where $R=R(n, \lambda)$ is defined on

$$
\{(n, x) \mid n \geq N, 0 \leq \lambda \leq \infty\}
$$

and nondecreasing in λ for each n, and $\sum_{n=N}^{\infty}|R(n, M)|<\infty$ for some constant $M>0$. Suppose also that $\sum_{n=N}^{\infty} \Gamma_{n+1} f(n, c)$ converges (perhaps conditionally) for every constant vector c. Let c be a given constant vector. Then, if n_{0} is sufficiently large, there is a solution $\hat{X}=\left\{\hat{x}_{n}\right\}_{n=n_{0}}^{\infty}$ of (1) that satisfies (8) and (9).

The following corollary applies to the linear system

$$
\begin{equation*}
\Delta x_{n}=\left(A_{n}+B_{n}\right) x_{n}+g_{n}, \tag{21}
\end{equation*}
$$

where A_{n} and B_{n} are $k \times k$ matrices and g_{n} is a k-vector.
COROLLARY 2 Suppose that A_{n} satisfies the hypotheses of Theorem 1, while $\sum^{\infty}\left|B_{n}\right|<$ ∞ and $\sum^{\infty} \Gamma_{n+1} g_{n}$ converges (perhaps conditionally). Let c be an arbitrary vector. Then (21) has a solution \hat{X} such that $\lim _{n \rightarrow \infty} \hat{x}_{n}=c$.

References

[1] P. Hartman, Ordinary Differential Equations, John Wiley \& Sons, Inc., New York, London, Sydney, 1964.
[2] A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, v. 1 (translated from the 1954 Russian edition by L. F. Boron), Graylock Press, Rochester, N.Y., 1957.

