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We consider the system

�xn D Anxn C f .n; xn/; (1)

where xn and f are k-vectors (real or complex) and An is a k � k matrix. We give

conditions implying that (1) has a solution f Oxng such that limn!1 Oxn D c, a given

constant vector.

If u is a k-vector and B is a k � k matrix, then juj and jAj are the 1-norms of u

and A.

THEOREM 1 Let c be a given k-vector, and suppose there is a constant M > 0 and an

integer N such that f .n; x/ is continuous with respect to x and

jf .n; x/ � f .n; c/j � R.n; jx � cj/ (2)

on the set

S D f.n; x/ j n � N; jx � cj � M g;

where R D R.n; �/ is defined on the set

f.n; x/ j n � N; 0 � � � M g

and nondecreasing in � for each n, and

1
X

nDN

jR.n; M/j < 1: (3)

Suppose that either
1
X

nDN

jAnj < 1 (4)

or there is a positive integer q such that the sequences

A.r/
n D

1
X

mDn

A
.r�1/
mC1 Am; r D 1; 2; : : : ; q .with A

.0/
m D I / (5)
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are all defined for n � N , and

1
X

nDN

jA
.q/
nC1Anj < 1: (6)

.If .4/ holds we let q D 0 and .5/ is vacuous; note that .4/ and .6/ are equivalent in

this case, since A
.0/
mC1 D I ./

Define

�n D

q
X

rD0

A.r/
n ; (7)

and suppose that
P1

nDN �nC1f .n; c/ converges .perhaps conditionally/.

Then, if n0 is sufficiently large, there is a solution OX D f Oxng1
nDn0

of .1/ such that

j Oxn � cj � M; n � n0; (8)

and

lim
n!1

Oxn D c: (9)

PROOF. Since A
.0/
n D I and limn!1 A

.r/
n D 0 if r > 0, limn!1 �n D I . Therefore

�n is invertible for large n. For now, choose n0 � N so that �n is invertible if n � n0;

we will impose another condition on n0 later. Define

hn D .� �1
n � I /c � � �1

n

 

1
X

mDn

A
.q/
mC1Amc C �mC1f .m; c/

!

: (10)

Let B be the Banach space of bounded sequences U D fung1
n0

of k-vectors, with norm

kU k D supn�n0
junj. Let BM be the closed convex subset

BM D fU 2 B j kU k � M g

of B . From (2) and our assumption that R.n; �/ is nondecreasing with respect to �, if

U 2 BM then

jf .m; um C c/ � f .m; c/j � R.m; jumj/ � R.m; M/: (11)

Therefore (3) and (6) imply that if U 2 BM then the sequence T U , with

.T U /n D hn � � �1
n

1
X

mDn

h

A
.q/
mC1Amum C �mC1Œf .m; um C c/ � f .m; c/�

i

(12)

is well defined. We will show that if n0 is sufficiently large then T is a continuous

mapping of BM into itself and T .BM / has compact closure. Given this, the Schauder-

Tychonoff theorem [1, p. 405] implies that T OU D OU for some OU 2 BM . We will then

show that OX D C C OU (with C D fc; c; c; : : : ; g1
n0

) satisfies (1), (8), and (9).

Let

�.n0/ D sup
m�n0

j� �1
m j and �.n0/ D sup

m�n0

j�mC1j:
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From (11) and (12), if U 2 BM then

j.T U /nj � jhnj C �.n0/

1
X

mDn

h

jAmC1A.q/
m jM C �.n0/R.m; M/j

i

: (13)

Since limn0!1 �.n0/ D limn0!1 �.n0/ D 1, (3) and (6) enable us to choose n0 so

that the quantity on the right side of (13) is less than M if n � n0. Then T .BM / �

BM .

We will now show that T is continuous on BM . Suppose that U D limr!1 U .r/

where fU .r/g � BM . Let V D T U and V .r/ D T U .r/. Then

v.r/
n �vn D � �1

n

1
X

mDn

h

A
.q/
mC1Am.um � u.r/

m / C �mC1

�

f .m; um C c/ � f .m; u.r/
m C c/

�i

:

Therefore

kv.r/ � vk � �.n0/

1
X

mDn0

� .r/
m ; (14)

where

� .r/
m D jA

.q/
mC1Amjju.r/

m � umj C �.n0/
ˇ

ˇ

ˇ
f .m; u.r/

m C c/ � f .m; um C c/
ˇ

ˇ

ˇ
:

Note that

lim
r!1

� .r/
m D 0; m � n0;

because of the continuity assumption on f , and

� .r/
m � �m D 2

�

M jA
.q/
mC1Amj C j�.n0/jR.m; M/

�

(15)

(see (11), applied to U and U .r/) because U and U .r/ are in BM . Because of (3) and

(6),
P1

mDn0
�m < 1. Given � > 0, choose n1 � n0 so that

P1

mDn1C1 �m < �. Then

(14) and (15) imply that

kv.r/ � vk � �.n0/

 

n1
X

mDn0

� .r/
m C �

!

: (16)

Now choose r0 so that

� .r/
m <

�

.n1 � n0 C 1/
for m D n0; : : : ; n1 if r � r0:

Then (16) implies that

kv.r/ � vk < 2�.n0/� if r � r0;

which shows that T is continuous on BM .
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We will now show that T .BM / (the closure of T .BM /) is compact. From (11) and

(12), T .BM / is a subset of

A D fv 2 B j jvnj � �.n/; n � n0g;

where

�.n/ D jhnj C �.n0/

 

M

1
X

mDn

jA
.q/
mC1Amj C

1
X

mDn

�.n0/R.m; M/

!

:

Therefore, it suffices to show that A is compact. From [2, pp. 51-53], this is true if A

is totally bounded; that is, for every � > 0 there is a finite subset A� of B such that for

each v 2 A there is a Qv 2 A� that satisfies the inequality kv � Qvk < �. To establish the

existence of A� , choose an integer n1 � n0 such that �.n/ < � if n > n1, and let p be

an integer such that p� > M . Then, since jvnj � M for all n � n0, the finite set A�

consisting of sequences of the form

a D .an0
; : : : ; an1

; 0; 0; : : : /

where the components of the k-vectors fan0
; : : : ; an1

g are all in the set

f�p�; �.p � 1/�; : : : ; 0; : : : .p � 1/�; p�g; n D n0; : : : ; n1;

has the desired property.

Now the Schauder-Tychonoff theorem implies that T has a fixed point OU . Since
OU D T OU , (10) and (12) imply that if OX D C C OU then

Oxn D � �1
n

 

c �

1
X

mDn

h

A
.q/
mC1Am Oxm C �mC1f .m; Oxm/

i

!

: (17)

Therefore, limn!1 Oxn D c. If q D 0 then (17) reduces to

Oxn D c �

1
X

mDn

.Am Oxm C f .m; xm//;

so

� Oxn D An Oxn C f .n; Oxn/: (18)

If q > 0 then (17) implies that

� Oxn D � �1
nC1A

.q/
nC1An Oxn C f .n; Oxn/ C .�� �1

n /�n Oxn: (19)

Since �� �1
n D �� �1

nC1.��n/� �1
n , (19) implies that

� Oxn D � �1
nC1

h

A
.q/
nC1An � ��n

i

Oxn C f .n; Oxn/: (20)

However, (5) and (7) imply that

��n D �

q
X

rD1

A
.r�1/
nC1 An;
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so

A
.q/
nC1An � ��n D �nC1An;

and therefore (20) implies (18).

The hypotheses of Theorem 1 may hold for some constant vectors c and fail to hold

for others. In the following corollary c may be chosen arbitrarily.

COROLLARY 1 Let An satisfy the hypotheses of Theorem 1. Suppose there is an in-

teger N such that f .n; x/ is continuous with respect to x for all n � N and all x,

and

jf .n; x1/ � f .n; x2/j � R.n; jx1 � x2j/

where R D R.n; �/ is defined on

f.n; x/ j n � N; 0 � � � 1g

and nondecreasing in � for each n, and
P1

nDN jR.n; M/j < 1 for some constant

M > 0. Suppose also that
P

1

nDN �nC1f .n; c/ converges .perhaps conditionally/ for

every constant vector c. Let c be a given constant vector. Then, if n0 is sufficiently

large, there is a solution OX D f Oxng1
nDn0

of .1/ that satisfies .8/ and .9/.

The following corollary applies to the linear system

�xn D .An C Bn/xn C gn; (21)

where An and Bn are k � k matrices and gn is a k-vector.

COROLLARY 2 Suppose that An satisfies the hypotheses of Theorem 1, while
P

1
jBnj <

1 and
P1

�nC1gn converges .perhaps conditionally/. Let c be an arbitrary vector.

Then .21/ has a solution OX such that limn!1 Oxn D c.
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