Appeared In
 Structured Matrices in Mathematics, Computer Science and
 Engineering II

AMS Contemporary Mathematics Series 281 (2001) 233-245

Properties of Some Generalizations of Kac-Murdock-Szegö Matrices

William F. Trench
95 Pine Lane
Woodland Park, CO 80863, USA

Abstract

We consider generalizations of the Kac-Murdock-Szegö matrices of the forms $L_{n}=\left(\rho^{|r-s|} c_{\min (r, s)}\right)_{r, s=1}^{n}$ and $U_{n}=\left(\rho^{|r-s|} c_{\max (r, s)}\right)_{r, s=1}^{n}$, where ρ and $c_{1}, c_{2}, \ldots, c_{n}$ are real numbers. We obtain explicit expressions for the determinants and inverses of L_{n} and U_{n}, determine their inertias, and diagonalize their quadratic forms. We also consider the spectral distributions of two special cases.

Key words: Kac-Murdock-Szegö matrices; Toeplitz matrices; determinant; inverse; inertia; diagonalization; spectrum

1. Introduction.

The Kac-Murdock-Szegö (KMS) matrices [4] are the symmetric Toeplitz matrices

$$
K_{n}(\rho)=\left(\rho^{|r-s|}\right)_{r, s=1}^{n}, \quad n=1,2, \ldots
$$

where ρ is real. It is known [3, Section 7.2, Problems 12-13] that

$$
\begin{equation*}
\operatorname{det}\left(K_{n}(\rho)\right)=\left(1-\rho^{2}\right)^{n-1} \tag{1}
\end{equation*}
$$

and, if $\rho \neq \pm 1$, then

$$
K_{n}^{-1}(\rho)=\frac{1}{1-\rho^{2}}\left[\begin{array}{ccccccc}
1 & -\rho & 0 & \cdots & 0 & 0 & 0 \\
-\rho & 1+\rho^{2} & -\rho & \cdots & 0 & 0 & 0 \\
0 & -\rho & 1+\rho^{2} & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1+\rho^{2} & -\rho & 0 \\
0 & 0 & 0 & \cdots & -\rho & 1+\rho^{2} & -\rho \\
0 & 0 & 0 & \cdots & 0 & -\rho & 1
\end{array}\right]
$$

thus, except for its first and last rows, $K_{n}^{-1}(\rho)$ is a tridiagonal Toeplitz matrix.
In this paper we consider generalizations of the KMS matrices of the form

$$
L_{n}=\left(\rho^{|r-s|} c_{\min (r, s)}\right)_{r, s=1}^{n} \quad \text { and } \quad U_{n}=\left(\rho^{|r-s|} c_{\max (r, s)}\right)_{r, s=1}^{n},
$$

where ρ and $c_{1}, c_{2}, \ldots, c_{n}$ are real numbers; thus,

$$
L_{n}=\left[\begin{array}{ccccccc}
c_{1} & \rho c_{1} & \rho^{2} c_{1} & \cdots & \rho^{n-3} c_{1} & \rho^{n-2} c_{1} & \rho^{n-1} c_{1} \tag{2}\\
\rho c_{1} & c_{2} & \rho c_{2} & \cdots & \rho^{n-4} c_{2} & \rho^{n-3} c_{2} & \rho^{n-2} c_{2} \\
\rho^{2} c_{1} & \rho c_{2} & c_{3} & \cdots & \rho^{n-5} c_{3} & \rho^{n-4} c_{3} & \rho^{n-3} c_{3} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
\rho^{n-3} c_{1} & \rho^{n-4} c_{2} & \rho^{n-5} c_{3} & \cdots & c_{n-2} & \rho c_{n-2} & \rho^{2} c_{n-2} \\
\rho^{n-2} c_{1} & \rho^{n-3} c_{2} & \rho^{n-4} c_{3} & \cdots & \rho c_{n-2} & c_{n-1} & \rho c_{n-1} \\
\rho^{n-1} c_{1} & \rho^{n-2} c_{2} & \rho^{n-3} c_{3} & \cdots & \rho^{2} c_{n-2} & \rho c_{n-1} & c_{n}
\end{array}\right]
$$

and

$$
U_{n}=\left[\begin{array}{ccccccc}
c_{1} & \rho c_{2} & \rho^{2} c_{2} & \cdots & \rho^{n-3} c_{n-2} & \rho^{n-2} c_{n-1} & \rho^{n-1} c_{n} \\
\rho c_{2} & c_{2} & \rho c_{3} & \cdots & \rho^{n-4} c_{n-2} & \rho^{n-3} c_{n-1} & \rho^{n-2} c_{n} \\
\rho^{2} c_{3} & \rho c_{3} & c_{3} & \cdots & \rho^{n-5} c_{n-2} & \rho^{n-4} c_{n-1} & \rho^{n-3} c_{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
\rho^{n-3} c_{n-2} & \rho^{n-4} c_{n-2} & \rho^{n-5} c_{n-2} & \cdots & c_{n-2} & \rho c_{n-1} & \rho^{2} c_{n} \\
\rho^{n-2} c_{n-1} & \rho^{n-3} c_{n-1} & \rho^{n-4} c_{n-1} & \cdots & \rho c_{n-1} & c_{n-1} & \rho c_{n} \\
\rho^{n-1} c_{n} & \rho^{n-2} c_{n} & \rho^{n-3} c_{n} & \cdots & \rho^{2} c_{n} & \rho c_{n} & c_{n}
\end{array}\right]
$$

Although we do not know of any practical applications in which these matrices occur, we believe that they have interesting properties. In particular, we hope to discover conditions on sequences $\left\{c_{n}\right\}_{n=1}^{\infty}$ which guarantee that the spectra of the family $\left\{L_{n}\right\}_{n=1}^{\infty}$ and/or the family $\left\{U_{n}\right\}_{n=1}^{\infty}$ have predictable distributions as $n \rightarrow \infty$. Theorems $5-8$ provide a modest start in this direction.

In Section 2 we obtain explicit expressions for the determinants and inverses of L_{n} and U_{n}. We also determine their inertias and diagonalize their quadratic forms. In Section 3 we discuss the distribution of the eigenvalues of the matrices

$$
\left.K_{n}(\rho, \gamma)=\left(\rho^{|r-s|}+\gamma \rho^{r+s}\right)\right)_{r, s=1}^{n}
$$

(which is of the form (2) with $c_{r}=1+\gamma \rho^{2 r}$), where $0<\rho<1$ and γ is an arbitrary real number. In Section 4 we discuss the distribution of the eigenvalues of

$$
L_{n}=(\min (r, s)-\gamma)_{r, s=1}^{n}
$$

(which is of the form (2) with $c_{r}=r-\gamma$), where $\gamma \leq 1 / 2$.
2. Properties of L_{n} and U_{n}.

Let A_{n} be the $n \times n$ matrix with 1's on the diagonal, $-\rho$'s on the super diagonal, and zeros elsewhere; thus,

$$
A_{n}=\left[\begin{array}{rrrrrrr}
1 & -\rho & 0 & \cdots & 0 & 0 & 0 \\
0 & 1 & -\rho & \cdots & 0 & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & -\rho & 0 \\
0 & 0 & 0 & \cdots & 0 & 1 & -\rho \\
0 & 0 & 0 & \cdots & 0 & 0 & 1
\end{array}\right]
$$

It is straightforward to verify that

$$
L_{n} A_{n}=\left[\begin{array}{ccccccc}
c_{1} & 0 & 0 & \cdots & 0 & 0 & 0 \\
\rho c_{1} & \alpha_{1} & 0 & \cdots & 0 & 0 & 0 \\
\rho^{2} c_{1} & \rho \alpha_{1} & \alpha_{2} & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
\rho^{n-3} c_{1} & \rho^{n-4} \alpha_{1} & \rho^{n-5} \alpha_{2} & \cdots & \alpha_{n-3} & 0 & 0 \\
\rho^{n-2} c_{1} & \rho^{n-3} \alpha_{1} & \rho^{n-4} \alpha_{2} & \cdots & \rho \alpha_{n-3} & \alpha_{n-2} & 0 \\
\rho^{n-1} c_{1} & \rho^{n-2} \alpha_{1} & \rho^{n-1} \alpha_{2} & \cdots & \rho^{2} \alpha_{n-3} & \rho \alpha_{n-2} & \alpha_{n-1}
\end{array}\right]
$$

where

$$
\alpha_{i}=c_{i+1}-\rho^{2} c_{i}, \quad i=1, \ldots, n-1
$$

and that

$$
\begin{align*}
A_{n}^{T} L_{n} A_{n} & =\operatorname{diag}\left(c_{1}, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}\right) \tag{3}\\
& =\operatorname{diag}\left(c_{1}, c_{2}-\rho^{2} c_{1}, c_{3}-\rho^{2} c_{2}, \ldots, c_{n}-\rho^{2} c_{n-1}\right)
\end{align*}
$$

It is also straightforward to verify that

$$
A_{n} U_{n}=\left[\begin{array}{ccccccc}
\beta_{1} & 0 & 0 & \cdots & 0 & 0 & 0 \\
\rho \beta_{2} & \beta_{2} & 0 & \cdots & 0 & 0 & 0 \\
\rho^{2} \beta_{3} & \rho \beta_{3} & \beta_{3} & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
\rho^{n-3} \beta_{n-2} & \rho^{n-4} \beta_{n-2} & \rho^{n-5} \beta_{n-2} & \cdots & \beta_{n-2} & 0 & 0 \\
\rho^{n-2} \beta_{n-1} & \rho^{n-3} \beta_{n-1} & \rho^{n-4} \beta_{n-1} & \cdots & \rho \beta_{n-1} & \beta_{n-1} & 0 \\
\rho^{n-1} c_{n} & \rho^{n-2} c_{n} & \rho^{n-1} c_{n} & \cdots & \rho^{2} c_{n} & \rho c_{n} & c_{n}
\end{array}\right]
$$

where

$$
\beta_{i}=c_{i}-\rho^{2} c_{i+1}, \quad i=1, \ldots, n-1
$$

and that

$$
\begin{align*}
A_{n} U_{n} A_{n}^{T} & =\operatorname{diag}\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n-1}, c_{n}\right) \\
& =\operatorname{diag}\left(c_{1}-\rho^{2} c_{2}, c_{2}-\rho^{2} c_{3}, \ldots, c_{n-1}-\rho^{2} c_{n}, c_{n}\right) \tag{4}
\end{align*}
$$

Since $\operatorname{det}\left(A_{n}\right)=1,(3)$ and (4) imply that

$$
\begin{equation*}
\operatorname{det}\left(L_{n}\right)=c_{1} \prod_{i=1}^{n-1}\left(c_{i+1}-\rho^{2} c_{i}\right) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{det}\left(U_{n}\right)=c_{n} \prod_{i=1}^{n-1}\left(c_{i}-\rho^{2} c_{i+1}\right) \tag{6}
\end{equation*}
$$

Note that (5) and (6) both reduce to (1) when $c_{1}=c_{2}=\cdots=c_{n}=1$.
We will prove the following two theorems together.
THEOREM 1 The inertia of L_{n} is (m, z, p), where m, z, and p are the numbers of negative, zero, and positive elements in the set

$$
\left\{c_{1}, c_{2}-\rho^{2} c_{1}, c_{3}-\rho^{2} c_{2}, \ldots, c_{n}-\rho^{2} c_{n-1}\right\}
$$

Moreover,

$$
\begin{equation*}
\sum_{r, s=1}^{n} \rho^{|r-s|} c_{\min (r, s)} x_{r} x_{s}=c_{1}\left(\sum_{j=1}^{n} \rho^{j-1} x_{j}\right)^{2}+\sum_{i=2}^{n}\left(c_{i+1}-\rho^{2} c_{i}\right)\left(\sum_{j=i}^{n} \rho^{j-i} x_{j}\right)^{2} \tag{7}
\end{equation*}
$$

THEOREM 2 The inertia of U_{n} is (m, z, p), where m, z, and p are the numbers of negative, zero, and positive elements in the set

$$
\left\{c_{1}-\rho^{2} c_{2}, c_{2}-\rho^{2} c_{3}, \ldots, c_{n-1}-\rho^{2} c_{n}, c_{n}\right\}
$$

Moreover,

$$
\begin{equation*}
\sum_{r, s=1}^{n} \rho^{|r-s|} c_{\max (r, s)} x_{r} x_{s}=\sum_{i=1}^{n-1}\left(c_{i}-\rho^{2} c_{i+1}\right)\left(\sum_{j=1}^{i} \rho^{i-j} x_{j}\right)^{2}+c_{n}\left(\sum_{j=1}^{n} \rho^{n-j} x_{j}\right)^{2} \tag{8}
\end{equation*}
$$

Proof: By Sylvester's theorem, (3) and (4) imply the statements concerning inertia. From (3),

$$
\begin{equation*}
L_{n}=\left(A_{n}^{-1}\right)^{T} \operatorname{diag}\left(c_{1}, c_{2}-\rho^{2} c_{1}, c_{3}-\rho^{2} c_{2}, \ldots, c_{n}-\rho^{2} c_{n-1}\right) A_{n}^{-1} \tag{9}
\end{equation*}
$$

From (4),

$$
\begin{equation*}
U_{n}=A_{n}^{-1} \operatorname{diag}\left(c_{1}-\rho^{2} c_{2}, c_{2}-\rho^{2} c_{3}, \ldots, c_{n-1}-\rho^{2} c_{n}, c_{n}\right)\left(A_{n}^{-1}\right)^{T} \tag{10}
\end{equation*}
$$

Since

$$
A_{n}^{-1}=\left[\begin{array}{ccccccc}
1 & \rho & \rho^{2} & \cdots & \rho^{n-3} & \rho^{n-2} & \rho^{n-1} \\
0 & 1 & \rho & \cdots & \rho^{n-4} & \rho^{n-3} & \rho^{n-2} \\
0 & 0 & 1 & \cdots & \rho^{n-5} & \rho^{n-4} & \rho^{n-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & \rho & \rho^{2} \\
0 & 0 & 0 & \cdots & 0 & 1 & \rho \\
0 & 0 & 0 & \cdots & 0 & 0 & 1
\end{array}\right]
$$

(9) implies (7) and (10) implies (8).

Example 1. With $\rho=1$ and and $c_{r}=r,(7)$ and (8) reduce to

$$
\begin{equation*}
\sum_{r, s=1}^{n} \min (r, s) x_{r} x_{s}=\sum_{i=1}^{n}\left(\sum_{j=i}^{n} x_{j}\right)^{2} \tag{11}
\end{equation*}
$$

and

$$
\sum_{r, s=1}^{n} \max (r, s) x_{r} x_{s}=-\sum_{i=1}^{n-1}\left(\sum_{j=1}^{i} x_{j}\right)^{2}+n\left(\sum_{j=1}^{n} x_{j}\right)^{2}
$$

These diagonalizations have recently been obtained by T. Y. Lam [5], who observed that (11) was previously stated in [2].

Example 2. With $c_{r}=1,(7)$ and (8) provide distinct diagonalizations of the quadratic form associated with $K_{n}(\rho)$:

$$
\begin{aligned}
& \sum_{r, s=1}^{n} \rho^{|r-s|} x_{r} x_{s}=\left(\sum_{j=1}^{n} \rho^{j-1} x_{j}\right)^{2}+\left(1-\rho^{2}\right) \sum_{i=2}^{n}\left(\sum_{j=i}^{n} \rho^{j-i} x_{j}\right)^{2} \\
& \sum_{r, s=1}^{n} \rho^{|r-s|} x_{r} x_{s}=\left(1-\rho^{2}\right) \sum_{i=1}^{n-1}\left(\sum_{j=1}^{i} \rho^{i-j} x_{j}\right)^{2}+\left(\sum_{j=1}^{n} \rho^{n-j} x_{j}\right)^{2}
\end{aligned}
$$

Theorem 3 If $\operatorname{det}\left(L_{n}\right) \neq 0$ define

$$
\sigma_{i}=\frac{1}{c_{i+1}-\rho^{2} c_{i}}, \quad i=1, \ldots, n-1
$$

Then $L_{n}^{-1}=\left(u_{r s}\right)_{r, s=1}^{n}$ is the symmetric tridiagonal matrix with

$$
\begin{gathered}
u_{11}=1 / c_{1}+\rho^{2} \sigma_{1}, \quad u_{n n}=\sigma_{n-1} \\
u_{r r}=\sigma_{r-1}+\rho^{2} \sigma_{r}, \quad r=2, \ldots, n-1
\end{gathered}
$$

and

$$
u_{r+1, r}=u_{r, r+1}=-\rho \sigma_{r}, \quad r=1, \ldots, n-1
$$

For example,

$$
L_{5}^{-1}=\left[\begin{array}{ccccc}
1 / c_{1}+\rho^{2} \sigma_{1} & -\rho \sigma_{1} & 0 & 0 & 0 \\
-\rho \sigma_{1} & \sigma_{1}+\rho^{2} \sigma_{2} & -\rho \sigma_{2} & 0 & 0 \\
0 & -\rho \sigma_{2} & \sigma_{2}+\rho^{2} \sigma_{3} & -\rho \sigma_{3} & 0 \\
0 & 0 & -\rho \sigma_{3} & \sigma_{3}+\rho^{2} \sigma_{4} & -\rho \sigma_{4} \\
0 & 0 & 0 & -\rho \sigma_{4} & \sigma_{4}
\end{array}\right]
$$

Proof: From (9),

$$
L_{n}^{-1}=A_{n} \operatorname{diag}\left(1 / c_{1}, \sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1}\right) A_{n}^{T}
$$

and routine manipulations verify the stated result.
Example 3. Let $c_{r}=1+\gamma \rho^{2 r}$, where γ is an arbitrary real number. Then

$$
\rho^{|r-s|} c_{\min (r, s)}=\rho^{|r-s|}+\gamma \rho^{r+s} .
$$

We denote L_{n} by $K_{n}(\rho, \gamma)$, since we will return to this matrix in Section 3; thus

$$
K_{n}(\rho, \gamma)=\left(\rho^{|r-s|}+\gamma \rho^{r+s}\right)_{r, s=1}^{n}
$$

In this case $c_{i+1}-\rho^{2} c_{i}=1-\rho^{2}$, so (5) implies that

$$
\begin{equation*}
\operatorname{det}\left(K_{n}(\rho, \gamma)\right)=\left(1+\gamma \rho^{2}\right)\left(1-\rho^{2}\right)^{n-1} \tag{12}
\end{equation*}
$$

Since

$$
\sigma_{i}=\frac{1}{1-\rho^{2}}, \ldots, i=1, \ldots, n-1
$$

Theorem 3 implies that

$$
K_{n}^{-1}(\rho, \gamma)=\frac{1}{1-\rho^{2}}\left[\begin{array}{ccccccc}
\frac{1+\gamma \rho^{4}}{1+\gamma \rho^{2}} & -\rho & 0 & \cdots & 0 & 0 & 0 \\
-\rho & 1+\rho^{2} & -\rho & \cdots & 0 & 0 & 0 \\
0 & -\rho & 1+\rho^{2} & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1+\rho^{2} & -\rho & 0 \\
0 & 0 & 0 & \cdots & -\rho & 1+\rho^{2} & -\rho \\
0 & 0 & 0 & \cdots & 0 & -\rho & 1
\end{array}\right]
$$

if $\rho \neq \pm 1$ and $\gamma \rho^{2} \neq-1$.
Example 4. If $\rho=1$ and $c_{r}=r-\gamma$ then

$$
L_{n}=(\min (r, s)-\gamma)_{r, s=1}^{n}
$$

Since $\sigma_{i}=1, i=1, \ldots, n-1$, Theorem 3 implies that

$$
L_{n}^{-1}=\left[\begin{array}{crrrrrrrr}
\frac{2-\gamma}{1-\gamma} & -1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \tag{13}\\
-1 & 2 & -1 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & -1 & 2 & -1 & \cdots & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & -1 & 1
\end{array}\right]
$$

if $\gamma \neq 1$.
Theorem 4 If $\operatorname{det}\left(U_{n}\right) \neq 0$ define

$$
\tau_{i}=\frac{1}{c_{i}-\rho^{2} c_{i+1}}, \quad i=1, \ldots, n-1
$$

Then $U_{n}^{-1}=\left(v_{r s}\right)_{r, s=1}^{n}$ is the symmetric tridiagonal matrix with

$$
\begin{gathered}
v_{11}=\tau_{1}, \quad v_{n n}=\rho^{2} \tau_{n-1}+1 / c_{n} \\
v_{r r}=\rho^{2} \tau_{r-1}+\tau_{r}, \quad r=2, \ldots, n-1
\end{gathered}
$$

and

$$
v_{r+1, r}=v_{r, r+1}=-\rho \tau_{r}, \quad r=1, \ldots, n-1
$$

For example,

$$
U_{5}^{-1}=\left[\begin{array}{rcccc}
\tau_{1} & -\rho \tau_{1} & 0 & 0 & 0 \\
-\rho \tau_{1} & \rho^{2} \tau_{1}+\tau_{2} & -\rho \tau_{2} & 0 & 0 \\
0 & -\rho \tau_{2} & \rho^{2} \tau_{2}+\tau_{3} & -\rho \tau_{3} & 0 \\
0 & 0 & -\rho \tau_{3} & \rho^{2} \tau_{3}+\tau_{4} & -\rho \tau_{4} \\
0 & 0 & 0 & -\rho \tau_{4} & \rho^{2} \tau_{4}+1 / c_{5}
\end{array}\right]
$$

Proof: From (10),

$$
U_{n}^{-1}=A_{n}^{T} \operatorname{diag}\left(\tau_{1}, \tau_{2}, \tau_{3}, \ldots, \tau_{n-1}, 1 / c_{n}\right) A_{n}
$$

and routine manipulations verify the stated result.
Example 5. Let $c_{r}=1+\gamma \rho^{-2 r}$, where γ is real. Then

$$
U_{n}=\left(\rho^{|r-s|}+\gamma \rho^{-r-s}\right)_{r, s=1}^{n}
$$

In this case $c_{i}-\rho^{2} c_{i+1}=1-\rho^{2}$, so (6) implies that

$$
\operatorname{det}\left(U_{n}\right)=\left(1+\gamma \rho^{-2 n}\right)\left(1-\rho^{2}\right)^{n-1}
$$

Since

$$
\tau_{i}=\frac{1}{1-\rho^{2}}, \ldots, i=1, \ldots, n-1
$$

Theorem 4 implies that

$$
U_{n}^{-1}=\frac{1}{1-\rho^{2}}\left[\begin{array}{ccccccc}
1 & -\rho & 0 & \cdots & 0 & 0 & 0 \\
-\rho & 1+\rho^{2} & -\rho & \cdots & 0 & 0 & 0 \\
0 & -\rho & 1+\rho^{2} & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1+\rho^{2} & -\rho & 0 \\
0 & 0 & 0 & \cdots & -\rho & 1+\rho^{2} & -\rho \\
0 & 0 & 0 & \cdots & 0 & -\rho & \frac{\rho^{2 n}+\gamma \rho^{2}}{\rho^{2 n}+\gamma}
\end{array}\right]
$$

if $\rho \neq \pm 1$ and $\gamma \neq-\rho^{2 n}$.
Example 6. If $\rho=1$ and $c_{r}=r-\gamma$ then

$$
U_{n}=(\max (r, s)-\gamma)_{r, s=1}^{n}
$$

Since $\tau_{i}=-1, i=1, \ldots, n-1$, Theorem 4 implies that

$$
U_{n}^{-1}=\left[\begin{array}{rrrcccccc}
-1 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
1 & -2 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 1 & -2 & 1 & \cdots & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 1 & -2 & 1 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 1 & -2 & 1 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & \frac{-n+1+\gamma}{n-\gamma}
\end{array}\right]
$$

if $\gamma \neq n$.
3. Spectral Properties of $K_{n}(\rho, \gamma)$.

If $0<\rho<1$ then

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} \rho^{|n|} e^{i n \theta}=F(\theta)=\frac{1-\rho^{2}}{1-2 \rho \cos \theta+\rho^{2}} \tag{14}
\end{equation*}
$$

and it is known that the eigenvalues $\lambda_{1 n}<\lambda_{2 n}<\cdots<\lambda_{n n}$ of $K_{n}(\rho)=\left(\rho^{|r-s|}\right)_{r, s=1}^{n}$ are given by

$$
\lambda_{j n}=F\left(\phi_{n-j+1, n}\right)
$$

where

$$
\frac{(j-1) \pi}{n+1}<\phi_{j n}<\frac{j \pi}{n+1}, \quad j=1,2, \ldots n
$$

(See [6] for more on this.) This illustrates a theorem of Szegö [1, Chapter 5] which implies that if $\left\{c_{r}\right\}_{r=-\infty}^{\infty}$ are the Fourier coefficients of a bounded real-valued even function $f \in L[-\pi, \pi]$ then the spectra of the symmetric Toeplitz matrices $T_{n}=$ $\left(c_{r-s}\right)_{r, s=1}^{n}, n=1,2, \ldots$, are equally distributed in the sense of H. Weyl [1, p. 62] with values of f at n equally spaced points in $[0, \pi]$, as $n \rightarrow \infty$. We will now obtain related results on the spectrum of $K_{n}(\rho, \gamma)$ as $n \rightarrow \infty$, assuming that $0<\rho<1$. We also assume temporarily that $\gamma \rho^{2} \neq-1$, so $K_{n}(\rho, \gamma)$ is invertible.

We begin by considering the spectrum of
$V_{n}=\left(1-\rho^{2}\right) K_{n}^{-1}(\rho, \gamma)=\left[\begin{array}{ccccccc}1+\gamma \rho^{4} & -\rho & 0 & \cdots & 0 & 0 & 0 \\ 1+\gamma \rho^{2} & -\rho & & 0 & \cdots & 0 & 0 \\ -\rho & 1+\rho^{2} & -\rho & \cdots & 0 \\ 0 & -\rho & 1+\rho^{2} & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1+\rho^{2} & -\rho & 0 \\ 0 & 0 & 0 & \cdots & -\rho & 1+\rho^{2} & -\rho \\ 0 & 0 & 0 & \cdots & 0 & -\rho & 1\end{array}\right]$.
It is straightforward to verify that if $x_{0}, x_{1}, \ldots, x_{n}, x_{n+1}$ (not all zero) satisfy

$$
\begin{equation*}
-\rho x_{r-1}+\left[1+\rho^{2}-\mu\right] x_{r}-\rho x_{r+1}=0, \quad 1 \leq r \leq n \tag{15}
\end{equation*}
$$

and the boundary conditions

$$
\begin{equation*}
\left(1+\gamma \rho^{2}\right) x_{0}=\rho(1+\gamma) x_{1} \quad \text { and } \quad x_{n+1}=\rho x_{n} \tag{16}
\end{equation*}
$$

then $x=\left[x_{1} x_{2} \cdots x_{n}\right]^{T}$ is a μ-eigenvector of V_{n}. The solutions of (15) are of the form

$$
\begin{equation*}
x_{r}=c_{1} \zeta^{r}+c_{2} \zeta^{-r} \tag{17}
\end{equation*}
$$

where ζ and $1 / \zeta$ are the zeros of the reciprocal polynomial

$$
\begin{equation*}
P(z)=-\rho z^{2}+\left(1+\rho^{2}-\mu\right) z-\rho \tag{18}
\end{equation*}
$$

The boundary conditions (16) require that

$$
\begin{align*}
& \left(1+\gamma \rho^{2}\right)\left(c_{1}+c_{2}\right)=\rho(1+\gamma)\left(c_{1} \zeta+c_{2} / \zeta\right) \tag{19}\\
& c_{1} \zeta^{n+1}+c_{2} \zeta^{-n-1}=\rho\left(c_{1} \zeta^{n}+c_{2} \zeta^{-n}\right)
\end{align*}
$$

The determinant of this system is

$$
\begin{align*}
D_{n}(\zeta)= & \left|\begin{array}{cc}
1+\gamma \rho^{2}-\rho(1+\gamma) \zeta & 1+\gamma \rho^{2}-\rho(1+\gamma) / \zeta \\
\zeta^{n+1}(1-\rho / \zeta) & \zeta^{-n-1}(1-\rho \zeta)
\end{array}\right| \tag{20}\\
= & \left(1+\gamma \rho^{2}\right)\left(\zeta^{-n-1}-\zeta^{n+1}\right)-\rho\left(2+\gamma\left(1+\rho^{2}\right)\right)\left(\zeta^{-n}-\zeta^{n}\right) \\
& +\rho^{2}(1+\gamma)\left(\zeta^{-n+1}-\zeta^{n-1}\right)
\end{align*}
$$

With $\zeta= \pm 1$, (19) has the nontrivial solution $(1,-1)$, but (17) yields $x_{r}=0$ for all r. Therefore the zeros ± 1 of D_{n} are not associated with eigenvalues of V_{n}. The remaining $2 n$ zeros of D_{n} occur in reciprocal pairs $(\zeta, 1 / \zeta)$. Corresponding to a given pair, x as defined in (17) is an eigenvector of V_{n}, and therefore of $K_{n}(\rho, \gamma)$. To determine the eigenvalue μ of V_{n} with which it is associated, we note that since

$$
P(z)=-\rho(z-\zeta)(z-1 / \zeta)=-\rho\left(z^{2}-(\zeta+1 / \zeta) z+1\right)
$$

(18) implies that

$$
\mu=1-\rho(\zeta+1 / \zeta)+\rho^{2}
$$

Therefore

$$
\lambda=G(\zeta)=\frac{1-\rho^{2}}{1-\rho(\zeta+1 / \zeta)+\rho^{2}}
$$

is an eigenvalue of $K_{n}(\rho, \gamma)$. In particular, if $\zeta=e^{i \theta}$ then $F(\theta)$ (see (14)) is an eigenvalue of $K_{n}(\rho, \gamma)$.

Theorem 5 Let ρ and γ be real numbers, with $0<\rho<1$. Then:
(a) $K_{n}(\rho, \gamma)$ has eigenvalues of the form $F\left(\theta_{j n}\right), j=2, \ldots, n-1$, where

$$
\begin{equation*}
\frac{(j-1) \pi}{n}<\theta_{j n}<\frac{j \pi}{n}, \quad j=2, \ldots, n-1 \tag{21}
\end{equation*}
$$

(b) If $\gamma \leq 1 / \rho$ then $K_{n}(\rho, \gamma)$ has an eigenvalue of the form $F\left(\theta_{1 n}\right)$, where

$$
0<\theta_{1 n}<\frac{\pi}{n}
$$

(c) If $\gamma \geq-1 / \rho$ then $K_{n}(\rho, \gamma)$ has an eigenvalue of the form $F\left(\theta_{n n}\right)$, where

$$
\frac{(n-1) \pi}{n}<\theta_{n n}<\pi
$$

Generalized KMS Matrices

Proof: It suffices to prove (a) and (b) under the additional assumption that $\gamma \neq$ $-1 / \rho^{2}$ (so that V_{n} is defined), since the conclusions will then follow in the case where $\gamma=-1 / \rho^{2}$ by a continuity argument. We first isolate the zeros $\zeta=e^{i \theta}$ of D_{n} with $0<\theta<\pi$. Define

$$
S_{n}(\theta)=\left(1+\gamma \rho^{2}\right) \frac{\sin (n+1) \theta}{\sin \theta}-\rho\left(2+\gamma\left(1+\rho^{2}\right)\right) \frac{\sin n \theta}{\sin \theta}+\rho^{2}(1+\gamma) \frac{\sin (n-1) \theta}{\sin \theta}
$$

on $[0, \pi]$, where the definition at the endpoints is by continuity; then $D_{n}\left(e^{i \theta}\right)=$ $D_{n}\left(e^{-i n \theta}\right)=0$ if and only if $S_{n}(\theta)=0$.

It is routine to verify that

$$
\begin{gather*}
S_{n}(0)=(1-\rho)[1+\rho+n(1-\rho)(1-\gamma \rho)] \tag{22}\\
S_{n}\left(\frac{j \pi}{n}\right)=(-1)^{j}\left(1-\rho^{2}\right), \quad j=1, \ldots, n-1 \tag{23}
\end{gather*}
$$

and

$$
\begin{equation*}
S_{n}(\pi)=(-1)^{n}\left(1-\rho^{2}+n(1+\rho)^{2}(1+\gamma \rho)\right) \tag{24}
\end{equation*}
$$

From (23), S_{n} changes sign on $((j-1) \pi / n, j \pi / n), j=2, \ldots, n-1$. This implies (a). If $\gamma \leq 1 / \rho$ then (22), and (23) with $j=1$ imply that S_{n} changes sign on $(0, \pi / n)$. This implies (b). If $\gamma \geq-1 / \rho$ then (23) with $j=n-1$ and (24) imply that S_{n} changes sign on $((n-1) \pi / n, \pi)$. This implies (c).

Now let $\lambda_{1 n}<\lambda_{2 n}<\ldots<\lambda_{n n}$ be the eigenvalues of $K_{n}(\rho, \gamma)$. Let

$$
\alpha=\frac{1-\rho}{1+\rho}=\min _{0 \leq \theta \leq \pi} F(\theta) \quad \text { and } \quad \beta=\frac{1+\rho}{1-\rho}=\max _{0 \leq \theta \leq \pi} F(\theta)
$$

and define

$$
\begin{equation*}
\chi_{j n}=F\left(\frac{(2 n-2 j+1) \pi}{2 n}\right) \quad j=1, \ldots, n \tag{25}
\end{equation*}
$$

ThEOREM 6 Suppose that $0<\rho<1,|\gamma| \leq 1 / \rho$, and H is continuous on $[\alpha, \beta]$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n}\left|H\left(\lambda_{j n}\right)-H\left(\chi_{j n}\right)\right|=0 \tag{26}
\end{equation*}
$$

According to a definition given in [8], the sets $\left\{\lambda_{j n}\right\}_{j=1}^{n}$ and $\left\{\chi_{j n}\right\}_{j=1}^{n}$ are $a b$ solutely equally distributed as $n \rightarrow \infty$. This is stronger than Weyl's definition of equally distributed as $n \rightarrow \infty$, which does not require the absolute value signs in (26). The proof that we are about to give is similar to the proof of Theorem 4 in [7]. We repeat the proof here because there were minor - but potentially confusing - errors in the enumeration of $\left\{\lambda_{j n}\right\}_{j=1}^{n}$ and $\left\{\chi_{j n}\right\}_{j=1}^{n}$ in [7].

Proof: Since F is decreasing, Theorem 5 implies that

$$
\lambda_{j n}=F\left(\theta_{n-j+1, n}\right), \quad j=1, \ldots, n
$$

Therefore (21), (25), and the mean value theorem imply that

$$
\begin{equation*}
\left|\lambda_{k n}-\chi_{k n}\right| \leq \frac{K \pi}{2 n} \tag{27}
\end{equation*}
$$

where $K=\max _{0 \leq \theta \leq \pi}\left|F^{\prime}(\theta)\right|$. Let

$$
W_{n}(H)=\sum_{k=1}^{n}\left|H\left(\lambda_{k n}\right)-H\left(\chi_{k n}\right)\right| .
$$

If H is constant then $W_{n}(H)=0$. If N is a positive integer then (27) and the mean value theorem imply that

$$
\left|\lambda_{k n}^{N}-\chi_{k n}^{N}\right| \leq N \beta^{N-1}\left|\lambda_{k n}-\chi_{k n}\right| \leq \frac{N \beta^{N-1} K \pi}{2 n}
$$

so (26) holds if H is a polynomial.
Now suppose H is an arbitrary continuous function on $[\alpha, \beta]$ and let $\epsilon>0$ be given. From the Weierstrass approximation theorem, there is a polynomial P such that $|H(u)-P(u)|<\epsilon$ for all u in $[\alpha, \beta]$. Therefore $W_{n}(H)<W_{n}(P)+2 n \epsilon$, and

$$
\limsup _{n \rightarrow \infty} \frac{W_{n}(H)}{n} \leq \lim _{n \rightarrow \infty} \frac{W_{n}(P)}{n}+2 \epsilon=2 \epsilon
$$

Now let $\epsilon \rightarrow 0$ to conclude that $\lim _{n \rightarrow \infty} W_{n}(H) / n=0$.
Theorem 7 Suppose that $0<\rho<1$ and H is continuous on $[\alpha, \beta]$. Then:
(a) If $\gamma>1 / \rho$ then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \lambda_{n n}=\frac{(1+\gamma)\left(1+\gamma \rho^{2}\right)}{\gamma\left(1-\rho^{2}\right)} \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n-1}\left|H\left(\lambda_{j n}\right)-H\left(\chi_{j n}\right)\right|=0 \tag{29}
\end{equation*}
$$

(b) If $\gamma<-1 / \rho$ then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \lambda_{1 n}=\frac{(1+\gamma)\left(1+\gamma \rho^{2}\right)}{\gamma\left(1-\rho^{2}\right)} \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=2}^{n}\left|H\left(\lambda_{j n}\right)-H\left(\chi_{j n}\right)\right|=0 \tag{31}
\end{equation*}
$$

Proof: If $\gamma=-1 / \rho^{2}$ then (12) implies that $\lambda_{1 n}=0$, which verifies (30) in this case. Henceforth we assume that $|\gamma|>1 / \rho$, but $\gamma \neq-1 / \rho^{2}$. For all values of n and γ, Theorem 5 implies that at least $n-1$ eigenvalues of $K_{n}(\rho, \gamma)$ are values of $F(\theta)$ and therefore in (α, β). This and the fact that $D_{n}(1)=D_{n}(-1)=0$ account for at least $2 n$ zeros of D_{n}. If $\gamma>1 / \rho$ then $S_{n}(0)$ and $S_{n}(\pi / n)$ are both negative for n sufficiently large, while if $\gamma<-1 / \rho^{2}$ then $S_{n}(\pi)$ and $S_{n}((n-1) \pi / n)$ and $S_{n}(\pi)$ have the same sign for n sufficiently large. Therefore, there is an N such that if $n \geq N$ then D_{n} has exactly one pair $\left(\zeta_{n}, 1 / \zeta_{n}\right)$ of zeros which are not on the unit circle.

Hence, ζ_{n} is real, and we may assume without loss of generality that $\left|\zeta_{n}\right|>1$. We denote the eigenvalue corresponding to ζ_{n} by ν_{n}; thus,

$$
\begin{equation*}
\nu_{n}=G\left(\zeta_{n}\right)=\frac{1-\rho^{2}}{1-\rho\left(\zeta_{n}+1 / \zeta_{n}\right)+\rho^{2}} \tag{32}
\end{equation*}
$$

Since ζ_{n} is not on the unit circle, $\nu_{n} \notin[\alpha, \beta]$. Therefore the Cauchy interlacement theorem implies that $\nu_{n}=\lambda_{n n}$ for all $n \geq N$ or $\nu_{n}=\lambda_{1 n}$ for every $n \geq N$, and that $\left|\nu_{n+1}\right|>\left|\nu_{n}\right|$. Therefore (32) implies that $\left|\zeta_{n+1}\right|>\left|\zeta_{n}\right|$.

Now it is convenient to rewrite (20) as

$$
\begin{equation*}
D_{n}(\zeta)=\zeta^{-n+1} H(1 / \zeta)-\zeta^{n-1} H(\zeta) \tag{33}
\end{equation*}
$$

with

$$
\begin{align*}
H(\zeta) & =\left(1+\gamma \rho^{2}\right) \zeta^{2}-\rho\left(2+\gamma\left(1+\rho^{2}\right) \zeta+\rho^{2}(1+\gamma)\right. \tag{34}\\
& =\left(1+\gamma \rho^{2}\right)(\zeta-\rho)\left(\zeta-\zeta_{\infty}\right)
\end{align*}
$$

where

$$
\zeta_{\infty}=\frac{\rho(1+\gamma)}{1+\gamma \rho^{2}}
$$

Since $D_{n}\left(\zeta_{n}\right)=0,(33)$ and (34) imply that

$$
\zeta_{n}-\zeta_{\infty}=\frac{\zeta_{n}^{-2 n+2} H\left(1 / \zeta_{n}\right)}{\left(1+\gamma \rho^{2}\right)\left(\zeta_{n}-\rho\right)}
$$

Since $\left|\zeta_{n}\right|$ is increasing and greater than 1 , this implies that $\lim _{n \rightarrow \infty} \zeta_{n}=\zeta_{\infty}$. Therefore

$$
\lim _{n \rightarrow \infty} \nu_{n}=G\left(\zeta_{\infty}\right)=\frac{(1+\gamma)\left(1+\gamma \rho^{2}\right)}{\gamma\left(1-\rho^{2}\right)}
$$

Since the quantity on the right is greater than β if $\gamma>1 / \rho$, or less than α if $\gamma<-1 / \rho$, this implies (28) if $\gamma>1 / \rho$, or (30) if $\gamma<-1 / \rho$.

Now Theorem 5 implies that if $\gamma>1 / \rho$ then $\lambda_{j n}=F\left(\theta_{n-j+1, n}\right), j=1, \ldots, n-1$, while if $\gamma<-1 / \rho$ then $\lambda_{j n}=F\left(\theta_{n-j+1, n}\right), j=2, \ldots, n$, and arguments similar to the proof of Theorem 6 yield (29) and (31).
4. Spectral Properties of $L_{n}=(\min (r, s)-\gamma)_{r, s=1}^{n}$.

We now consider the spectrum of $L_{n}=(\min (r, s)-\gamma)_{r, s=1}^{n}$ in the case where $\gamma \leq$ $1 / 2$. We begin by considering the spectrum of L_{n}^{-1} (see (13)). It is straightforward to verify that if $x_{0}, x_{1}, \ldots, x_{n}, x_{n+1}$ (not all zero) satisfy the difference equation

$$
\begin{equation*}
x_{r-1}-(2-\mu) x_{r}+x_{r+1}=0, \quad 1 \leq r \leq n \tag{35}
\end{equation*}
$$

and the boundary conditions

$$
\begin{equation*}
(1-\gamma) x_{0}+\gamma x_{1}=0 \quad \text { and } \quad x_{n}-x_{n+1}=0 \tag{36}
\end{equation*}
$$

then $x=\left[x_{1} x_{2} \cdots x_{n}\right]^{T}$ satisfies $L_{n}^{-1} x=\mu x$; therefore, μ is an eigenvalue of L_{n}^{-1} if and only if (35) has a nontrivial solution satisfying (36), in which case x is μ eigenvector of L_{n}^{-1}.

The solutions of (35) are of the form

$$
\begin{equation*}
x_{r}=c_{1} \zeta^{r}+c_{2} \zeta^{-r} \tag{37}
\end{equation*}
$$

where ζ and $1 / \zeta$ are the zeros of the reciprocal polynomial

$$
\begin{equation*}
P(z)=z^{2}-(2-\mu) z+1 \tag{38}
\end{equation*}
$$

The boundary conditions (36) require that

$$
\begin{align*}
(1-\gamma)\left(c_{1}+c_{2}\right)+\gamma\left(c_{1} \zeta+c_{2} / \zeta\right) & =0 \\
\left(c_{1} \zeta^{n}+c_{2} \zeta^{-n}\right)-\left(c_{1} \zeta^{n+1}+c_{2} \zeta^{-n-1}\right) & =0 \tag{39}
\end{align*}
$$

The determinant of this system is

$$
\begin{aligned}
D_{n}(\zeta) & =\left|\begin{array}{cc}
1-\gamma+\gamma \zeta & 1-\gamma+\gamma / \zeta \\
\zeta^{n}-\zeta^{n+1} & 1 / \zeta^{n}-1 / \zeta^{n+1}
\end{array}\right| \\
& =\zeta^{-n-1}(\zeta-1)\left[(1-\gamma)\left(\zeta^{2 n+1}+1\right)+\gamma\left(\zeta^{2 n}+\zeta\right)\right]
\end{aligned}
$$

With $\zeta=1$, (39) has the nontrivial solution $(1,-1)$, but (37) yields $x_{r}=0$ for all r. Therefore $\zeta=1$ is not associated with an eigenvalue of L_{n}^{-1}. The remaining $2 n$ zeros of D_{n} occur in reciprocal pairs $(\zeta, 1 / \zeta)$. Corresponding to a given pair, x as defined in (37) is an eigenvector of L_{n}^{-1} (and therefore of L_{n}). To determine the eigenvalue μ of L_{n}^{-1} with which it is associated, we note that since

$$
P(z)=(z-\zeta)(z-1 / \zeta)=z^{2}-(\zeta+1 / \zeta) z+1
$$

(38) implies that

$$
\mu=\left(2-\zeta-\frac{1}{\zeta}\right)
$$

Therefore

$$
\begin{equation*}
\lambda=\frac{1}{2-\zeta-1 / \zeta} \tag{40}
\end{equation*}
$$

is an eigenvalue of L_{n}.

THEOREM 8 If $\gamma \leq 1 / 2$ then the eigenvalues $\lambda_{1 n}<\lambda_{2 n}<\cdots<\lambda_{n n}$ of

$$
L_{n}=(\min (r, s)-\gamma)_{r, s=1}^{n}
$$

are of the form

$$
\lambda_{j n}=\frac{1}{4} \csc ^{2} \frac{\theta_{n-j+1, n}}{2}
$$

where

$$
\frac{2(j-1) \pi}{2 n+1}<\theta_{j n}<\frac{2 j \pi}{2 n+1} .
$$

Proof: It suffices to isolate the zeros $\zeta=e^{i \theta}$ of D_{n} with $0<\theta<\pi$. Define

$$
C_{n}(\theta)=(1-\gamma) \cos (n+1 / 2) \theta+\gamma \cos (n-1 / 2) \theta
$$

Then $D_{n}\left(e^{i n \theta}\right)=D_{n}\left(e^{-i n \theta}\right)=0$ if $C_{n}(\theta)=0$. If $\gamma \leq 1 / 2$ then S_{n} changes sign on each interval

$$
I_{j n}=\left(\frac{2(j-1) \pi}{2 n+1}, \frac{2 j \pi}{2 n+1}\right), \quad j=1, \ldots, n
$$

This implies that $S_{n}\left(\theta_{j n}\right)=0$ for some $\theta_{j n}$ in $I_{j n}$. From (40), (1/4) $\csc ^{2}\left(\theta_{j n} / 2\right)$ is an eigenvalue of L_{n}. Since $\csc ^{2}(\theta / 2)$ is decreasing on $(0, \pi)$, the conclusion follows.

References

[1] U. Grenander and G. Szëgo, Toeplitz Forms and Their Applications, Univ. of California Press, Berkeley and Los Angeles, 1958.
[2] T. A. Hannula, T. G. Ralley, and I. Reiner, Modular representation algebras, Bull. Amer. Math. Soc. 73 (1967), 100-101.
[3] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 1991.
[4] M. Kac, W. L. Murdock, and G. Szegö, On the eigenvalues of certain Hermitian forms, J. Rat. Mech. and Anal. 2 (1953), 787-800.
[5] T. Y. Lam, On the diagonalization of quadratic forms, Math. Mag. 72 (1999), 231-235.
[6] W. F. Trench, Numerical solution of the eigenvalue problem for symmetric rationally generated Toeplitz matrices, SIAM J. Matrix Anal. Appl. 9 (1988), 291-303.
[7] W. F. Trench, Asymptotic distribution of the spectra of a class of generalized Kac-Murdock-Szegö matrices, Lin. Alg. Appl. 294 (1999), 181-192.
[8] W. F. Trench, Asymptotic distribution of the even and odd spectra of real symmetric Toeplitz matrices, Lin. Alg. Appl. 302-303 (1999), 155-162.

