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Abstract

We consider generalizations of the Kac-Murdock-Szegö matrices of the
forms Ln = (ρ|r−s| cmin(r,s))

n

r,s=1 and Un = (ρ|r−s| cmax(r,s))
n

r,s=1, where ρ

and c1, c2, . . . , cn are real numbers. We obtain explicit expressions for the
determinants and inverses of Ln and Un, determine their inertias, and diag-
onalize their quadratic forms. We also consider the spectral distributions of
two special cases.
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1. Introduction.

The Kac-Murdock-Szegö (KMS) matrices [4] are the symmetric Toeplitz matri-
ces

Kn(ρ) =
(

ρ|r−s|
)n

r,s=1
, n = 1, 2, . . . ,

where ρ is real. It is known [3, Section 7.2, Problems 12-13] that

det(Kn(ρ)) = (1 − ρ2)n−1 (1)

and, if ρ 6= ±1, then

K−1
n (ρ) =

1

1 − ρ2























1 −ρ 0 · · · 0 0 0
−ρ 1 + ρ2 −ρ · · · 0 0 0

0 −ρ 1 + ρ2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 + ρ2 −ρ 0
0 0 0 · · · −ρ 1 + ρ2 −ρ
0 0 0 · · · 0 −ρ 1























;
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thus, except for its first and last rows, K−1
n (ρ) is a tridiagonal Toeplitz matrix.

In this paper we consider generalizations of the KMS matrices of the form

Ln = (ρ|r−s| cmin(r,s))
n
r,s=1 and Un = (ρ|r−s| cmax(r,s))

n
r,s=1,

where ρ and c1, c2, . . . , cn are real numbers; thus,

Ln =























c1 ρc1 ρ2c1 · · · ρn−3c1 ρn−2c1 ρn−1c1

ρc1 c2 ρc2 · · · ρn−4c2 ρn−3c2 ρn−2c2

ρ2c1 ρc2 c3 · · · ρn−5c3 ρn−4c3 ρn−3c3

...
...

...
. . .

...
...

...
ρn−3c1 ρn−4c2 ρn−5c3 · · · cn−2 ρcn−2 ρ2cn−2

ρn−2c1 ρn−3c2 ρn−4c3 · · · ρcn−2 cn−1 ρcn−1

ρn−1c1 ρn−2c2 ρn−3c3 · · · ρ2cn−2 ρcn−1 cn























(2)

and

Un =























c1 ρc2 ρ2c2 · · · ρn−3cn−2 ρn−2cn−1 ρn−1cn

ρc2 c2 ρc3 · · · ρn−4cn−2 ρn−3cn−1 ρn−2cn

ρ2c3 ρc3 c3 · · · ρn−5cn−2 ρn−4cn−1 ρn−3cn

...
...

...
. . .

...
...

...
ρn−3cn−2 ρn−4cn−2 ρn−5cn−2 · · · cn−2 ρcn−1 ρ2cn

ρn−2cn−1 ρn−3cn−1 ρn−4cn−1 · · · ρcn−1 cn−1 ρcn

ρn−1cn ρn−2cn ρn−3cn · · · ρ2cn ρcn cn























.

Although we do not know of any practical applications in which these matrices
occur, we believe that they have interesting properties. In particular, we hope
to discover conditions on sequences {cn}

∞
n=1 which guarantee that the spectra of

the family {Ln}
∞
n=1 and/or the family {Un}

∞
n=1 have predictable distributions as

n → ∞. Theorems 5-8 provide a modest start in this direction.

In Section 2 we obtain explicit expressions for the determinants and inverses of
Ln and Un. We also determine their inertias and diagonalize their quadratic forms.
In Section 3 we discuss the distribution of the eigenvalues of the matrices

Kn(ρ, γ) =
(

ρ|r−s| + γρr+s)
)n

r,s=1

(which is of the form (2) with cr = 1+γρ2r), where 0 < ρ < 1 and γ is an arbitrary
real number. In Section 4 we discuss the distribution of the eigenvalues of

Ln = (min(r, s) − γ)n

r,s=1

(which is of the form (2) with cr = r − γ), where γ ≤ 1/2.
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2. Properties of Ln and Un.

Let An be the n×n matrix with 1’s on the diagonal, −ρ’s on the super diagonal,
and zeros elsewhere; thus,

An =























1 −ρ 0 · · · 0 0 0
0 1 −ρ · · · 0 0 0
0 0 1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 −ρ 0
0 0 0 · · · 0 1 −ρ
0 0 0 · · · 0 0 1























.

It is straightforward to verify that

LnAn =























c1 0 0 · · · 0 0 0
ρc1 α1 0 · · · 0 0 0
ρ2c1 ρα1 α2 · · · 0 0 0

...
...

...
. . .

...
...

...
ρn−3c1 ρn−4α1 ρn−5α2 · · · αn−3 0 0
ρn−2c1 ρn−3α1 ρn−4α2 · · · ραn−3 αn−2 0
ρn−1c1 ρn−2α1 ρn−1α2 · · · ρ2αn−3 ραn−2 αn−1























,

where
αi = ci+1 − ρ2ci, i = 1, . . . , n − 1,

and that

AT
nLnAn = diag(c1, α1, α2, . . . , αn−1)

= diag(c1, c2 − ρ2c1, c3 − ρ2c2, . . . , cn − ρ2cn−1).
(3)

It is also straightforward to verify that

AnUn =























β1 0 0 · · · 0 0 0
ρβ2 β2 0 · · · 0 0 0
ρ2β3 ρβ3 β3 · · · 0 0 0

...
...

...
. . .

...
...

...
ρn−3βn−2 ρn−4βn−2 ρn−5βn−2 · · · βn−2 0 0
ρn−2βn−1 ρn−3βn−1 ρn−4βn−1 · · · ρβn−1 βn−1 0
ρn−1cn ρn−2cn ρn−1cn · · · ρ2cn ρcn cn























,

where
βi = ci − ρ2ci+1, i = 1, . . . , n − 1,
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and that

AnUnAT
n = diag(β1, β2, . . . , βn−1, cn)

= diag(c1 − ρ2c2, c2 − ρ2c3, . . . , cn−1 − ρ2cn, cn).
(4)

Since det(An) = 1, (3) and (4) imply that

det(Ln) = c1

n−1
∏

i=1

(ci+1 − ρ2ci) (5)

and

det(Un) = cn

n−1
∏

i=1

(ci − ρ2ci+1). (6)

Note that (5) and (6) both reduce to (1) when c1 = c2 = · · · = cn = 1.

We will prove the following two theorems together.

Theorem 1 The inertia of Ln is (m, z, p), where m, z, and p are the numbers of

negative, zero, and positive elements in the set

{c1, c2 − ρ2c1, c3 − ρ2c2, . . . , cn − ρ2cn−1}.

Moreover,

n
∑

r,s=1

ρ|r−s|cmin(r,s)xrxs = c1





n
∑

j=1

ρj−1xj





2

+
n

∑

i=2

(ci+1−ρ2ci)





n
∑

j=i

ρj−ixj





2

. (7)

Theorem 2 The inertia of Un is (m, z, p), where m, z, and p are the numbers of

negative, zero, and positive elements in the set

{c1 − ρ2c2, c2 − ρ2c3, . . . , cn−1 − ρ2cn, cn}.

Moreover,

n
∑

r,s=1

ρ|r−s|cmax(r,s)xrxs =

n−1
∑

i=1

(ci − ρ2ci+1)





i
∑

j=1

ρi−jxj





2

+ cn





n
∑

j=1

ρn−jxj





2

.

(8)

Proof: By Sylvester’s theorem, (3) and (4) imply the statements concerning inertia.
From (3),

Ln = (A−1
n )T diag(c1, c2 − ρ2c1, c3 − ρ2c2, . . . , cn − ρ2cn−1)A

−1
n . (9)
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From (4),

Un = A−1
n diag(c1 − ρ2c2, c2 − ρ2c3, . . . , cn−1 − ρ2cn, cn)(A−1

n )T . (10)

Since

A−1
n =























1 ρ ρ2 · · · ρn−3 ρn−2 ρn−1

0 1 ρ · · · ρn−4 ρn−3 ρn−2

0 0 1 · · · ρn−5 ρn−4 ρn−3

...
...

...
. . .

...
...

...
0 0 0 · · · 1 ρ ρ2

0 0 0 · · · 0 1 ρ
0 0 0 · · · 0 0 1























,

(9) implies (7) and (10) implies (8).

Example 1. With ρ = 1 and and cr = r, (7) and (8) reduce to

n
∑

r,s=1

min(r, s)xrxs =

n
∑

i=1





n
∑

j=i

xj





2

(11)

and
n

∑

r,s=1

max(r, s)xrxs = −

n−1
∑

i=1





i
∑

j=1

xj





2

+ n





n
∑

j=1

xj





2

.

These diagonalizations have recently been obtained by T. Y. Lam [5], who observed
that (11) was previously stated in [2].

Example 2. With cr = 1, (7) and (8) provide distinct diagonalizations of the
quadratic form associated with Kn(ρ):

n
∑

r,s=1

ρ|r−s|xrxs =





n
∑

j=1

ρj−1xj





2

+ (1 − ρ2)

n
∑

i=2





n
∑

j=i

ρj−ixj





2

,

n
∑

r,s=1

ρ|r−s|xrxs = (1 − ρ2)
n−1
∑

i=1





i
∑

j=1

ρi−jxj





2

+





n
∑

j=1

ρn−jxj





2

.

Theorem 3 If det(Ln) 6= 0 define

σi =
1

ci+1 − ρ2ci

, i = 1, . . . , n − 1.
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Then L−1
n = (urs)

n
r,s=1 is the symmetric tridiagonal matrix with

u11 = 1/c1 + ρ2σ1, unn = σn−1,

urr = σr−1 + ρ2σr, r = 2, . . . , n− 1,

and

ur+1,r = ur,r+1 = −ρσr , r = 1, . . . , n− 1.

For example,

L−1
5 =













1/c1 + ρ2σ1 −ρσ1 0 0 0
−ρσ1 σ1 + ρ2σ2 −ρσ2 0 0

0 −ρσ2 σ2 + ρ2σ3 −ρσ3 0
0 0 −ρσ3 σ3 + ρ2σ4 −ρσ4

0 0 0 −ρσ4 σ4













.

Proof: From (9),

L−1
n = An diag(1/c1, σ1, σ2, . . . , σn−1)A

T
n ,

and routine manipulations verify the stated result.

Example 3. Let cr = 1 + γρ2r , where γ is an arbitrary real number. Then

ρ|r−s|cmin(r,s) = ρ|r−s| + γρr+s.

We denote Ln by Kn(ρ, γ), since we will return to this matrix in Section 3; thus

Kn(ρ, γ) =
(

ρ|r−s| + γρr+s
)n

r,s=1
.

In this case ci+1 − ρ2ci = 1 − ρ2, so (5) implies that

det(Kn(ρ, γ)) = (1 + γρ2)(1 − ρ2)n−1. (12)

Since

σi =
1

1 − ρ2
, . . . , i = 1, . . . , n − 1,

Theorem 3 implies that

K−1
n (ρ, γ) =

1

1 − ρ2



























1 + γρ4

1 + γρ2
−ρ 0 · · · 0 0 0

−ρ 1 + ρ2 −ρ · · · 0 0 0
0 −ρ 1 + ρ2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 + ρ2 −ρ 0
0 0 0 · · · −ρ 1 + ρ2 −ρ
0 0 0 · · · 0 −ρ 1
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if ρ 6= ±1 and γρ2 6= −1.

Example 4. If ρ = 1 and cr = r − γ then

Ln = (min(r, s) − γ)n
r,s=1 .

Since σi = 1, i = 1, . . . , n− 1, Theorem 3 implies that

L−1
n =































2 − γ

1 − γ
−1 0 0 · · · 0 0 0 0

−1 2 −1 0 · · · 0 0 0 0

0 −1 2 −1 · · · 0 0 0 0

...
...

...
...

. . .
...

...
...

...

0 0 0 0 · · · −1 2 −1 0

0 0 0 0 · · · 0 −1 2 −1

0 0 0 0 · · · 0 0 −1 1































(13)

if γ 6= 1.

Theorem 4 If det(Un) 6= 0 define

τi =
1

ci − ρ2ci+1
, i = 1, . . . , n − 1.

Then U−1
n = (vrs)

n
r,s=1 is the symmetric tridiagonal matrix with

v11 = τ1, vnn = ρ2τn−1 + 1/cn,

vrr = ρ2τr−1 + τr , r = 2, . . . , n − 1,

and

vr+1,r = vr,r+1 = −ρτr , r = 1, . . . , n − 1.

For example,

U−1
5 =













τ1 −ρτ1 0 0 0
−ρτ1 ρ2τ1 + τ2 −ρτ2 0 0

0 −ρτ2 ρ2τ2 + τ3 −ρτ3 0
0 0 −ρτ3 ρ2τ3 + τ4 −ρτ4

0 0 0 −ρτ4 ρ2τ4 + 1/c5













.

Proof: From (10),

U−1
n = AT

n diag(τ1, τ2, τ3, . . . , τn−1, 1/cn)An,
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and routine manipulations verify the stated result.

Example 5. Let cr = 1 + γρ−2r , where γ is real. Then

Un =
(

ρ|r−s| + γρ−r−s
)n

r,s=1
.

In this case ci − ρ2ci+1 = 1 − ρ2, so (6) implies that

det(Un) = (1 + γρ−2n)(1 − ρ2)n−1.

Since

τi =
1

1 − ρ2
, . . . , i = 1, . . . , n − 1,

Theorem 4 implies that

U−1
n =

1

1 − ρ2



























1 −ρ 0 · · · 0 0 0
−ρ 1 + ρ2 −ρ · · · 0 0 0

0 −ρ 1 + ρ2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 + ρ2 −ρ 0
0 0 0 · · · −ρ 1 + ρ2 −ρ

0 0 0 · · · 0 −ρ
ρ2n + γρ2

ρ2n + γ



























if ρ 6= ±1 and γ 6= −ρ2n.

Example 6. If ρ = 1 and cr = r − γ then

Un = (max(r, s) − γ)n
r,s=1 .

Since τi = −1, i = 1, . . . , n − 1, Theorem 4 implies that

U−1
n =































−1 1 0 0 · · · 0 0 0 0

1 −2 1 0 · · · 0 0 0 0

0 1 −2 1 · · · 0 0 0 0

...
...

...
...

. . .
...

...
...

...

0 0 0 0 · · · 1 −2 1 0

0 0 0 0 · · · 0 1 −2 1

0 0 0 0 · · · 0 0 1
−n + 1 + γ

n − γ































if γ 6= n.
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3. Spectral Properties of Kn(ρ, γ).

If 0 < ρ < 1 then

∞
∑

n=−∞

ρ|n|einθ = F (θ) =
1 − ρ2

1 − 2ρ cos θ + ρ2
, (14)

and it is known that the eigenvalues λ1n < λ2n < · · · < λnn of Kn(ρ) = (ρ|r−s|)n
r,s=1

are given by
λjn = F (φn−j+1,n),

where
(j − 1)π

n + 1
< φjn <

jπ

n + 1
, j = 1, 2, . . .n.

(See [6] for more on this.) This illustrates a theorem of Szegö [1, Chapter 5] which
implies that if {cr}

∞
r=−∞ are the Fourier coefficients of a bounded real-valued even

function f ∈ L[−π, π] then the spectra of the symmetric Toeplitz matrices Tn =
(cr−s)

n
r,s=1, n = 1, 2, . . ., are equally distributed in the sense of H. Weyl [1, p. 62]

with values of f at n equally spaced points in [0, π], as n → ∞. We will now obtain
related results on the spectrum of Kn(ρ, γ) as n → ∞, assuming that 0 < ρ < 1.
We also assume temporarily that γρ2 6= −1, so Kn(ρ, γ) is invertible.

We begin by considering the spectrum of

Vn = (1−ρ2)K−1
n (ρ, γ) =



























1 + γρ4

1 + γρ2
−ρ 0 · · · 0 0 0

−ρ 1 + ρ2 −ρ · · · 0 0 0
0 −ρ 1 + ρ2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 + ρ2 −ρ 0
0 0 0 · · · −ρ 1 + ρ2 −ρ
0 0 0 · · · 0 −ρ 1



























.

It is straightforward to verify that if x0, x1, . . . , xn, xn+1 (not all zero) satisfy

−ρxr−1 + [1 + ρ2 − µ]xr − ρxr+1 = 0, 1 ≤ r ≤ n, (15)

and the boundary conditions

(1 + γρ2)x0 = ρ(1 + γ)x1 and xn+1 = ρxn, (16)

then x = [x1 x2 · · · xn]T is a µ-eigenvector of Vn. The solutions of (15) are of the
form

xr = c1ζ
r + c2ζ

−r, (17)
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where ζ and 1/ζ are the zeros of the reciprocal polynomial

P (z) = −ρz2 + (1 + ρ2 − µ)z − ρ. (18)

The boundary conditions (16) require that

(1 + γρ2)(c1 + c2) = ρ(1 + γ)(c1ζ + c2/ζ)
c1ζ

n+1 + c2ζ
−n−1 = ρ(c1ζ

n + c2ζ
−n).

(19)

The determinant of this system is

Dn(ζ) =

∣

∣

∣

∣

1 + γρ2 − ρ(1 + γ)ζ 1 + γρ2 − ρ(1 + γ)/ζ
ζn+1(1 − ρ/ζ) ζ−n−1(1 − ρζ)

∣

∣

∣

∣

= (1 + γρ2)(ζ−n−1 − ζn+1) − ρ(2 + γ(1 + ρ2))(ζ−n − ζn)
+ρ2(1 + γ)(ζ−n+1 − ζn−1).

(20)

With ζ = ±1, (19) has the nontrivial solution (1,−1), but (17) yields xr = 0 for
all r. Therefore the zeros ±1 of Dn are not associated with eigenvalues of Vn. The
remaining 2n zeros of Dn occur in reciprocal pairs (ζ, 1/ζ). Corresponding to a
given pair, x as defined in (17) is an eigenvector of Vn, and therefore of Kn(ρ, γ).
To determine the eigenvalue µ of Vn with which it is associated, we note that since

P (z) = −ρ(z − ζ)(z − 1/ζ) = −ρ(z2 − (ζ + 1/ζ)z + 1),

(18) implies that
µ = 1 − ρ(ζ + 1/ζ) + ρ2.

Therefore

λ = G(ζ) =
1 − ρ2

1 − ρ(ζ + 1/ζ) + ρ2

is an eigenvalue of Kn(ρ, γ). In particular, if ζ = eiθ then F (θ) (see (14)) is an
eigenvalue of Kn(ρ, γ).

Theorem 5 Let ρ and γ be real numbers, with 0 < ρ < 1. Then:

(a) Kn(ρ, γ) has eigenvalues of the form F (θjn), j = 2, . . . , n− 1, where

(j − 1)π

n
< θjn <

jπ

n
, j = 2, . . . , n− 1. (21)

(b) If γ ≤ 1/ρ then Kn(ρ, γ) has an eigenvalue of the form F (θ1n), where

0 < θ1n <
π

n
.

(c) If γ ≥ −1/ρ then Kn(ρ, γ) has an eigenvalue of the form F (θnn), where

(n − 1)π

n
< θnn < π.
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Proof: It suffices to prove (a) and (b) under the additional assumption that γ 6=
−1/ρ2 (so that Vn is defined), since the conclusions will then follow in the case
where γ = −1/ρ2 by a continuity argument. We first isolate the zeros ζ = eiθ of
Dn with 0 < θ < π. Define

Sn(θ) = (1 + γρ2)
sin(n + 1)θ

sin θ
− ρ(2 + γ(1 + ρ2))

sin nθ

sin θ
+ ρ2(1 + γ)

sin(n − 1)θ

sin θ

on [0, π], where the definition at the endpoints is by continuity; then Dn(eiθ) =
Dn(e−inθ) = 0 if and only if Sn(θ) = 0.

It is routine to verify that

Sn(0) = (1 − ρ)[1 + ρ + n(1 − ρ)(1 − γρ)], (22)

Sn

(

jπ

n

)

= (−1)j(1 − ρ2), j = 1, . . . , n− 1, (23)

and
Sn(π) = (−1)n(1 − ρ2 + n(1 + ρ)2(1 + γρ)). (24)

From (23), Sn changes sign on ((j−1)π/n, jπ/n), j = 2, . . . , n−1. This implies (a).
If γ ≤ 1/ρ then (22), and (23) with j = 1 imply that Sn changes sign on (0, π/n).
This implies (b). If γ ≥ −1/ρ then (23) with j = n − 1 and (24) imply that Sn

changes sign on ((n − 1)π/n, π). This implies (c).

Now let λ1n < λ2n < . . . < λnn be the eigenvalues of Kn(ρ, γ). Let

α =
1 − ρ

1 + ρ
= min

0≤θ≤π
F (θ) and β =

1 + ρ

1 − ρ
= max

0≤θ≤π
F (θ),

and define

χjn = F

(

(2n − 2j + 1)π

2n

)

j = 1, . . . , n. (25)

Theorem 6 Suppose that 0 < ρ < 1, |γ| ≤ 1/ρ, and H is continuous on [α, β].
Then

lim
n→∞

1

n

n
∑

j=1

|H(λjn) − H(χjn)| = 0. (26)

According to a definition given in [8], the sets {λjn}
n
j=1 and {χjn}

n
j=1 are ab-

solutely equally distributed as n → ∞. This is stronger than Weyl’s definition of
equally distributed as n → ∞, which does not require the absolute value signs in
(26). The proof that we are about to give is similar to the proof of Theorem 4 in
[7]. We repeat the proof here because there were minor – but potentially confusing
– errors in the enumeration of {λjn}

n
j=1 and {χjn}

n
j=1 in [7].
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Proof: Since F is decreasing, Theorem 5 implies that

λjn = F (θn−j+1,n), j = 1, . . . , n.

Therefore (21), (25), and the mean value theorem imply that

|λkn − χkn| ≤
Kπ

2n
, (27)

where K = max0≤θ≤π |F
′(θ)|. Let

Wn(H) =

n
∑

k=1

|H(λkn) − H(χkn)|.

If H is constant then Wn(H) = 0. If N is a positive integer then (27) and the mean
value theorem imply that

∣

∣λN
kn − χN

kn

∣

∣ ≤ NβN−1 |λkn − χkn| ≤
NβN−1Kπ

2n
,

so (26) holds if H is a polynomial.

Now suppose H is an arbitrary continuous function on [α, β] and let ε > 0 be
given. From the Weierstrass approximation theorem, there is a polynomial P such
that |H(u) − P (u)| < ε for all u in [α, β]. Therefore Wn(H) < Wn(P ) + 2nε, and

lim sup
n→∞

Wn(H)

n
≤ lim

n→∞

Wn(P )

n
+ 2ε = 2ε.

Now let ε → 0 to conclude that limn→∞ Wn(H)/n = 0.

Theorem 7 Suppose that 0 < ρ < 1 and H is continuous on [α, β]. Then:

(a) If γ > 1/ρ then

lim
n→∞

λnn =
(1 + γ)(1 + γρ2)

γ(1 − ρ2)
(28)

and

lim
n→∞

1

n

n−1
∑

j=1

|H(λjn) − H(χjn)| = 0. (29)

(b) If γ < −1/ρ then

lim
n→∞

λ1n =
(1 + γ)(1 + γρ2)

γ(1 − ρ2)
(30)

and

lim
n→∞

1

n

n
∑

j=2

|H(λjn) − H(χjn)| = 0. (31)
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Proof: If γ = −1/ρ2 then (12) implies that λ1n = 0, which verifies (30) in this
case. Henceforth we assume that |γ| > 1/ρ, but γ 6= −1/ρ2. For all values of n and
γ, Theorem 5 implies that at least n− 1 eigenvalues of Kn(ρ, γ) are values of F (θ)
and therefore in (α, β). This and the fact that Dn(1) = Dn(−1) = 0 account for
at least 2n zeros of Dn. If γ > 1/ρ then Sn(0) and Sn(π/n) are both negative for
n sufficiently large, while if γ < −1/ρ2 then Sn(π) and Sn((n − 1)π/n) and Sn(π)
have the same sign for n sufficiently large. Therefore, there is an N such that if
n ≥ N then Dn has exactly one pair (ζn, 1/ζn) of zeros which are not on the unit
circle.

Hence, ζn is real, and we may assume without loss of generality that |ζn| > 1.
We denote the eigenvalue corresponding to ζn by νn; thus,

νn = G(ζn) =
1 − ρ2

1 − ρ(ζn + 1/ζn) + ρ2
. (32)

Since ζn is not on the unit circle, νn /∈ [α, β]. Therefore the Cauchy interlacement
theorem implies that νn = λnn for all n ≥ N or νn = λ1n for every n ≥ N , and
that |νn+1| > |νn|. Therefore (32) implies that |ζn+1| > |ζn|.

Now it is convenient to rewrite (20) as

Dn(ζ) = ζ−n+1H(1/ζ) − ζn−1H(ζ), (33)

with
H(ζ) = (1 + γρ2)ζ2 − ρ(2 + γ(1 + ρ2)ζ + ρ2(1 + γ)

= (1 + γρ2)(ζ − ρ)(ζ − ζ∞),
(34)

where

ζ∞ =
ρ(1 + γ)

1 + γρ2
.

Since Dn(ζn) = 0, (33) and (34) imply that

ζn − ζ∞ =
ζ−2n+2
n H(1/ζn)

(1 + γρ2)(ζn − ρ)
.

Since |ζn| is increasing and greater than 1, this implies that limn→∞ ζn = ζ∞.
Therefore

lim
n→∞

νn = G(ζ∞) =
(1 + γ)(1 + γρ2)

γ(1 − ρ2)
.

Since the quantity on the right is greater than β if γ > 1/ρ, or less than α if
γ < −1/ρ, this implies (28) if γ > 1/ρ, or (30) if γ < −1/ρ.

Now Theorem 5 implies that if γ > 1/ρ then λjn = F (θn−j+1,n), j = 1, . . . , n−1,
while if γ < −1/ρ then λjn = F (θn−j+1,n), j = 2, . . . , n, and arguments similar to
the proof of Theorem 6 yield (29) and (31).
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4. Spectral Properties of Ln = (min(r, s) − γ)n
r,s=1 .

We now consider the spectrum of Ln = (min(r, s)−γ)n
r,s=1 in the case where γ ≤

1/2. We begin by considering the spectrum of L−1
n (see (13)). It is straightforward

to verify that if x0, x1, . . . , xn, xn+1 (not all zero) satisfy the difference equation

xr−1 − (2 − µ)xr + xr+1 = 0, 1 ≤ r ≤ n, (35)

and the boundary conditions

(1 − γ)x0 + γx1 = 0 and xn − xn+1 = 0, (36)

then x = [x1 x2 · · · xn]T satisfies L−1
n x = µx; therefore, µ is an eigenvalue of L−1

n

if and only if (35) has a nontrivial solution satisfying (36), in which case x is µ-
eigenvector of L−1

n .

The solutions of (35) are of the form

xr = c1ζ
r + c2ζ

−r, (37)

where ζ and 1/ζ are the zeros of the reciprocal polynomial

P (z) = z2 − (2 − µ)z + 1. (38)

The boundary conditions (36) require that

(1 − γ)(c1 + c2) + γ(c1ζ + c2/ζ) = 0
(c1ζ

n + c2ζ
−n) − (c1ζ

n+1 + c2ζ
−n−1) = 0.

(39)

The determinant of this system is

Dn(ζ) =

∣

∣

∣

∣

1 − γ + γζ 1 − γ + γ/ζ
ζn − ζn+1 1/ζn − 1/ζn+1

∣

∣

∣

∣

= ζ−n−1(ζ − 1)[(1− γ)(ζ2n+1 + 1) + γ(ζ2n + ζ)].

With ζ = 1, (39) has the nontrivial solution (1,−1), but (37) yields xr = 0 for all
r. Therefore ζ = 1 is not associated with an eigenvalue of L−1

n . The remaining 2n
zeros of Dn occur in reciprocal pairs (ζ, 1/ζ). Corresponding to a given pair, x as
defined in (37) is an eigenvector of L−1

n (and therefore of Ln). To determine the
eigenvalue µ of L−1

n with which it is associated, we note that since

P (z) = (z − ζ)(z − 1/ζ) = z2 − (ζ + 1/ζ)z + 1,

(38) implies that

µ =

(

2 − ζ −
1

ζ

)

.

Therefore

λ =
1

2 − ζ − 1/ζ
(40)

is an eigenvalue of Ln.
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Theorem 8 If γ ≤ 1/2 then the eigenvalues λ1n < λ2n < · · · < λnn of

Ln = (min(r, s) − γ)n
r,s=1

are of the form

λjn =
1

4
csc2 θn−j+1,n

2
,

where
2(j − 1)π

2n + 1
< θjn <

2jπ

2n + 1
.

Proof: It suffices to isolate the zeros ζ = eiθ of Dn with 0 < θ < π. Define

Cn(θ) = (1 − γ) cos(n + 1/2)θ + γ cos(n − 1/2)θ.

Then Dn(einθ) = Dn(e−inθ) = 0 if Cn(θ) = 0. If γ ≤ 1/2 then Sn changes sign on
each interval

Ijn =

(

2(j − 1)π

2n + 1
,

2jπ

2n + 1

)

, j = 1, . . . , n.

This implies that Sn(θjn) = 0 for some θjn in Ijn. From (40), (1/4) csc2(θjn/2) is
an eigenvalue of Ln. Since csc2(θ/2) is decreasing on (0, π), the conclusion follows.
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