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Abstract

We say that a unitary matrix R is rotative (specifically, k-rotative) if its min-

imal polynomial is xk � 1 for some k � 2. Let R 2 Cm�m and S 2 Cn�n be

k-rotative, ˛, ˇ, � 2 f0; 1; : : : ; k � 1g, and ˛ˇ ¤ 0. Let � D e2�i=k . We define

A.R; S; ˛; ˇ; �/ to be the class of matrices A 2 Cm�n such that R˛ASˇ D ��A.

If m D n and S D R, we denote the class by A.R; ˛; ˇ; �/. We characterize

the class A.R; S; ˛; ˇ; �/ and discuss the problem of Moore–Penrose inversion

of a wider class of matrices that includes A.R; S; ˛; ˇ; �/. Under the additional

assumption that.˛; k/ D .ˇ; k/ D 1, we give a representation of a matrix A in

A.R; S; ˛; ˇ; �/ in terms of matrices Fs 2 Ccs�ds , where
Pk�1
sD0 cs D m andPk�1

sD0 ds D n, and show that Moore–Penrose inversion, singular value decom-

position, and the least squares problem for such a matrix reduce respectively to

the same problems for F0, . . . , Fk�1. We consider the eigenvalue problem for

matrices in A.R; ˛; ˇ; �/. We study a class of generalized circulants generated by

blocks A0, . . . , Ak�1 2 Cd1�d2 , and show that they are in A.R; S; 1; ˇ; �/ for

suitable choices of R, S , and �. In this case we give explicit formulas for F0 , . . . ,

Fk�1 in terms of A0 , . . . , Ak�1, and for A� in terms of F
�
0 , . . . , F

�

k�1
.
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1 Introduction

We say that a unitary matrixR is rotative (specifically, k-rotative) if its minimal polyno-

mial is xk �1 for some k � 2. A rotative matrix is a special kind of circulation matrix,

which was defined by Chen [5] to be a unitary matrix R ¤ I such that Rk D I for

some k � 2. The difference between the definitions is that ours requires the spectrum

of R to be
˚
e2�ir=k

ˇ̌
0 � r � k � 1

	
, while Chen’s requires only that the spectrum

of R is some subset of
˚
e2�ir=k

ˇ̌
0 � r � k � 1

	
. Chen studied matrices A such that

A D ei�R�AR, where R is a circulation matrix and � 2 Œ0; �/. Fasino continued this

study in [7].

Throughout this paper R 2 Cm�m and S 2 Cn�n are both k-rotative. We assume

that k > 2, since if k D 2 our results do not improve on those already obtained in

[12, 13, 14], of which this paper is an extension.

We assume throughout that ˛, ˇ, � 2 Zk D f0; 1; : : : ; k � 1g and ˛ˇ ¤ 0. Let

� D e2�i=k. We define A.R; S; ˛; ˇ; �/ to be the class of matrices A 2 Cm�n such

that R˛ASˇ D ��A. If m D n and S D R, we denote the class by A.R; ˛; ˇ; �/.

This paper is influenced by the work of Ablow and Brenner [1], who considered the

case where m D n D k, R D S D the circulant with first row
�
0 1 0 � � � 0

�
,

� D 0, ˛ D 1, and ˇ D k � g, where 1 � g � k � 1. They showed that A 2 Ck�k

is a g-circulant (i.e., A D Œa.s�gr/(mod k)�
k�1
r;sD0) if and and only if RARk�g D A,

and used this to find the Jordan canonical form for A in the case where .g; k/ D 1.

They also considered the case where .g; k/ ¤ 1, and obtained results for a class of

square block g-circulants. Other authors (see, e.g., [4, 6, 8, 9]) have considered spectral

decompositions of various kinds of circulant-like matrices. Moore–Penrose inversion

of such matrices has also been studied (see, e.g.,[3, 10, 11]).

In Section 2 we characterize the class A.R; S; ˛; ˇ; �/ assuming only that ˛ˇ ¤ 0,

and we discuss Moore–Penrose inversion of a wider class of matrices that includes

A.R; S; ˛; ˇ; �/. Most of our results in Sections 3–7 require that .˛; k/ D .ˇ; k/ D
1. In Section 3, under this assumption, we give a more specific representation A

in A.R; S; ˛; ˇ; �/ in terms of matrices Fs 2 Ccs�ds , where
Pk�1
sD0 cs D m andPk�1

sD0 ds D n, and show that A� can be written in terms of F
�
0 , . . . , F

�

k�1
and a

singular value decomposition of A can be written in terms of singular value decompo-

sitions of F0, . . . , Fk�1. In Section 4 it is shown that the least squares problem for A

reduces to k independent least squares problems for F0, . . . , Fk�1. In Section 5 we

consider the eigenvalue problem for matrices in A.R; ˛; ˇ; �/. In Section 6 we study

the eigenvalue problem for A.R; 1; k � 1; 0/, which is the set of matrices A 2 Cn�n

such that RAR� D A. In Section 7 we study a class of generalized circulants gener-

ated by blocks A0, . . . , Ak�1 2 Cd1�d2 , and show that they are in A.R; S; 1; ˇ; �/

for suitable choices of R, S , and �. Under the assumption that .ˇ; k/ D 1, we give

explicit formulas for F0, . . . , Fk�1 in terms of A0, . . . , Ak�1, and for A� in terms of

F
�
0 , . . . , F

�

k�1
.
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2 Preliminary considerations

Throughout this paper EB .�/ denotes the �-eigenspace of B . Let cs and ds be the

dimensions of ER.�
s/ and ES .�

s/, respectively. Then
Pk�1
sD0 cs D m,

Pk�1
sD0 ds D n,

and there are matrices Ps 2 C
m�cs and Qs 2 C

n�ds such that

RPs D �sPs ; SQs D �sQs ; 0 � s � k � 1; (1)

P �

r Ps D ırsIcs and Q�

rQs D ırsIds
; 0 � r; s � k � 1: (2)

Since R� D R�1 and S� D S�1, (1) implies that

R�Ps D ��sPs and S�Qs D ��sQs ; 0 � s � k � 1: (3)

Let

P D
�
P0 P1 � � � Pk�1

�
and Q D

�
Q0 Q1 � � � Qk�1

�
: (4)

Then (1) implies that

R D P.Ic0
˚ �Ic1

˚ � � � ˚ �k�1Ick�1
/P � (5)

and

S D Q.Id0
˚ �Id1

˚ � � � ˚ �k�1Idk�1
/Q�: (6)

Theorem 1 A 2 A.R; S; ˛; ˇ; �/ if and only if

A D PCQ� with C D ŒCrs�
k�1
r;sD0 ; (7)

where Crs 2 Ccr �ds and

Crs D 0 if ˛r C ˇs 6� � .mod k/; 0 � r; s � k � 1: (8)

PROOF. Any A in Cn�n can be written as in (7) with C D P �AQ. From (1) and (3),

R˛P D
�
P0 �˛P1 � � � �.k�1/˛Pk�1

�
and Q�Sˇ D

2
6664

Q�

0

�ˇQ�

1
:::

�.k�1/ˇQ�

k�1

3
7775 ;

so

R˛ASˇ D P

�h
�˛rCˇsCrs

ik�1

r;sD0

�
Q� D ��A D P Œ��Crs�

k�1
r;sD0Q

�

if and only if (8) holds.

It can be seen from this proof that
˚
A 2 Cm�n

ˇ̌
R˛ASˇ D cA

	
D f0mng unless

c D �� for some � 2 Zk .

The following theorem is valid for a class of matrices that includes A.R; S; ˛; ˇ; �/

and the matrices studied by Chen [5] and Fasino [7].
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Theorem 2 Let c0; . . . ; ck�1; d0; . . . ; dk�1 be positive integers with k � 2 and let �;

p0; . . . ; pk�1; and q0; . . . ; qk�1 be integers such that the set

T D
˚
.r; s/ 2 Zk � Zk

ˇ̌
pr C qs � � .mod k/

	
(9)

is nonempty: Suppose that C D ŒCrs�
k�1
r;sD0 with Crs 2 Ccr�ds and

Crs D 0 if .r; s/ … T : (10)

Then

C � D ŒDrs�
k�1
r;sD0 with Drs 2 C

dr �cs (11)

and

Drs D 0 if .s; r/ … T : (12)

Moreover; if r ¤ r 0 and s ¤ s0 whenever .r; s/ and .r 0; s0/ are distinct pairs in T ; then

Drs D C �sr ; .s; r/ 2 T : (13)

PROOF. In any case, C � can be written as in (11). Let

R0 D �p0Ic0
˚ �p1Ic1

˚ � � � ˚ �pk�1Ick�1

and

S0 D ��q0Id0
˚ ��q1Id1

˚ � � � ˚ ��qk�1Idk�1
:

Then

R0CS
�

0 D
�
�pr CqsCrs

�k�1

r;sD0
D ��C;

where (9) and(10) imply the second equality; hence C D ���R0CS
�

0 . Now let D D
��S0C

�R�

0 . We will show that C and D satisfy the Penrose conditions. Since R0 and

S0 are unitary,

CD D R0CC
�R�

0 D .CD/� ; DC D S0C
�CS�

0 D .DC/� ;

CDC D ���R0CC
�CS�

0 D ���R0CS
�

0 D C;

and

DCD D ��S0C
�CC �R�

0 D ��S0C
�R�

0 D D:

Hence D D C �, so C � D ��S0C
�R�

0 . Hence,

Drs D ���qr �psDrs; 0 � r; s � k � 1:

This and (9) imply (12).

If the second assumption holds, there is a permutation fr0; r1; : : : ; rk�1g of Zk such

that

T � f.r0; 0/; .r1; 1/; .rk�1; k � 1/g:
Since C

�
rs D 0sr if Crs D 0rs, (10), (12), and (13) imply that

C D U
�
Cr0;0 ˚ Cr1;1 ˚ � � � ˚ Crk�1;k�1

�

and

D D
�
C
�
r0;0

˚ C
�
r1;1

˚ � � � ˚ C
�

rk�1;k�1

�
U T ;

where U is a permutation matrix. It is straightforward to verify that C and D satisfy

the Penrose conditions.
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Theorem 3 If A 2 A.R; S; ˛; ˇ; �/; then .A�/� 2 A.R; S; ˛; ˇ; �/:

PROOF. Let

T D
˚
.r; s/ 2 Zk � Zk

ˇ̌
˛r C ˇs � � .mod k/

	
:

From Theorem 1, (7) holds with Crs D 0 if .r; s/ … T . Hence Theorem 2 implies that

.C �/� D ŒErs�
k�1
r;sD0 , where Ers D D�

sr D 0 if .r; s/ … T . Now apply Theorem 1 to

.A�/� D P.C �/�Q� to obtain the conclusion.

3 The case where .˛; k/ D .ˇ; k/ D 1

Henceforth we assume that .˛; k/ D .ˇ; k/ D 1 except where stated otherwise. For

0 � s � k � 1, we define .s/ to be the unique member of Zk such that

˛.s/C ˇs � � .mod k/I

thus,

.s/ � b̨.� � ˇs/ .mod k/; (14)

where b̨ is the unique member of Zk such that b̨˛ � 1 .mod k/. Then  is a permu-

tation of Zk .

Theorem 4 Let

V D
�
P.0/ P.1/ � � � P.k�1/

�
:

Then A 2 A.R; S; ˛; ˇ; �/ if and only if

A D V

 
k�1M

sD0

Fs

!
Q� D

k�1X

sD0

P.s/FsQ
�

s ; (15)

with

Fs D C.s/;s D P �

.s/AQs 2 C
c.s/�ds ; 0 � s � k � 1: (16)

Hence;

A� D Q

 
k�1M

sD0

F �s

!
V �

 D
k�1X

sD0

QsF
�
s P

�

.s/: (17)

PROOF. Since (4) and (7) imply that

A
�
Q0 Q1 � � � Qk�1

�
D
�
P0 P1 � � � Pk�1

�
C

and Crs D 0 if r ¤ .s/, it follows that AQs D P.s/C.s/;s ; hence (2) implies that

C.s/;s D P �

.s/
AQs . Moreover,

�
P0 P1 � � � Pk�1

�
C D V

 
k�1M

sD0

Fs

!
:

This implies (15), which in turn implies (17)

Since the following corollary deals with different values of �, we temporarily de-

fine .s; �/ � b̨.� � ˇs/ .mod k/.
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Corollary 1 Any A 2 C
m�n can be written uniquely as

A D
k�1X

�D0

A.�/;

where A.�/ 2 A.R; S; ˛; ˇ; �/; 0 � � � k � 1: Specifically; if A is as in .7/; then

A.�/ is given uniquely by

A.�/ D P

�h
C .�/rs

ik�1

r;sD0

�
Q�;

where

C .�/rs D
(
0 if r ¤ .s; �/;

C.s;�/;s if r D .s; �/;
0 � s � k � 1:

Throughout this paper it is to be understood that, for fixed ˛, ˇ, and �, F0, . . . ,

Fk�1 are as in (16), where we have suppressed the dependence of Fs on ˛, ˇ, and �

for simplicity of notation.

We say that ´ 2 Cn is .S; s/-symmetric if S´ D �s´ and w 2 Cm is .R; s/-

symmetric if Rw D �sw. These definitions have their origins in Andrew’s [2] def-

initions of symmetric and skew-symmetric vectors: ´ 2 Cn is symmetric (skew-

symmetric) if Jx D x (Jx D �x), where J D
�
ıi;n�jC1

�n
i;jD1

. (For other extensions

of Andrew’s definitions, see [12, 14, 15].)

Arbitrary ´ 2 Cn and w 2 Cm can be written uniquely as

´ D
k�1X

rD0

Qrxr and w D
k�1X

sD0

Psys ; (18)

with

xr D Q�

r ´ 2 C
dr and yr D P �

r w 2 C
cr ; 0 � r � k � 1: (19)

From (1) and (18),

S´ D
k�1X

rD0

�rQrxr :

Therefore, (2) implies that ´ is .S; s/-symmetric if and only if ´ D Qsxs for some

xs 2 Cds . Similarly, w is .R; s/-symmetric if and only if w D Psys for some ys 2
Ccs .

Theorem 4 implies the following theorem.

Theorem 5 Suppose that A 2 A.R; S; ˛; ˇ; �/ and Fs D ˝s˙s˚
�
s is a singular

value decomposition of Fs ; 0 � s � k � 1. Then

A D ˝

 
k�1M

sD0

˙s

!
˚�
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with

˝ D
�
P.0/˝0 P.1/˝1 � � � P.k�1/˝k�1

�

and

˚ D
�
Q0˚0 Q1˚1 � � � Qk�1˚k�1

�

is a singular value decomposition of A: Thus; each singular value of Fs is a singular

value of A associated with an .R; .s//-symmetric left singular vector and an .S; s/-

symmetric right singular vector; 0 � s � k � 1:

Theorem 5 is related to [12, Theorems 11, 18], [13, Theorems 4.3, 5.3], and [15,

Theorem3].

4 The least squares problem

Suppose that G 2 Cp�q and consider the least squares problem for G: If u 2 Cp , find

v 2 C
q such that

kGv � uk D min
�2Cq

kG� � uk; (20)

where k � k is the 2-norm. It is well known that this problem has a unique solution if

and only if rank.G/ D q. In this case, v D .G�G/�1G�u. In any case, the optimal

solution of (20) is the unique n-vector v0 of minimum norm that satisfies (20); thus,

v0 D G�u. The general solution of (20) is v D v0 C q with q in the null space of G,

and

kGv � uk D k.GG� � I /uk
for all such v.

We now consider the least squares problem for a matrix A 2 A.R; S; ˛; ˇ; �/.

From (15) and (18),

A´ �w D
k�1X

sD0

P.s/Fsxs �
k�1X

sD0

Psys D
k�1X

sD0

P.s/.Fsxs � y.s//;

so (2) implies that

kA´ �wk2 D
k�1X

sD0

kFsxs � y.s/k2:

This implies the following theorem.

Theorem 6 Suppose thatA 2 A.R; S; ˛; ˇ; �/:Let w 2 Cm be given as in (18): Then

´ 2 Cn; written as in (18); satisfies

kA´ �wk D min
�2Cn

kA� � wk (21)

if and only if

kFsxs � y.s/k D min
 s2Cds

kFs s � y.s/k; 0 � s � k � 1;
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with Fs as in (16): Therefore (21) has a unique solution; given by

´ D
k�1X

sD0

Qs.F
�

s Fs/
�1F �

s y.s/;

if and only rank.Fs/ D ds; 0 � s � k � 1: In any case; the optimal solution of (21) is

´0 D
k�1X

sD0

QsF
�
s y.s/:

The general solution of (21) is ´ D ´0C
Pk�1
sD0 Qsus ; where Fsus D 0; 0 � s � k�1;

and

kA´�wk2 D
k�1X

sD0

k.FsF �s � Ic .s//y.s/k2

for all such ´:

5 The case where m D n and R D S

In this section we assume that m D n, S D R, and A 2 A.R; ˛; ˇ; u/. Hence, (15)

becomes

A D
k�1X

sD0

P.s/FsP
�

s (22)

and we can replace (18) and (19) by

´ D
k�1X

rD0

Prxr and w D
k�1X

sD0

Psys ; (23)

with

xr D P �

r ´ 2 C
cr and yr D P �

r w 2 C
cr ; 0 � r � k � 1:

Let

SR D
k�1[

sD0

˚
´ 2 C

n
ˇ̌
R´ D �s´

	
I (24)

thus, ´ 2 SR if and only ´ is .R; s/-symmetric for some s 2 Zk .

Theorem 7 If A is singular; then the null space of A has a basis in SR:

PROOF. Let N .A/ be the nullspace of A. From (2), (22), and (23), ´ 2 N .A/ if and

only if Fsxs D 0, 0 � s � k � 1. Recall that Fs 2 Cc.s/�cs , 0 � s � k � 1.

Let U D
˚
s 2 Zk

ˇ̌
rank.Fs/ < cs

	
. Since A is singular, U ¤ ;. If s 2 U and
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fx.1/s ; x
.2/
s ; � � � ; x.ms/

s g is a basis for the null space of Fs , then Psx
.1/
s ; Psx

.2/
s ; . . . ;

Psx
.ms/
s are linearly independent .R; s/-symmetric vectors in N .A/, and

[

s2U

fPsx.1/s ; Psx
.2/
s ; � � � ; Psx.ms/

s g

is a basis for N .A/.

Now suppose that  hasm orbits O0, . . . , Om�1. If m D 1, then  is a k-cycle and

Zk D
˚
j .0/

ˇ̌
0 � j � k � 1

	
. In any case, there are unique integers 0 D s0 < � � � <

sm�1 such that

Zk D
m�1[

`D0

O`; where O` D
˚
j .s`/

ˇ̌
0 � j � k` � 1

	

and k0 C � � � C km�1 D k. Now define

�` D
k`�1X

jD0

Pj C1.s`/
Fj .s`/

P �

j .s`/
; (25)

´` D
k`�1X

jD0

Pj .s`/
xj .s`/

; and w` D
k`�1X

jD0

Pj .s`/
yj .s`/

: (26)

Then (15) and (18) can be written as

A D
m�1X

`D0

�`; ´ D
m�1X

`D0

´`; and w D
m�1X

`D0

w`:

This, (2), (25), and (26) imply that A´ D w if and only if

�`´` D w`; 0 � ` � m� 1:

However, �`´` D w` if and only if

k`�1X

jD0

Pj C1.s`/
Fj .s`/

xj .s`/
D
k`�1X

jD0

Pj .s`/
yj .s`/

D
k`�1X

jD0

Pj C1.s`/
yj C1.s`/

;

which is equivalent to

Fj .s`/
xj .s`/

D yj C1.s`/
; 0 � j � k` � 1: (27)

This system can be written as

Fs`xs` D ys` if k` D 1;

�
0 F.s`/
Fs` 0

��
xs`
x.s`/

�
D
�

ys`
y.s`/

�
if k` D 2;
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or
2
666664

0 0 � � � 0 F
k`�1.s`/

Fs` 0 � � � 0 0

0 F.s`/ � � � 0 0
:::

:::
: : :

:::
:::

0 0 � � � F
k`�2.s`/

0

3
777775

2
666664

xs`
x.s`/
x2.s`/
:::

x
k`�1.s`/

3
777775

D

2
666664

ys`
y.s`/
y2.s`/
:::

y
k`�1.s`/

3
777775

if k` > 2. In any case, let us abbreviate this system as H`�` D  `. Then we have

proved the following theorem.

Theorem 8 Ifw D
Pk�1
sD0 Psys ; then the system A´ D w has a solution´ D

Pk�1
sD0 Psxs

if and only if the systems H`�` D  `; 0 � ` � m � 1, all have solutions. Morever; if

�` is a �-eigenvector of H`; then ´` D
Pk`�1
jD0 Pj .s`/

xj .s`/
is a �-eigenvector of A:

Theorem 9 Suppose k` > 1: If � ¤ 0; then �` is a �-eigenvector of H` if and only if

xs` ¤ 0 and

Fk`�1.s`/
� � �F.s`/Fs`xs` D �k`xs` : (28)

In this case;

xj C1.s`/
D 1

�
Fj .s`/

xj .s`/
; 0 � j � k` � 2; (29)

and xs` ; . . . ; xk`�1.s`/
are all nonzero:

PROOF. We note from (16) with ds D cs that F
k`�1.s`/

� � �F.s`/Fs`xs` 2 C
cs`

�cs` .

(Recall that k.s`/ D s`.) From (27), H`�` D ��` if and only

xj C1.s`/
D
1

�
Fj .s`/

xj .s`/
(30)

for all j , because of the periodicity of j .s`/ with respect to j . Hence, if xj0.s`/
D 0

for some j0, then xj .s`/
D 0 for all j . Therefore, xs` ¤ 0 if �` is a �-eigenvector of

H`. Applying (30) for 0 � j � k` � 1 and noting that xk` .s`/
D xs` yields (28).

Corollary 2 If k` > 1; �` D e2�i=k` ; and

�
.0/

`
D

2
666664

xs`
x.s`/
x2.s`/

:::

x
k`�1.s`/

3
777775

is a �-eigenvector ofH` with � ¤ 0; then

�
.r/

`
D

2
666664

xs`
��r
`
x.s`/

��2r
`

x2.s`/

:::

�
�.k`�1/r

`
xk`�1.s`/

3
777775
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is ��r
`

-eigenvector of H`; 0 � r � k` � 1:

PROOF. Replacing� by �r� in (28) and (29) leaves the former unchanged. This implies

the conclusion.

The results in this section take a particularly simple form if n D k, so that cs D
ds D 1, 0 � s � k� 1. In this case, let fp1; : : : ; pkg � Ck be an orthonormal set such

that Rps D �sps , 0 � s � k � 1. Theorems 8, 9, and Corollary 2 with Ps D ps and

Fs D p�

.s/
Aps imply the following theorem, which is related to [1, Lemma 4.3].

Theorem 10 Suppose that n D k: If k` D 1; then � D p�
s`
Aps` is an eigenvalue of

H` with associated eigenvector ps` : If k` > 1; let

�` D
k`�1Y

tD0

p�

 tC1.s`/
Ap t .s`/

:

If �` ¤ 0; let �` D �
1=k`

`
and define

xs` D 1 and xj C1.s`/
D �

�j�1

`

jY

tD0

p�

 tC1.s`/
Ap t .s`/

; 0 � j � k` � 2:

Then �`�
r
`

is an eigenvalue of A with associated eigenvector

´`r D
k`�1X

jD0

�
�rj

`
xj .s`/

pj .s`/
; 0 � r � k` � 1:

Any nonzero eigenvalue of Amust be of the form just defined for some ` 2 f0; : : : ; m�
1g: A is singular if and only if the set M D

˚
s
ˇ̌
p�
sAps D 0

	
is nonempty; in which

case
˚
ps
ˇ̌
s 2 M

	
is a basis for N .A/:

6 R-symmetric matrices

In this section we consider the special case where m D n, S D R, � D 0, ˛ D 1,

and ˇ D k � 1. Since Rk�1 D R�1 D R�, A.R; 1; k � 1; 0/ is the set of matrices

A 2 Cn�n such that RAR� D A. We will say that such a matrix is R-symmetric. This

is related to a definition in [12].

Our assumptions imply that .s/ D s, 0 � s � k � 1 (see (14)), so Theorem 4

implies that A is R-symmetric if and only if

A D P
�M

Fs

�
P � D

k�1X

sD0

PsFsP
�

s (31)

with

Fs D P �

s APs 2 C
cs�cs ; 0 � s � k � 1:

The next two theorems are immediate consequences of (31).
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Theorem 11 If A is R-symmetric; then � is an eigenvalue of A if and only if � is an

eigenvalue of one or more of the matrices F0, F1, . . . , Fk�1: Assuming this to be true;

let

SA.�/ D
˚
s 2 Zk

ˇ̌
� is an eigenvalue of Fs

	
:

If s 2 SA.�/ and fx.1/s ; x
.2/
s ; � � � ; x.ms/

s g is a basis for EAs .�/; thenPsx
.1/
s ; Psx

.2/
s ; . . . ;

Psx
.ms/
s are linearly independent .R; s/-symmetric �-eigenvectors of A:Moreover;

[

s2SA.�/

fPsx.1/s ; Psx
.2/
s ; � � � ; Psx.ms/

s g

is a basis for EA.�/: Finally; A is diagonalizable if and only if F0; F1; . . . ; Fk�1

are all diagonalizable: In this case; A has cs linearly independent .R; s/-symmetric

eigenvectors; 0 � s � k � 1:

Theorem 12 IfA isR-symmetric; thenA is normal if and only ifFs is normal; 0 � s �
k�1: In this case; if Fs D ˝sDs˝

�
s is a spectral representation of As ; 0 � s � k�1;

then

A D ˝

 
k�1M

sD0

Ds

!
˝�

with

˝ D
�
P0˝0 P1˝1 � � � Pk�1˝k�1

�

is a spectral representation ofA:Hence,A has cs linearly independent .R; s/-symmetric

eigenvectors, 0 � s � k � 1:

The next theorem is a generalization of Andrew’s theorem [2, Theorem 2]. For

other generalizations of Andrew’s theorem, see [12, 14, 15].

Theorem 13

(i) If A is R-symmetric and � is an eigenvalue of A; then EA.�/ has a basis in SR

.recall (24)/:

(ii) If A has n linearly independent eigenvectors in SR; then A is R-symmetric:

PROOF. (i) Theorem 11.

(ii) Let �1, . . . , �n be the eigenvalues of A with associated linearly independent

eigenvectors ´1, . . . , ´n in SR. It suffices to show that RAR�´j D A´j , 1 � j � n.

This is true, since if A´j D �j´j and R´j D �s´j , then

RAR�´j D ��sRA´j D ��s�jR´j D ��s�s�j ´j D A´j :

7 Generalized block circulants

Henceforth � is a k-cyclic permutation of Zk and � is the permutation of Zk such that

��.s/.0/ D s; 0 � s � k � 1: (32)
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For example, if k D 7 and � D .0; 5; 6; 2; 3; 4; 1/, then

� D
�
0 1 2 3 4 5 6

0 6 3 4 5 1 2

�
:

Let

�.r; s/ D ��.s/Cˇ�.r/.0/ D �ˇ�.r/.s/; 0 � r; s � k � 1: (33)

We study matrices of the form

A D Œ��1�.s/C�2�.r/A�.r;s/�
k�1
r;sD0 ; where A0; : : : ; Ak�1 2 C

d1�d2 : (34)

For example, if � D .0; 1; : : : ; k � 1/, then �.s/ D s, 0 � s � k � 1, so

A D Œ�s�1Cr�2A.sCˇr/(mod k)�
k�1
r;sD0:

Hence, if �1 D �2 D 0, then A is a block ˇ-anticirculant if ˇ > 0, or a block

jˇj-circulant if ˇ < 0. (Note that we do not assume here that the blocks are square).

We will need the following lemma.

Lemma 1 Let

E D
�
e��1.0/ e��1.1/ � � � e��1.k�1/

�
; (35)

where
�
e0 e1 � � � ek�1

�
D Ik : Then E D UDU �; where

D D diag.1; �; : : : ; �k�1/

and

U D
�
u0 u1 � � � uk�1

�
D

1
p
k

h
�s�.r/

ik�1

r;sD0
:

PROOF. If q is an arbitrary integer, then

�.�q.r// � �.r/C q .mod k/; 0 � r � k � 1; (36)

since (32) implies that

��.�
q.r//.0/ D �q.r/ D �q.��.r/.0// D ��.r/Cq.0/:

Therefore,

EU D 1p
k

h
�s�.�.r//

ik�1

r;sD0
D 1p

k

h
�s.�.r/C1/

ik�1

r;sD0
D UD;

where (36) with q D 1 implies the second equality. Since UU � D Ik , it follows that

E D UDU �.

The following two theorem do not require that .ˇ; k/ D 1.
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Theorem 14 Let

R D E ˝ Id1
and S D E ˝ Id2

: (37)

Let H D ŒHrs�
k�1
r;sD0 ; where Hrs 2 Cd1�d2 ; 0 � r; s � k � 1: Then

RHSˇ D ��2�ˇ�1H; (38)

if and only if

Hrs D ��1�.s/C�2�.r/A�.r;s/; 0 � r; s � k � 1; (39)

where A0; . . . ; Ak�1 2 Cd1�d2 : In this case;

As D ���1�.s/H0s ; 0 � s � k � 1: (40)

PROOF. Let P and Q be as in (4), with

Ps D us ˝ Id1
; and Qs D us ˝ Id2

; 0 � s � k � 1:

Then (1) holds, which implies (5) and (6). From (35) and (37), it is straightforward to

verify that

RHSˇ D
�
H�.r/;��ˇ.s/

�k�1

r;sD0
: (41)

If (39) holds, then

RHSˇ D
h
��1�.�

�ˇ.s//C�2�.�.r//A�.�.r/;��ˇ.s//

ik�1

r;sD0
: (42)

However, from (36),

�1�.�
�ˇ .s//C �2�.�.r// � �1�.s/C �2�.r/ � ˇ�1 C �2; .mod k/: (43)

and

�.��ˇ .s// C ˇ�.�.r// � �.s/C ˇ�.r/ .mod k/: (44)

Now (39), (42), (43), and (44) imply (38).

Conversely, suppose that (38) holds. Then (41) implies that

H�.r/;��ˇ.s/ D ��2�ˇ�1Hrs; 0 � r; s � k � 1: (45)

We will show by induction on r that

H�r .0/;s D ��1�.s/Cr�2A�rˇ.s/; 0 � s � k � 1; (46)

with A0, . . . , As as in (40); thus, (46) holds for r D 0. Now suppose r � 0 and (46)

holds. Replacing r by �r.0/ and s by �ˇ .s/ in (45) yields

H�rC1.0/;s D ��2�ˇ�1H�r.0/;�ˇ.s/:

Therefore, from (46) with s replaced by �ˇ .s/,

H�rC1.0/;s D ��2�ˇ�1C�1.�.�
ˇ.s//Cr�2/A�.rC1/ˇ.s/ D ��1�.s/C.rC1/�2A�.rC1/ˇ.s/;

where the last equality is a consequence of (36). This completes the induction, so (46)

holds for 0 � r � k�1. Replacing r by �.r/ in (46) and recalling (32) and (33) yields

(39).
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Theorem 15 If

A D
h
��1�.s/C�2�.r/A�ˇ�.r/.s/

ik�1

r;sD0

and

B D
h
��1�.s/C�2�.r/B�ı�.r/.s/

ik�1

r;sD0
;

where A0; . . . ; Ak�1; B0; . . . ; Bk�1 2 Cd�d ; then

AB D
h
��1�.s/C��.r/C��ˇı�.r/.s/

i
; (47)

where

� D �2 � ˇ�1 � ˇ�2
and

Cs D
k�1X

jD0

�.�1C�2/�.j /AjB�ı�.j /.s/; 0 � s � k � 1: (48)

PROOF. We apply Theorem 14 with d1 D d2 D d , so that R D S (see (37)). Theo-

rem 14 implies that

(i) RA D ��2�ˇ�1AR�ˇ and (ii)RB D ��2�ı�1BR�ı : (49)

From (ii) and induction,

R�ˇB D Rk�ˇB D �.k�ˇ/.�2�ı�1/R�.k�ˇ/ı D ��ˇ.�2�ı�1/BRˇı :

From this and (49)(i),

RAB D ��2�ˇ�1AR�ˇB D ��2�ˇ�1�ˇ.�2�ı�1/ABRˇı

Now Theorem 14 with ˇ, �1, and �2 replaced by k � ˇı, �1, and � implies (47). It

is straightforward to verify (48), since (40) with appropriate substitutions implies that

Cs D ���1�.s/.AB/0s .

Theorem 15 generalizes [1, Theorem 3.1]; namely, that the product of a g-circulant

and an h-circulant is a gh-circulant. However, [1] does not specify the entries in the

product, as in (48).

Theorem 16 Suppose that A is as in (34) and .ˇ; k/ D 1: Define

.s/ � �2 � ˇ.�1 C s/ .mod k/: (50)

Then

A D
k�1X

sD0

P.s/FsQ
�

s (51)
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with

Ps D us ˝ Id1
; Qs D us ˝ Id2

; us D 1
p
k

2
666664

1

�s�.1/

�s�.2/

:::

�s�.k�1/

3
777775
; (52)

and

Fs D
k�1X

mD0

�.�1Cs/�.m/Am; 0 � s � k � 1; (53)

independent of ˇ and �2: Conversely; if A is as in (51) with given F0; . . . ; Fk�1 2
Cd1�d2 ; then A is as in (34) with

Am D 1

k

k�1X

sD0

��.�1Cs/�.m/Fs ; 0 � s � k � 1: (54)

PROOF. If A is as (34), then Theorem 14 implies the assumptions of Theorem 1 with

˛ D 1 and � D �2 � ˇ�1. If in addition .ˇ; k/ D 1, then Theorem 4 implies (51),

where, from (16), (34), and (52),

Fs D P �

.s/AQs D 1

k

k�1X

`;mD0

�.�2�.s//�.`/C.�1Cs/�.m/A�.`;m/; 0 � s � k � 1:

However, from (50),

�2 � .s/ � ˇ.�1 C s/ .mod k/;

so

.�2 � .s//�.`/ C .�1 C s/�.m/ � �.`; m/ .mod k/:

where

�.`; m/ D .�1 C s/.ˇ�.`/ C �.m//: (55)

Therefore,

Fs D 1

k

k�1X

`;mD0

��.`;m/A�.`;m/: (56)

We want to rearrange the terms of this double sum to collect the coefficients of A0, . . . ,

Ak�1. Our strategy for accomplishing this is motivated by the congruence

�.�ˇ`.m// C ˇ.�.��`.0// � .�.m/ C ˇ`/ C ˇ.�.0/ � `/ � �.m/ .mod k/;

(recall (36) and note that �.0/ D 0, from (32)) which, from (33) and (55), implies that

�.��`.0/; �ˇ`.m// � m .mod k/ (57)
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and

�.��`.0/; �ˇ`.m// � .�1 C s/�.m/ .mod k/: (58)

Replacing ` by ��`.0/ in (56) yields

Fs D 1

k

k�1X

`D0

 
k�1X

mD0

��.�
�`.0/;m/A�.��`.0/;m/

!
:

For each ` we now replace m by �ˇ`.m/ in the sum in parentheses to obtain

Fs D 1

k

k�1X

`;mD0

��.�
�`.0/;�ˇ`.m//A�.��`.0/;�ˇ`.m//:

Hence, (57) and (58) imply (53). Since (53) and (54) are equivalent, the converse also

holds.

Theorem 17 If A is as in (34); then .A�/� 2 A.R; S; 1; ˇ; �2 � ˇ�1/: If in addition

.ˇ; k/ D 1; then

A� D
h
���1�.r/��2�.s/D�.s;r/

ik�1

r;sD0
;

where

Dm D 1

k

k�1X

sD0

�.�1Cs/�.m/F �s ; 0 � m � k � 1; (59)

and Fs is as in (53):

PROOF. Theorems 3 and 14 imply the first assertion. Now suppose .ˇ; k/ D 1. Tem-

porarily, denote

D D
h
���1�.r/��2�.s/D�.s;r/

ik�1

r;sD0
:

Since

D� D
h
��1�.s/C�2�.r/D�

�.r;s/

ik�1

r;sD0
;

the argument used to obtain (38) shows that RD�Sˇ D ��2�ˇ�1D�. Hence, Theo-

rem 4 with A replaced by D� implies that

D� D
k�1X

sD0

P.s/GsQ
�

s (60)

with

Gs D P �

.s/D
�

sQs ; 0 � s � k � 1:
By the argument used to obtain (53),

Gs D
k�1X

mD0

�.�1Cs/�.m/D�

m; 0 � s � k � 1: (61)
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However, (59) is equivalent to

F �s D
k�1X

mD0

��.�1Cs/�.m/Dm; 0 � s � k � 1:

Comparing this with (61) shows thatGs D .F
�
s /

�. This and (60) imply that

D D
k�1X

sD0

QsF
�
s P

�

.s/;

so (17) implies thatD D A�.

If m D n, S D R, and d1 D d2, the results of Sections 5 and 6 can be applied to

analyze the spectral properties of A in (34).

We close with the following theorem, which generalizes the well known formulas

for the eigenvalues and eigenvectors of the standard circulant matrixA D Œa.s�r/(mod k)�
k�1
r;sD0.

Theorem 18 If a0; . . . ; ak�1 2 C; then the eigenvalues and associated eigenvectors

of A D Œa���.r/.s/�
k�1
r;sD0 are

fs D
k�1X

mD0

am�
s�.m/ and us D 1p

k

2
666664

1

�s�.1/

�s�.2/

:::

�s�.k�1/

3
777775
; 0 � s � k � 1: (62)

PROOF.A is of the form (34) with�1 D �2 D 0, ˇ D �1, andAs D as , 0 � s � k�1.

Hence .s/ D s (see (50)) and Ps D Qs D us , from (52) with d1 D d2 D 1. Hence,

from (51); A D
Pk�1
sD0 fsusu

�
s with fs as in (62) (see (53)).
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