# On matrices with rotative symmetries

#### William F. Trench

Trinity University, San Antonio, Texas, USA

Note: This is paper is is poorly written and organized, so much so that I voluntarily withdrew it from consideration for publication in 2006. However, it is the origin of ideas that I developed successfully in later work.

#### Abstract

We say that a unitary matrix R is rotative (specifically, k-rotative) if its minimal polynomial is  $x^k-1$  for some  $k\geq 2$ . Let  $R\in\mathbb{C}^{m\times m}$  and  $S\in\mathbb{C}^{n\times n}$  be k-rotative,  $\alpha,\beta,\mu\in\{0,1,\ldots,k-1\}$ , and  $\alpha\beta\neq 0$ . Let  $\zeta=e^{2\pi i/k}$ . We define  $\mathcal{A}(R,S,\alpha,\beta,\mu)$  to be the class of matrices  $A\in\mathbb{C}^{m\times n}$  such that  $R^{\alpha}AS^{\beta}=\zeta^{\mu}A$ . If m=n and S=R, we denote the class by  $\mathcal{A}(R,\alpha,\beta,\mu)$ . We characterize the class  $\mathcal{A}(R,S,\alpha,\beta,\mu)$  and discuss the problem of Moore-Penrose inversion of a wider class of matrices that includes  $\mathcal{A}(R,S,\alpha,\beta,\mu)$ . Under the additional assumption that  $(\alpha,k)=(\beta,k)=1$ , we give a representation of a matrix A in  $\mathcal{A}(R,S,\alpha,\beta,\mu)$  in terms of matrices  $F_S\in\mathbb{C}^{c_S\times d_S}$ , where  $\sum_{s=0}^{k-1}c_s=m$  and  $\sum_{s=0}^{k-1}d_s=n$ , and show that Moore-Penrose inversion, singular value decomposition, and the least squares problem for such a matrix reduce respectively to the same problems for  $F_0,\ldots,F_{k-1}$ . We consider the eigenvalue problem for matrices in  $\mathcal{A}(R,\alpha,\beta,\mu)$ . We study a class of generalized circulants generated by blocks  $A_0,\ldots,A_{k-1}\in\mathbb{C}^{d_1\times d_2}$ , and show that they are in  $\mathcal{A}(R,S,1,\beta,\mu)$  for suitable choices of R,S, and  $\mu$ . In this case we give explicit formulas for  $F_0,\ldots,F_{k-1}$  in terms of  $F_0^{\dagger},\ldots,F_{k-1}^{\dagger}$ .

*MSC*: 15A18; 15A57

Keywords: Block circulant; Eigenvalue problem; Least squares; Moore–Penrose inverse; Rotative

## 1 Introduction

We say that a unitary matrix R is rotative (specifically, k-rotative) if its minimal polynomial is  $x^k-1$  for some  $k\geq 2$ . A rotative matrix is a special kind of circulation matrix, which was defined by Chen [5] to be a unitary matrix  $R\neq I$  such that  $R^k=I$  for some  $k\geq 2$ . The difference between the definitions is that ours requires the spectrum of R to be  $\{e^{2\pi i r/k} \mid 0 \leq r \leq k-1\}$ , while Chen's requires only that the spectrum of R is some subset of  $\{e^{2\pi i r/k} \mid 0 \leq r \leq k-1\}$ . Chen studied matrices A such that  $A=e^{i\theta}R^*AR$ , where R is a circulation matrix and  $\theta\in [0,\pi)$ . Fasino continued this study in [7].

Throughout this paper  $R \in \mathbb{C}^{m \times m}$  and  $S \in \mathbb{C}^{n \times n}$  are both k-rotative. We assume that k > 2, since if k = 2 our results do not improve on those already obtained in [12, 13, 14], of which this paper is an extension.

We assume throughout that  $\alpha$ ,  $\beta$ ,  $\mu \in \mathbb{Z}_k = \{0, 1, ..., k-1\}$  and  $\alpha\beta \neq 0$ . Let  $\zeta = e^{2\pi i/k}$ . We define  $\mathcal{A}(R, S, \alpha, \beta, \mu)$  to be the class of matrices  $A \in \mathbb{C}^{m \times n}$  such that  $R^{\alpha}AS^{\beta} = \zeta^{\mu}A$ . If m = n and S = R, we denote the class by  $\mathcal{A}(R, \alpha, \beta, \mu)$ .

This paper is influenced by the work of Ablow and Brenner [1], who considered the case where m=n=k, R=S= the circulant with first row  $\begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \end{bmatrix}$ ,  $\mu=0, \alpha=1,$  and  $\beta=k-g,$  where  $1\leq g\leq k-1.$  They showed that  $A\in\mathbb{C}^{k\times k}$  is a g-circulant (i.e.,  $A=\begin{bmatrix} a_{(s-gr)(\text{mod }k)} \end{bmatrix}_{r,s=0}^{k-1}$ ) if and and only if  $RAR^{k-g}=A$ , and used this to find the Jordan canonical form for A in the case where (g,k)=1. They also considered the case where  $(g,k)\neq 1,$  and obtained results for a class of square block g-circulants. Other authors (see, e.g., [4,6,8,9]) have considered spectral decompositions of various kinds of circulant-like matrices. Moore–Penrose inversion of such matrices has also been studied (see, e.g., [3,10,11]).

In Section 2 we characterize the class  $\mathcal{A}(R, S, \alpha, \beta, \mu)$  assuming only that  $\alpha\beta \neq 0$ , and we discuss Moore–Penrose inversion of a wider class of matrices that includes  $\mathcal{A}(R, S, \alpha, \beta, \mu)$ . Most of our results in Sections 3–7 require that  $(\alpha, k) = (\beta, k) = 1$ . In Section 3, under this assumption, we give a more specific representation A in  $\mathcal{A}(R, S, \alpha, \beta, \mu)$  in terms of matrices  $F_s \in \mathbb{C}^{c_s \times d_s}$ , where  $\sum_{s=0}^{k-1} c_s = m$  and  $\sum_{s=0}^{k-1} d_s = n$ , and show that  $A^{\dagger}$  can be written in terms of  $F_0, \ldots, F_{k-1}^{\dagger}$  and a singular value decomposition of A can be written in terms of singular value decompositions of  $F_0, \ldots, F_{k-1}$ . In Section 4 it is shown that the least squares problem for A reduces to k independent least squares problems for  $F_0, \ldots, F_{k-1}$ . In Section 5 we consider the eigenvalue problem for matrices in  $\mathcal{A}(R, \alpha, \beta, \mu)$ . In Section 6 we study the eigenvalue problem for  $\mathcal{A}(R, 1, k-1, 0)$ , which is the set of matrices  $A \in \mathbb{C}^{n \times n}$  such that A = A = A. In Section 7 we study a class of generalized circulants generated by blocks  $A_0, \ldots, A_{k-1} \in \mathbb{C}^{d_1 \times d_2}$ , and show that they are in  $\mathcal{A}(R, S, 1, \beta, \mu)$  for suitable choices of R, S, and  $\mu$ . Under the assumption that  $(\beta, k) = 1$ , we give explicit formulas for  $F_0, \ldots, F_{k-1}$  in terms of  $A_0, \ldots, A_{k-1}$ , and for  $A^{\dagger}$  in terms of  $A_0, \ldots, A_{k-1}$ , and for  $A^{\dagger}$  in terms of  $A_0, \ldots, A_{k-1}$ .

3

## 2 Preliminary considerations

Throughout this paper  $\mathcal{E}_B(\lambda)$  denotes the  $\lambda$ -eigenspace of B. Let  $c_s$  and  $d_s$  be the dimensions of  $\mathcal{E}_R(\zeta^s)$  and  $\mathcal{E}_S(\zeta^s)$ , respectively. Then  $\sum_{s=0}^{k-1} c_s = m$ ,  $\sum_{s=0}^{k-1} d_s = n$ , and there are matrices  $P_s \in \mathbb{C}^{m \times c_s}$  and  $Q_s \in \mathbb{C}^{n \times d_s}$  such that

$$RP_s = \zeta^s P_s, \quad SQ_s = \zeta^s Q_s, \quad 0 \le s \le k-1,$$
 (1)

$$P_r^* P_s = \delta_{rs} I_{c_s}$$
 and  $Q_r^* Q_s = \delta_{rs} I_{d_s}$ ,  $0 \le r, s \le k - 1$ . (2)

Since  $R^* = R^{-1}$  and  $S^* = S^{-1}$ , (1) implies that

$$R^* P_s = \zeta^{-s} P_s$$
 and  $S^* Q_s = \zeta^{-s} Q_s$ ,  $0 \le s \le k - 1$ . (3)

Let

$$P = \begin{bmatrix} P_0 & P_1 & \cdots & P_{k-1} \end{bmatrix} \quad \text{and} \quad Q = \begin{bmatrix} Q_0 & Q_1 & \cdots & Q_{k-1} \end{bmatrix}. \tag{4}$$

Then (1) implies that

$$R = P(I_{c_0} \oplus \zeta I_{c_1} \oplus \cdots \oplus \zeta^{k-1} I_{c_{k-1}}) P^*$$

$$\tag{5}$$

and

$$S = Q(I_{d_0} \oplus \zeta I_{d_1} \oplus \cdots \oplus \zeta^{k-1} I_{d_{k-1}}) Q^*. \tag{6}$$

**Theorem 1**  $A \in \mathcal{A}(R, S, \alpha, \beta, \mu)$  if and only if

$$A = PCQ^*$$
 with  $C = [C_{rs}]_{r,s=0}^{k-1}$ , (7)

where  $C_{rs} \in \mathbb{C}^{c_r \times d_s}$  and

$$C_{rs} = 0$$
 if  $\alpha r + \beta s \not\equiv \mu \pmod{k}$ ,  $0 \le r, s \le k - 1$ . (8)

PROOF. Any A in  $\mathbb{C}^{n\times n}$  can be written as in (7) with  $C = P^*AQ$ . From (1) and (3),

$$R^{\alpha}P = \begin{bmatrix} P_0 & \zeta^{\alpha}P_1 & \cdots & \zeta^{(k-1)\alpha}P_{k-1} \end{bmatrix} \quad \text{and} \quad Q^*S^{\beta} = \begin{bmatrix} Q_0^* \\ \zeta^{\beta}Q_1^* \\ \vdots \\ \zeta^{(k-1)\beta}Q_{k-1}^* \end{bmatrix},$$

SC

$$R^{\alpha}AS^{\beta} = P\left(\left[\zeta^{\alpha r + \beta s}C_{rs}\right]_{r,s=0}^{k-1}\right)Q^* = \zeta^{\mu}A = P\left[\zeta^{\mu}C_{rs}\right]_{r,s=0}^{k-1}Q^*$$

if and only if (8) holds.  $\square$ 

It can be seen from this proof that  $\{A \in \mathbb{C}^{m \times n} \mid R^{\alpha} A S^{\beta} = cA\} = \{0_{mn}\}$  unless  $c = \zeta^{\mu}$  for some  $\mu \in \mathbb{Z}_k$ .

The following theorem is valid for a class of matrices that includes  $A(R, S, \alpha, \beta, \mu)$  and the matrices studied by Chen [5] and Fasino [7].

4

**Theorem 2** Let  $c_0, \ldots, c_{k-1}, d_0, \ldots, d_{k-1}$  be positive integers with  $k \ge 2$  and let  $\mu$ ,  $p_0, \ldots, p_{k-1}$ , and  $q_0, \ldots, q_{k-1}$  be integers such that the set

$$\mathcal{T} = \{ (r, s) \in \mathbb{Z}_k \times \mathbb{Z}_k \mid p_r + q_s \equiv \mu \pmod{k} \}$$
 (9)

is nonempty. Suppose that  $C = [C_{rs}]_{r,s=0}^{k-1}$  with  $C_{rs} \in \mathbb{C}^{c_r \times d_s}$  and

$$C_{rs} = 0 \quad if \quad (r, s) \notin \mathcal{T}.$$
 (10)

Then

$$C^{\dagger} = [D_{rs}]_{r,s=0}^{k-1} \quad with \quad D_{rs} \in \mathbb{C}^{d_r \times c_s}$$
 (11)

and

$$D_{rs} = 0 \quad if \quad (s, r) \notin \mathcal{T}.$$
 (12)

Moreover, if  $r \neq r'$  and  $s \neq s'$  whenever (r, s) and (r', s') are distinct pairs in  $\mathcal{T}$ , then

$$D_{rs} = C_{sr}^{\dagger}, \quad (s, r) \in \mathcal{T}. \tag{13}$$

PROOF. In any case,  $C^{\dagger}$  can be written as in (11). Let

$$R_0 = \zeta^{p_0} I_{c_0} \oplus \zeta^{p_1} I_{c_1} \oplus \cdots \oplus \zeta^{p_{k-1}} I_{c_{k-1}}$$

and

$$S_0 = \zeta^{-q_0} I_{d_0} \oplus \zeta^{-q_1} I_{d_1} \oplus \cdots \oplus \zeta^{-q_{k-1}} I_{d_{k-1}}.$$

Then

$$R_0 C S_0^* = \left[ \zeta^{p_r + q_s} C_{rs} \right]_{r,s=0}^{k-1} = \zeta^{\mu} C,$$

where (9) and (10) imply the second equality; hence  $C = \zeta^{-\mu} R_0 C S_0^*$ . Now let  $D = \zeta^{\mu} S_0 C^{\dagger} R_0^*$ . We will show that C and D satisfy the Penrose conditions. Since  $R_0$  and  $S_0$  are unitary,

$$CD = R_0 C C^{\dagger} R_0^* = (CD)^*, \quad DC = S_0 C^{\dagger} C S_0^* = (DC)^*,$$
  
 $CDC = \zeta^{-\mu} R_0 C C^{\dagger} C S_0^* = \zeta^{-\mu} R_0 C S_0^* = C,$ 

and

$$DCD = \zeta^{\mu} S_0 C^{\dagger} C C^{\dagger} R_0^* = \zeta^{\mu} S_0 C^{\dagger} R_0^* = D.$$

Hence  $D = C^{\dagger}$ , so  $C^{\dagger} = \zeta^{\mu} S_0 C^{\dagger} R_0^*$ . Hence,

$$D_{rs} = \zeta^{\mu - q_r - p_s} D_{rs}, \quad 0 \le r, s \le k - 1.$$

This and (9) imply (12).

If the second assumption holds, there is a permutation  $\{r_0,r_1,\ldots,r_{k-1}\}$  of  $\mathbb{Z}_k$  such that

$$\mathcal{T} \subset \{(r_0, 0), (r_1, 1), (r_{k-1}, k-1)\}.$$

Since  $C_{rs}^{\dagger} = 0_{sr}$  if  $C_{rs} = 0_{rs}$ , (10), (12), and (13) imply that

$$C = U \left( C_{r_0,0} \oplus C_{r_1,1} \oplus \cdots \oplus C_{r_{k-1},k-1} \right)$$

and

$$D = \left(C_{r_0,0}^{\dagger} \oplus C_{r_1,1}^{\dagger} \oplus \cdots \oplus C_{r_{k-1},k-1}^{\dagger}\right) U^T,$$

where U is a permutation matrix. It is straightforward to verify that C and D satisfy the Penrose conditions.  $\ \square$ 

**Theorem 3** If  $A \in \mathcal{A}(R, S, \alpha, \beta, \mu)$ , then  $(A^{\dagger})^* \in \mathcal{A}(R, S, \alpha, \beta, \mu)$ .

PROOF. Let

$$\mathcal{T} = \{ (r, s) \in \mathbb{Z}_k \times \mathbb{Z}_k \mid \alpha r + \beta s \equiv \mu \pmod{k} \}.$$

From Theorem 1, (7) holds with  $C_{rs} = 0$  if  $(r,s) \notin \mathcal{T}$ . Hence Theorem 2 implies that  $(C^{\dagger})^* = [E_{rs}]_{r,s=0}^{k-1}$ , where  $E_{rs} = D_{sr}^* = 0$  if  $(r,s) \notin \mathcal{T}$ . Now apply Theorem 1 to  $(A^{\dagger})^* = P(C^{\dagger})^* O^*$  to obtain the conclusion.  $\square$ 

# 3 The case where $(\alpha, k) = (\beta, k) = 1$

Henceforth we assume that  $(\alpha, k) = (\beta, k) = 1$  except where stated otherwise. For  $0 \le s \le k - 1$ , we define  $\gamma(s)$  to be the unique member of  $\mathbb{Z}_k$  such that

$$\alpha \gamma(s) + \beta s \equiv \mu \pmod{k};$$

thus,

$$\gamma(s) \equiv \widehat{\alpha}(\mu - \beta s) \pmod{k},$$
 (14)

where  $\widehat{\alpha}$  is the unique member of  $\mathbb{Z}_k$  such that  $\widehat{\alpha}\alpha \equiv 1 \pmod{k}$ . Then  $\gamma$  is a permutation of  $\mathbb{Z}_k$ .

Theorem 4 Let

$$V_{\gamma} = \begin{bmatrix} P_{\gamma(0)} & P_{\gamma(1)} & \cdots & P_{\gamma(k-1)} \end{bmatrix}.$$

Then  $A \in \mathcal{A}(R, S, \alpha, \beta, \mu)$  if and only if

$$A = V_{\gamma} \left( \bigoplus_{s=0}^{k-1} F_s \right) Q^* = \sum_{s=0}^{k-1} P_{\gamma(s)} F_s Q_s^*, \tag{15}$$

with

$$F_s = C_{\gamma(s),s} = P_{\gamma(s)}^* A Q_s \in \mathbb{C}^{c_{\gamma(s)} \times d_s}, \quad 0 \le s \le k - 1.$$
 (16)

Hence,

$$A^{\dagger} = Q\left(\bigoplus_{s=0}^{k-1} F_s^{\dagger}\right) V_{\gamma}^* = \sum_{s=0}^{k-1} Q_s F_s^{\dagger} P_{\gamma(s)}^*. \tag{17}$$

PROOF. Since (4) and (7) imply that

$$A \begin{bmatrix} Q_0 & Q_1 & \cdots & Q_{k-1} \end{bmatrix} = \begin{bmatrix} P_0 & P_1 & \cdots & P_{k-1} \end{bmatrix} C$$

and  $C_{rs}=0$  if  $r\neq \gamma(s)$ , it follows that  $AQ_s=P_{\gamma(s)}C_{\gamma(s),s}$ ; hence (2) implies that  $C_{\gamma(s),s}=P_{\gamma(s)}^*AQ_s$ . Moreover,

$$\begin{bmatrix} P_0 & P_1 & \cdots & P_{k-1} \end{bmatrix} C = V_{\gamma} \left( \bigoplus_{s=0}^{k-1} F_s \right).$$

This implies (15), which in turn implies (17)  $\Box$ 

Since the following corollary deals with different values of  $\mu$ , we temporarily define  $\gamma(s,\mu) \equiv \widehat{\alpha}(\mu - \beta s) \pmod{k}$ .

**Corollary 1** Any  $A \in \mathbb{C}^{m \times n}$  can be written uniquely as

$$A = \sum_{\mu=0}^{k-1} A^{(\mu)},$$

where  $A^{(\mu)} \in \mathcal{A}(R, S, \alpha, \beta, \mu)$ ,  $0 \le \mu \le k - 1$ . Specifically, if A is as in (7), then  $A^{(\mu)}$  is given uniquely by

$$A^{(\mu)} = P\left(\left[C_{rs}^{(\mu)}\right]_{r,s=0}^{k-1}\right)Q^*,$$

where

$$C_{rs}^{(\mu)} = \begin{cases} 0 & \text{if } r \neq \gamma(s, \mu), \\ C_{\gamma(s,\mu),s} & \text{if } r = \gamma(s, \mu), \end{cases} \quad 0 \le s \le k - 1.$$

Throughout this paper it is to be understood that, for fixed  $\alpha$ ,  $\beta$ , and  $\mu$ ,  $F_0$ , ...,  $F_{k-1}$  are as in (16), where we have suppressed the dependence of  $F_s$  on  $\alpha$ ,  $\beta$ , and  $\mu$  for simplicity of notation.

We say that  $z \in \mathbb{C}^n$  is (S, s)-symmetric if  $Sz = \zeta^s z$  and  $w \in \mathbb{C}^m$  is (R, s)-symmetric if  $Rw = \zeta^s w$ . These definitions have their origins in Andrew's [2] definitions of symmetric and skew-symmetric vectors:  $z \in \mathbb{C}^n$  is symmetric (skew-symmetric) if Jx = x (Jx = -x), where  $J = \left[\delta_{i,n-j+1}\right]_{i,j=1}^n$ . (For other extensions of Andrew's definitions, see [12, 14, 15].)

Arbitrary  $z \in \mathbb{C}^n$  and  $w \in \mathbb{C}^m$  can be written uniquely as

$$z = \sum_{r=0}^{k-1} Q_r x_r \quad \text{and} \quad w = \sum_{s=0}^{k-1} P_s y_s, \tag{18}$$

with

$$x_r = Q_r^* z \in \mathbb{C}^{d_r}$$
 and  $y_r = P_r^* w \in \mathbb{C}^{c_r}$ ,  $0 \le r \le k - 1$ . (19)

From (1) and (18),

$$Sz = \sum_{r=0}^{k-1} \zeta^r Q_r x_r.$$

Therefore, (2) implies that z is (S, s)-symmetric if and only if  $z = Q_s x_s$  for some  $x_s \in \mathbb{C}^{d_s}$ . Similarly, w is (R, s)-symmetric if and only if  $w = P_s y_s$  for some  $y_s \in \mathbb{C}^{c_s}$ .

Theorem 4 implies the following theorem.

**Theorem 5** Suppose that  $A \in A(R, S, \alpha, \beta, \mu)$  and  $F_s = \Omega_s \Sigma_s \Phi_s^*$  is a singular value decomposition of  $F_s$ ,  $0 \le s \le k - 1$ . Then

$$A = \Omega\left(\bigoplus_{s=0}^{k-1} \Sigma_s\right) \Phi^*$$

7

with

$$\Omega = \begin{bmatrix} P_{\gamma(0)}\Omega_0 & P_{\gamma(1)}\Omega_1 & \cdots & P_{\gamma(k-1)}\Omega_{k-1} \end{bmatrix}$$

and

$$\Phi = \left[ \begin{array}{ccc} Q_0 \Phi_0 & Q_1 \Phi_1 & \cdots & Q_{k-1} \Phi_{k-1} \end{array} \right]$$

is a singular value decomposition of A. Thus, each singular value of  $F_s$  is a singular value of A associated with an  $(R, \gamma(s))$ -symmetric left singular vector and an (S, s)-symmetric right singular vector,  $0 \le s \le k-1$ .

Theorem 5 is related to [12, Theorems 11, 18], [13, Theorems 4.3, 5.3], and [15, Theorem3].

## 4 The least squares problem

Suppose that  $G \in \mathbb{C}^{p \times q}$  and consider the least squares problem for G: If  $u \in \mathbb{C}^p$ , find  $v \in \mathbb{C}^q$  such that

$$||Gv - u|| = \min_{\xi \in \mathbb{C}^q} ||G\xi - u||,$$
 (20)

where  $\|\cdot\|$  is the 2-norm. It is well known that this problem has a unique solution if and only if  $\operatorname{rank}(G) = q$ . In this case,  $v = (G^*G)^{-1}G^*u$ . In any case, the optimal solution of (20) is the unique *n*-vector  $v_0$  of minimum norm that satisfies (20); thus,  $v_0 = G^{\dagger}u$ . The general solution of (20) is  $v = v_0 + q$  with q in the null space of G, and

$$||Gv - u|| = ||(GG^{\dagger} - I)u||$$

for all such v.

We now consider the least squares problem for a matrix  $A \in \mathcal{A}(R, S, \alpha, \beta, \mu)$ . From (15) and (18),

$$Az - w = \sum_{s=0}^{k-1} P_{\gamma(s)} F_s x_s - \sum_{s=0}^{k-1} P_s y_s = \sum_{s=0}^{k-1} P_{\gamma(s)} (F_s x_s - y_{\gamma(s)}),$$

so (2) implies that

$$||Az - w||^2 = \sum_{s=0}^{k-1} ||F_s x_s - y_{\gamma(s)}||^2.$$

This implies the following theorem.

**Theorem 6** Suppose that  $A \in \mathcal{A}(R, S, \alpha, \beta, \mu)$ . Let  $w \in \mathbb{C}^m$  be given as in (18). Then  $z \in \mathbb{C}^n$ , written as in (18), satisfies

$$||Az - w|| = \min_{\xi \in \mathbb{C}^n} ||A\xi - w|| \tag{21}$$

if and only if

$$||F_s x_s - y_{\gamma(s)}|| = \min_{\psi_s \in C^{d_s}} ||F_s \psi_s - y_{\gamma(s)}||, \quad 0 \le s \le k - 1,$$

with  $F_s$  as in (16). Therefore (21) has a unique solution, given by

$$z = \sum_{s=0}^{k-1} Q_s (F_s^* F_s)^{-1} F_s^* y_{\gamma(s)},$$

if and only rank $(F_s) = d_s, 0 \le s \le k-1$ . In any case, the optimal solution of (21) is

$$z_0 = \sum_{s=0}^{k-1} Q_s F_s^{\dagger} y_{\gamma(s)}.$$

The general solution of (21) is  $z = z_0 + \sum_{s=0}^{k-1} Q_s u_s$ , where  $F_s u_s = 0, 0 \le s \le k-1$ , and

$$||Az - w||^2 = \sum_{s=0}^{k-1} ||(F_s F_s^{\dagger} - I_{c_{\gamma}(s)}) y_{\gamma(s)}||^2$$

for all such z.

## 5 The case where m = n and R = S

In this section we assume that m = n, S = R, and  $A \in \mathcal{A}(R, \alpha, \beta, u)$ . Hence, (15) becomes

$$A = \sum_{s=0}^{k-1} P_{\gamma(s)} F_s P_s^*$$
 (22)

and we can replace (18) and (19) by

$$z = \sum_{r=0}^{k-1} P_r x_r \quad \text{and} \quad w = \sum_{s=0}^{k-1} P_s y_s, \tag{23}$$

with

$$x_r = P_r^* z \in \mathbb{C}^{c_r}$$
 and  $y_r = P_r^* w \in \mathbb{C}^{c_r}$ ,  $0 \le r \le k - 1$ .

Let

$$\mathcal{S}_R = \bigcup_{s=0}^{k-1} \left\{ z \in \mathbb{C}^n \mid Rz = \zeta^s z \right\}; \tag{24}$$

thus,  $z \in \mathcal{S}_R$  if and only z is (R, s)-symmetric for some  $s \in \mathbb{Z}_k$ .

**Theorem 7** If A is singular, then the null space of A has a basis in  $\mathcal{S}_R$ .

PROOF. Let  $\mathcal{N}(A)$  be the nullspace of A. From (2), (22), and (23),  $z \in \mathcal{N}(A)$  if and only if  $F_s x_s = 0$ ,  $0 \le s \le k-1$ . Recall that  $F_s \in \mathbb{C}^{c_{\gamma(s)} \times c_s}$ ,  $0 \le s \le k-1$ . Let  $\mathcal{U} = \{s \in \mathbb{Z}_k \mid \operatorname{rank}(F_s) < c_s\}$ . Since A is singular,  $\mathcal{U} \ne \emptyset$ . If  $s \in \mathcal{U}$  and

9

 $\{x_s^{(1)}, x_s^{(2)}, \cdots, x_s^{(m_s)}\}\$  is a basis for the null space of  $F_s$ , then  $P_s x_s^{(1)}, P_s x_s^{(2)}, \ldots, P_s x_s^{(m_s)}$  are linearly independent (R, s)-symmetric vectors in  $\mathcal{N}(A)$ , and

$$\bigcup_{s \in \mathcal{V}} \{ P_s x_s^{(1)}, P_s x_s^{(2)}, \cdots, P_s x_s^{(m_s)} \}$$

is a basis for  $\mathcal{N}(A)$ .  $\square$ 

Now suppose that  $\gamma$  has m orbits  $\mathcal{O}_0,\ldots,\mathcal{O}_{m-1}$ . If m=1, then  $\gamma$  is a k-cycle and  $\mathbb{Z}_k=\left\{\gamma^j(0)\ \middle|\ 0\leq j\leq k-1\right\}$ . In any case, there are unique integers  $0=s_0<\cdots< s_{m-1}$  such that

$$\mathbb{Z}_k = \bigcup_{\ell=0}^{m-1} \mathcal{O}_{\ell}, \quad \text{where} \quad \mathcal{O}_{\ell} = \left\{ \gamma^j(s_{\ell}) \,\middle|\, 0 \le j \le k_{\ell} - 1 \right\}$$

and  $k_0 + \cdots + k_{m-1} = k$ . Now define

$$\Gamma_{\ell} = \sum_{j=0}^{k_{\ell}-1} P_{\gamma^{j+1}(s_{\ell})} F_{\gamma^{j}(s_{\ell})} P_{\gamma^{j}(s_{\ell})}^{*}, \tag{25}$$

$$z_{\ell} = \sum_{j=0}^{k_{\ell}-1} P_{\gamma^{j}(s_{\ell})} x_{\gamma^{j}(s_{\ell})}, \quad \text{and} \quad w_{\ell} = \sum_{j=0}^{k_{\ell}-1} P_{\gamma^{j}(s_{\ell})} y_{\gamma^{j}(s_{\ell})}.$$
 (26)

Then (15) and (18) can be written as

$$A = \sum_{\ell=0}^{m-1} \Gamma_{\ell}, \quad z = \sum_{\ell=0}^{m-1} z_{\ell}, \quad \text{and} \quad w = \sum_{\ell=0}^{m-1} w_{\ell}.$$

This, (2), (25), and (26) imply that Az = w if and only if

$$\Gamma_{\ell} z_{\ell} = w_{\ell}, \quad 0 < \ell < m-1.$$

However,  $\Gamma_{\ell} z_{\ell} = w_{\ell}$  if and only if

$$\sum_{j=0}^{k_{\ell}-1} P_{\gamma^{j+1}(s_{\ell})} F_{\gamma^{j}(s_{\ell})} x_{\gamma^{j}(s_{\ell})} = \sum_{j=0}^{k_{\ell}-1} P_{\gamma^{j}(s_{\ell})} y_{\gamma^{j}(s_{\ell})} = \sum_{j=0}^{k_{\ell}-1} P_{\gamma^{j+1}(s_{\ell})} y_{\gamma^{j+1}(s_{\ell})},$$

which is equivalent to

$$F_{\nu^{j}(s_{\ell})} x_{\nu^{j}(s_{\ell})} = y_{\nu^{j+1}(s_{\ell})}, \quad 0 \le j \le k_{\ell} - 1.$$
 (27)

This system can be written as

$$F_{s_{\ell}}x_{s_{\ell}} = y_{s_{\ell}} \text{ if } k_{\ell} = 1, \quad \begin{bmatrix} 0 & F_{\gamma(s_{\ell})} \\ F_{s_{\ell}} & 0 \end{bmatrix} \begin{bmatrix} x_{s_{\ell}} \\ x_{\gamma(s_{\ell})} \end{bmatrix} = \begin{bmatrix} y_{s_{\ell}} \\ y_{\gamma(s_{\ell})} \end{bmatrix} \text{ if } k_{\ell} = 2,$$

01

$$\begin{bmatrix} 0 & 0 & \cdots & 0 & F_{\gamma^{k_{\ell}-1}(s_{\ell})} \\ F_{s_{\ell}} & 0 & \cdots & 0 & 0 \\ 0 & F_{\gamma(s_{\ell})} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & F_{\gamma^{k_{\ell}-2}(s_{\ell})} & 0 \end{bmatrix} \begin{bmatrix} x_{s_{\ell}} \\ x_{\gamma(s_{\ell})} \\ x_{\gamma^{2}(s_{\ell})} \\ \vdots \\ x_{\gamma^{k_{\ell}-1}(s_{\ell})} \end{bmatrix} = \begin{bmatrix} y_{s_{\ell}} \\ y_{\gamma(s_{\ell})} \\ y_{\gamma^{2}(s_{\ell})} \\ \vdots \\ y_{\gamma^{k_{\ell}-1}(s_{\ell})} \end{bmatrix}$$

if  $k_{\ell} > 2$ . In any case, let us abbreviate this system as  $H_{\ell}\phi_{\ell} = \psi_{\ell}$ . Then we have proved the following theorem.

**Theorem 8** If  $w = \sum_{s=0}^{k-1} P_s y_s$ , then the system Az = w has a solution  $z = \sum_{s=0}^{k-1} P_s x_s$  if and only if the systems  $H_{\ell} \phi_{\ell} = \psi_{\ell}$ ,  $0 \le \ell \le m-1$ , all have solutions. Morever, if  $\phi_{\ell}$  is a  $\lambda$ -eigenvector of  $H_{\ell}$ , then  $z_{\ell} = \sum_{j=0}^{k_{\ell}-1} P_{\gamma^{j}(s_{\ell})} x_{\gamma^{j}(s_{\ell})}$  is a  $\lambda$ -eigenvector of A.

**Theorem 9** Suppose  $k_{\ell} > 1$ . If  $\lambda \neq 0$ , then  $\phi_{\ell}$  is a  $\lambda$ -eigenvector of  $H_{\ell}$  if and only if  $x_{s_{\ell}} \neq 0$  and

$$F_{\gamma^{k_{\ell}-1}(s_{\ell})}\cdots F_{\gamma(s_{\ell})}F_{s_{\ell}}x_{s_{\ell}} = \lambda^{k_{\ell}}x_{s_{\ell}}.$$
 (28)

In this case,

$$x_{\gamma^{j+1}(s_{\ell})} = \frac{1}{\lambda} F_{\gamma^{j}(s_{\ell})} x_{\gamma^{j}(s_{\ell})}, \quad 0 \le j \le k_{\ell} - 2, \tag{29}$$

and  $x_{s_{\ell}}, \ldots, x_{\nu^{k_{\ell}-1}(s_{\ell})}$  are all nonzero.

PROOF. We note from (16) with  $d_s = c_s$  that  $F_{\gamma^k \ell^{-1}(s_\ell)} \cdots F_{\gamma(s_\ell)} F_{s_\ell} x_{s_\ell} \in \mathbb{C}^{c_{s_\ell} \times c_{s_\ell}}$ . (Recall that  $\gamma^k(s_\ell) = s_\ell$ .) From (27),  $H_\ell \phi_\ell = \lambda \phi_\ell$  if and only

$$x_{\gamma^{j+1}(s_{\ell})} = \frac{1}{\lambda} F_{\gamma^{j}(s_{\ell})} x_{\gamma^{j}(s_{\ell})}$$
(30)

for all j, because of the periodicity of  $\gamma^j(s_\ell)$  with respect to j. Hence, if  $x_{\gamma^{j_0}(s_\ell)}=0$  for some  $j_0$ , then  $x_{\gamma^j(s_\ell)}=0$  for all j. Therefore,  $x_{s_\ell}\neq 0$  if  $\phi_\ell$  is a  $\lambda$ -eigenvector of  $H_\ell$ . Applying (30) for  $0\leq j\leq k_\ell-1$  and noting that  $x_{\gamma^{k_\ell}(s_\ell)}=x_{s_\ell}$  yields (28).  $\square$ 

**Corollary 2** If  $k_{\ell} > 1$ ,  $\zeta_{\ell} = e^{2\pi i/k_{\ell}}$ , and

$$\phi_{\ell}^{(0)} = \begin{bmatrix} x_{s_{\ell}} \\ x_{\gamma(s_{\ell})} \\ x_{\gamma^{2}(s_{\ell})} \\ \vdots \\ x_{\gamma^{k_{\ell}-1}(s_{\ell})} \end{bmatrix}$$

is a  $\lambda$ -eigenvector of  $H_{\ell}$  with  $\lambda \neq 0$ , then

$$\phi_{\ell}^{(r)} = \begin{bmatrix} x_{s_{\ell}} \\ \zeta_{\ell}^{-r} x_{\gamma(s_{\ell})} \\ \zeta_{\ell}^{-2r} x_{\gamma^{2}(s_{\ell})} \\ \vdots \\ \zeta_{\ell}^{-(k_{\ell}-1)r} x_{\gamma^{k_{\ell}-1}(s_{\ell})} \end{bmatrix}$$

is  $\lambda \zeta_{\ell}^{r}$ -eigenvector of  $H_{\ell}$ ,  $0 \leq r \leq k_{\ell} - 1$ .

PROOF. Replacing  $\lambda$  by  $\zeta^r \lambda$  in (28) and (29) leaves the former unchanged. This implies the conclusion.  $\square$ 

The results in this section take a particularly simple form if n = k, so that  $c_s = d_s = 1, 0 \le s \le k - 1$ . In this case, let  $\{p_1, \ldots, p_k\} \subset \mathbb{C}^k$  be an orthonormal set such that  $Rp_s = \zeta^s p_s$ ,  $0 \le s \le k - 1$ . Theorems 8, 9, and Corollary 2 with  $P_s = p_s$  and  $F_s = p_{\gamma(s)}^* Ap_s$  imply the following theorem, which is related to [1, Lemma 4.3].

**Theorem 10** Suppose that n = k. If  $k_{\ell} = 1$ , then  $\lambda = p_{s_{\ell}}^* A p_{s_{\ell}}$  is an eigenvalue of  $H_{\ell}$  with associated eigenvector  $p_{s_{\ell}}$ . If  $k_{\ell} > 1$ , let

$$\Delta_{\ell} = \prod_{t=0}^{k_{\ell-1}} p_{\gamma^{t+1}(s_{\ell})}^* A p_{\gamma^{t}(s_{\ell})}.$$

If  $\Delta_{\ell} \neq 0$ , let  $\lambda_{\ell} = \Delta_{\ell}^{1/k_{\ell}}$  and define

$$x_{s_{\ell}} = 1$$
 and  $x_{\gamma^{j+1}(s_{\ell})} = \lambda_{\ell}^{-j-1} \prod_{t=0}^{j} p_{\gamma^{t+1}(s_{\ell})}^* A p_{\gamma^{t}(s_{\ell})}, \quad 0 \le j \le k_{\ell} - 2.$ 

Then  $\lambda_{\ell} \xi_{\ell}^{r}$  is an eigenvalue of A with associated eigenvector

$$z_{\ell r} = \sum_{j=0}^{k_{\ell-1}} \xi_{\ell}^{-rj} x_{\gamma^{j}(s_{\ell})} p_{\gamma^{j}(s_{\ell})}, \quad 0 \le r \le k_{\ell} - 1.$$

Any nonzero eigenvalue of A must be of the form just defined for some  $\ell \in \{0, ..., m-1\}$ . A is singular if and only if the set  $\mathcal{M} = \{s \mid p_s^* A p_s = 0\}$  is nonempty, in which case  $\{p_s \mid s \in \mathcal{M}\}$  is a basis for  $\mathcal{N}(A)$ .

# 6 R-symmetric matrices

In this section we consider the special case where m=n, S=R,  $\mu=0$ ,  $\alpha=1$ , and  $\beta=k-1$ . Since  $R^{k-1}=R^{-1}=R^*$ ,  $\mathcal{A}(R,1,k-1,0)$  is the set of matrices  $A\in\mathbb{C}^{n\times n}$  such that  $RAR^*=A$ . We will say that such a matrix is R-symmetric. This is related to a definition in [12].

Our assumptions imply that  $\gamma(s) = s$ ,  $0 \le s \le k - 1$  (see (14)), so Theorem 4 implies that A is R-symmetric if and only if

$$A = P\left(\bigoplus F_{s}\right) P^{*} = \sum_{s=0}^{k-1} P_{s} F_{s} P_{s}^{*}$$
(31)

with

$$F_s = P_s^* A P_s \in \mathbb{C}^{c_s \times c_s}, \quad 0 \le s \le k-1.$$

The next two theorems are immediate consequences of (31).

12

**Theorem 11** If A is R-symmetric, then  $\lambda$  is an eigenvalue of A if and only if  $\lambda$  is an eigenvalue of one or more of the matrices  $F_0, F_1, \ldots, F_{k-1}$ . Assuming this to be true, let

$$S_A(\lambda) = \{ s \in \mathbb{Z}_k \mid \lambda \text{ is an eigenvalue of } F_s \}.$$

If  $s \in S_A(\lambda)$  and  $\{x_s^{(1)}, x_s^{(2)}, \dots, x_s^{(m_s)}\}$  is a basis for  $\mathcal{E}_{A_s}(\lambda)$ , then  $P_s x_s^{(1)}, P_s x_s^{(2)}, \dots, P_s x_s^{(m_s)}$  are linearly independent (R, s)-symmetric  $\lambda$ -eigenvectors of A. Moreover,

$$\bigcup_{s \in \mathcal{S}_A(\lambda)} \{ P_s x_s^{(1)}, P_s x_s^{(2)}, \cdots, P_s x_s^{(m_s)} \}$$

is a basis for  $\mathcal{E}_A(\lambda)$ . Finally, A is diagonalizable if and only if  $F_0$ ,  $F_1$ , ...,  $F_{k-1}$  are all diagonalizable. In this case, A has  $c_s$  linearly independent (R,s)-symmetric eigenvectors,  $0 \le s \le k-1$ .

**Theorem 12** If A is R-symmetric, then A is normal if and only if  $F_s$  is normal,  $0 \le s \le k-1$ . In this case, if  $F_s = \Omega_s D_s \Omega_s^*$  is a spectral representation of  $A_s$ ,  $0 \le s \le k-1$ , then

$$A = \Omega\left(\bigoplus_{s=0}^{k-1} D_s\right) \Omega^*$$

with

$$\Omega = \left[ \begin{array}{cccc} P_0 \Omega_0 & P_1 \Omega_1 & \cdots & P_{k-1} \Omega_{k-1} \end{array} \right]$$

is a spectral representation of A. Hence, A has  $c_s$  linearly independent (R, s)-symmetric eigenvectors,  $0 \le s \le k-1$ .

The next theorem is a generalization of Andrew's theorem [2, Theorem 2]. For other generalizations of Andrew's theorem, see [12, 14, 15].

#### Theorem 13

- (i) If A is R-symmetric and  $\lambda$  is an eigenvalue of A, then  $\mathcal{E}_A(\lambda)$  has a basis in  $\mathcal{S}_R$  (recall (24)).
  - (ii) If A has n linearly independent eigenvectors in  $\mathcal{S}_R$ , then A is R-symmetric.

PROOF. (i) Theorem 11.

(ii) Let  $\lambda_1, \ldots, \lambda_n$  be the eigenvalues of A with associated linearly independent eigenvectors  $z_1, \ldots, z_n$  in  $\mathcal{S}_R$ . It suffices to show that  $RAR^*z_j = Az_j$ ,  $1 \le j \le n$ . This is true, since if  $Az_j = \lambda_j z_j$  and  $Rz_j = \zeta^s z_j$ , then

$$RAR^*z_i = \zeta^{-s}RAz_i = \zeta^{-s}\lambda_iRz_i = \zeta^{-s}\zeta^s\lambda_iz_i = Az_i$$
.  $\square$ 

### 7 Generalized block circulants

Henceforth  $\rho$  is a k-cyclic permutation of  $\mathbb{Z}_k$  and  $\sigma$  is the permutation of  $\mathbb{Z}_k$  such that

$$\rho^{\sigma(s)}(0) = s, \quad 0 \le s \le k - 1. \tag{32}$$

13

For example, if k = 7 and  $\rho = (0, 5, 6, 2, 3, 4, 1)$ , then

$$\sigma = \left(\begin{array}{cccccc} 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ 0 & 6 & 3 & 4 & 5 & 1 & 2 \end{array}\right).$$

Let

$$\nu(r,s) = \rho^{\sigma(s) + \beta\sigma(r)}(0) = \rho^{\beta\sigma(r)}(s), \quad 0 \le r, s \le k - 1.$$
 (33)

We study matrices of the form

$$A = [\zeta^{\mu_1 \sigma(s) + \mu_2 \sigma(r)} A_{\nu(r,s)}]_{r,s=0}^{k-1}, \quad \text{where} \quad A_0, \dots, A_{k-1} \in \mathbb{C}^{d_1 \times d_2}.$$
 (34)

For example, if  $\rho = (0, 1, ..., k-1)$ , then  $\sigma(s) = s, 0 \le s \le k-1$ , so

$$A = [\zeta^{s\mu_1 + r\mu_2} A_{(s+\beta r) \pmod{k}}]_{r,s=0}^{k-1}.$$

Hence, if  $\mu_1 = \mu_2 = 0$ , then A is a block  $\beta$ -anticirculant if  $\beta > 0$ , or a block  $|\beta|$ -circulant if  $\beta < 0$ . (Note that we do not assume here that the blocks are square). We will need the following lemma.

#### Lemma 1 Let

$$E = \left[ \begin{array}{ccc} e_{\rho^{-1}(0)} & e_{\rho^{-1}(1)} & \cdots & e_{\rho^{-1}(k-1)} \end{array} \right], \tag{35}$$

where  $\begin{bmatrix} e_0 & e_1 & \cdots & e_{k-1} \end{bmatrix} = I_k$ . Then  $E = UDU^*$ , where

$$D = \operatorname{diag}(1, \zeta, \dots, \zeta^{k-1})$$

and

$$U = \begin{bmatrix} u_0 & u_1 & \cdots & u_{k-1} \end{bmatrix} = \frac{1}{\sqrt{k}} \begin{bmatrix} \zeta^{s\sigma(r)} \end{bmatrix}_{r,s=0}^{k-1}.$$

PROOF. If q is an arbitrary integer, then

$$\sigma(\rho^q(r)) \equiv \sigma(r) + q \pmod{k}, \quad 0 \le r \le k - 1, \tag{36}$$

since (32) implies that

$$\rho^{\sigma(\rho^q(r))}(0) = \rho^q(r) = \rho^q(\rho^{\sigma(r)}(0)) = \rho^{\sigma(r)+q}(0).$$

Therefore,

$$EU = \frac{1}{\sqrt{k}} \left[ \zeta^{s\sigma(\rho(r))} \right]_{r,s=0}^{k-1} = \frac{1}{\sqrt{k}} \left[ \zeta^{s(\sigma(r)+1)} \right]_{r,s=0}^{k-1} = UD,$$

where (36) with q=1 implies the second equality. Since  $UU^*=I_k$ , it follows that  $E=UDU^*$ .  $\square$ 

The following two theorem do not require that  $(\beta, k) = 1$ .

Theorem 14 Let

$$R = E \otimes I_{d_1}$$
 and  $S = E \otimes I_{d_2}$ . (37)

Let  $H = [H_{rs}]_{r,s=0}^{k-1}$ , where  $H_{rs} \in \mathbb{C}^{d_1 \times d_2}$ ,  $0 \le r, s \le k-1$ . Then

$$RHS^{\beta} = \zeta^{\mu_2 - \beta \mu_1} H,\tag{38}$$

if and only if

$$H_{rs} = \zeta^{\mu_1 \sigma(s) + \mu_2 \sigma(r)} A_{\nu(r,s)}, \quad 0 \le r, s \le k - 1,$$
 (39)

where  $A_0, \ldots, A_{k-1} \in \mathbb{C}^{d_1 \times d_2}$ . In this case,

$$A_s = \zeta^{-\mu_1 \sigma(s)} H_{0s}, \quad 0 < s < k - 1.$$
 (40)

PROOF. Let P and Q be as in (4), with

$$P_s = u_s \otimes I_{d_1}$$
, and  $Q_s = u_s \otimes I_{d_2}$ ,  $0 \le s \le k - 1$ .

Then (1) holds, which implies (5) and (6). From (35) and (37), it is straightforward to verify that

$$RHS^{\beta} = \left[ H_{\rho(r), \rho^{-\beta}(s)} \right]_{r, s=0}^{k-1}.$$
 (41)

If (39) holds, then

$$RHS^{\beta} = \left[ \zeta^{\mu_1 \sigma(\rho^{-\beta}(s)) + \mu_2 \sigma(\rho(r))} A_{\nu(\rho(r), \rho^{-\beta}(s))} \right]_{r, s = 0}^{k - 1}. \tag{42}$$

However, from (36),

$$\mu_1 \sigma(\rho^{-\beta}(s)) + \mu_2 \sigma(\rho(r)) \equiv \mu_1 \sigma(s) + \mu_2 \sigma(r) - \beta \mu_1 + \mu_2, \pmod{k}.$$
 (43)

and

$$\sigma(\rho^{-\beta}(s)) + \beta\sigma(\rho(r)) \equiv \sigma(s) + \beta\sigma(r) \pmod{k}. \tag{44}$$

Now (39), (42), (43), and (44) imply (38).

Conversely, suppose that (38) holds. Then (41) implies that

$$H_{\rho(r),\rho^{-\beta}(s)} = \zeta^{\mu_2 - \beta \mu_1} H_{rs}, \quad 0 \le r, s \le k - 1.$$
 (45)

We will show by induction on r that

$$H_{\rho^{r}(0),s} = \zeta^{\mu_{1}\sigma(s) + r\mu_{2}} A_{\rho^{r\beta}(s)}, \quad 0 \le s \le k - 1, \tag{46}$$

with  $A_0, \ldots, A_s$  as in (40); thus, (46) holds for r = 0. Now suppose  $r \ge 0$  and (46) holds. Replacing r by  $\rho^r(0)$  and s by  $\rho^\beta(s)$  in (45) yields

$$H_{\rho^{r+1}(0),s} = \zeta^{\mu_2-\beta\mu_1} H_{\rho^r(0),\rho^\beta(s)}.$$

Therefore, from (46) with s replaced by  $\rho^{\beta}(s)$ ,

$$H_{\rho^{r+1}(0),s} = \zeta^{\mu_2 - \beta \mu_1 + \mu_1(\sigma(\rho^{\beta}(s)) + r\mu_2)} A_{\rho^{(r+1)\beta}(s)} = \zeta^{\mu_1 \sigma(s) + (r+1)\mu_2} A_{\rho^{(r+1)\beta}(s)},$$

where the last equality is a consequence of (36). This completes the induction, so (46) holds for  $0 \le r \le k-1$ . Replacing r by  $\sigma(r)$  in (46) and recalling (32) and (33) yields (39).  $\square$ 

Theorem 15 If

$$A = \left[ \zeta^{\mu_1 \sigma(s) + \mu_2 \sigma(r)} A_{\rho^{\beta \sigma(r)}(s)} \right]_{r,s=0}^{k-1}$$

and

$$B = \left[ \zeta^{\nu_1 \sigma(s) + \nu_2 \sigma(r)} B_{\rho^{\delta \sigma(r)}(s)} \right]_{r,s=0}^{k-1},$$

where  $A_0, \ldots, A_{k-1}, B_0, \ldots, B_{k-1} \in \mathbb{C}^{d \times d}$ , then

$$AB = \left[ \zeta^{\nu_1 \sigma(s) + \tau \sigma(r)} C_{\rho^{-\beta \delta \sigma(r)}(s)} \right], \tag{47}$$

where

$$\tau = \mu_2 - \beta \mu_1 - \beta \nu_2$$

and

$$C_s = \sum_{j=0}^{k-1} \zeta^{(\mu_1 + \nu_2)\sigma(j)} A_j B_{\rho^{\delta\sigma(j)}(s)}, \quad 0 \le s \le k - 1.$$
 (48)

PROOF. We apply Theorem 14 with  $d_1=d_2=d$ , so that R=S (see (37)). Theorem 14 implies that

(i) 
$$RA = \zeta^{\mu_2 - \beta \mu_1} A R^{-\beta}$$
 and (ii)  $RB = \zeta^{\nu_2 - \delta \nu_1} B R^{-\delta}$ . (49)

From (ii) and induction,

$$R^{-\beta}B = R^{k-\beta}B = \zeta^{(k-\beta)(\nu_2 - \delta\nu_1)}R^{-(k-\beta)\delta} = \zeta^{-\beta(\nu_2 - \delta\nu_1)}BR^{\beta\delta}.$$

From this and (49)(i),

$$RAB = \zeta^{\mu_2 - \beta \mu_1} A R^{-\beta} B = \zeta^{\mu_2 - \beta \mu_1 - \beta(\nu_2 - \delta \nu_1)} A B R^{\beta \delta}$$

Now Theorem 14 with  $\beta$ ,  $\mu_1$ , and  $\mu_2$  replaced by  $k - \beta \delta$ ,  $\nu_1$ , and  $\tau$  implies (47). It is straightforward to verify (48), since (40) with appropriate substitutions implies that  $C_s = \zeta^{-\nu_1 \sigma(s)}(AB)_{0s}$ .

Theorem 15 generalizes [1, Theorem 3.1]; namely, that the product of a g-circulant and an h-circulant is a gh-circulant. However, [1] does not specify the entries in the product, as in (48).

**Theorem 16** Suppose that A is as in (34) and  $(\beta, k) = 1$ . Define

$$\gamma(s) \equiv \mu_2 - \beta(\mu_1 + s) \pmod{k}. \tag{50}$$

Then

$$A = \sum_{s=0}^{k-1} P_{\gamma(s)} F_s Q_s^*$$
 (51)

with

$$P_{s} = u_{s} \otimes I_{d_{1}}, \quad Q_{s} = u_{s} \otimes I_{d_{2}}, \quad u_{s} = \frac{1}{\sqrt{k}} \begin{bmatrix} 1 \\ \zeta^{s\sigma(1)} \\ \zeta^{s\sigma(2)} \\ \vdots \\ \zeta^{s\sigma(k-1)} \end{bmatrix}, \quad (52)$$

and

$$F_s = \sum_{m=0}^{k-1} \zeta^{(\mu_1 + s)\sigma(m)} A_m, \quad 0 \le s \le k - 1, \tag{53}$$

independent of  $\beta$  and  $\mu_2$ . Conversely, if A is as in (51) with given  $F_0, \ldots, F_{k-1} \in \mathbb{C}^{d_1 \times d_2}$ , then A is as in (34) with

$$A_m = \frac{1}{k} \sum_{s=0}^{k-1} \zeta^{-(\mu_1 + s)\sigma(m)} F_s, \quad 0 \le s \le k - 1.$$
 (54)

PROOF. If A is as (34), then Theorem 14 implies the assumptions of Theorem 1 with  $\alpha = 1$  and  $\mu = \mu_2 - \beta \mu_1$ . If in addition  $(\beta, k) = 1$ , then Theorem 4 implies (51), where, from (16), (34), and (52),

$$F_s = P_{\gamma(s)}^* A Q_s = \frac{1}{k} \sum_{\ell=0}^{k-1} \zeta^{(\mu_2 - \gamma(s))\sigma(\ell) + (\mu_1 + s)\sigma(m)} A_{\nu(\ell,m)}, \quad 0 \le s \le k - 1.$$

However, from (50),

$$\mu_2 - \gamma(s) \equiv \beta(\mu_1 + s) \pmod{k}$$
,

so

$$(\mu_2 - \gamma(s))\sigma(\ell) + (\mu_1 + s)\sigma(m) \equiv \xi(\ell, m) \pmod{k}.$$

where

$$\xi(\ell, m) = (\mu_1 + s)(\beta \sigma(\ell) + \sigma(m)). \tag{55}$$

Therefore,

$$F_s = \frac{1}{k} \sum_{\ell,m=0}^{k-1} \zeta^{\xi(\ell,m)} A_{\nu(\ell,m)}.$$
 (56)

We want to rearrange the terms of this double sum to collect the coefficients of  $A_0, \ldots, A_{k-1}$ . Our strategy for accomplishing this is motivated by the congruence

$$\sigma(\rho^{\beta\ell}(m)) + \beta(\sigma(\rho^{-\ell}(0)) \equiv (\sigma(m) + \beta\ell) + \beta(\sigma(0) - \ell) \equiv \sigma(m) \pmod{k},$$

(recall (36) and note that  $\sigma(0) = 0$ , from (32)) which, from (33) and (55), implies that

$$\nu(\rho^{-\ell}(0), \rho^{\beta\ell}(m)) \equiv m \pmod{k} \tag{57}$$

and

$$\xi(\rho^{-\ell}(0), \rho^{\beta\ell}(m)) \equiv (\mu_1 + s)\sigma(m) \pmod{k}. \tag{58}$$

Replacing  $\ell$  by  $\rho^{-\ell}(0)$  in (56) yields

$$F_s = \frac{1}{k} \sum_{\ell=0}^{k-1} \left( \sum_{m=0}^{k-1} \zeta^{\xi(\rho^{-\ell}(0),m)} A_{\nu(\rho^{-\ell}(0),m)} \right).$$

For each  $\ell$  we now replace m by  $\rho^{\beta\ell}(m)$  in the sum in parentheses to obtain

$$F_{s} = \frac{1}{k} \sum_{\ell,m=0}^{k-1} \zeta^{\xi(\rho^{-\ell}(0),\rho^{\beta\ell}(m))} A_{\nu(\rho^{-\ell}(0),\rho^{\beta\ell}(m))}.$$

Hence, (57) and (58) imply (53). Since (53) and (54) are equivalent, the converse also holds.  $\Box$ 

**Theorem 17** If A is as in (34), then  $(A^{\dagger})^* \in \mathcal{A}(R, S, 1, \beta, \mu_2 - \beta \mu_1)$ . If in addition  $(\beta, k) = 1$ , then

$$A^{\dagger} = \left[ \zeta^{-\mu_1 \sigma(r) - \mu_2 \sigma(s)} D_{\nu(s,r)} \right]_{r,s=0}^{k-1},$$

where

$$D_m = \frac{1}{k} \sum_{s=0}^{k-1} \zeta^{(\mu_1 + s)\sigma(m)} F_s^{\dagger}, \quad 0 \le m \le k - 1,$$
 (59)

and  $F_s$  is as in (53).

PROOF. Theorems 3 and 14 imply the first assertion. Now suppose  $(\beta, k) = 1$ . Temporarily, denote

$$D = \left[ \zeta^{-\mu_1 \sigma(r) - \mu_2 \sigma(s)} D_{\nu(s,r)} \right]_{r,s=0}^{k-1}.$$

Since

$$D^* = \left[ \zeta^{\mu_1 \sigma(s) + \mu_2 \sigma(r)} D^*_{\nu(r,s)} \right]_{r,s=0}^{k-1},$$

the argument used to obtain (38) shows that  $RD^*S^{\beta} = \zeta^{\mu_2 - \beta \mu_1}D^*$ . Hence, Theorem 4 with A replaced by  $D^*$  implies that

$$D^* = \sum_{s=0}^{k-1} P_{\gamma(s)} G_s Q_s^*$$
 (60)

with

$$G_s = P_{\gamma(s)}^* D_s^* Q_s, \quad 0 \le s \le k - 1.$$

By the argument used to obtain (53),

$$G_s = \sum_{m=0}^{k-1} \zeta^{(\mu_1 + s)\sigma(m)} D_m^*, \quad 0 \le s \le k - 1.$$
 (61)

However, (59) is equivalent to

$$F_s^{\dagger} = \sum_{m=0}^{k-1} \xi^{-(\mu_1 + s)\sigma(m)} D_m, \quad 0 \le s \le k - 1.$$

Comparing this with (61) shows that  $G_s = (F_s^{\dagger})^*$ . This and (60) imply that

$$D = \sum_{s=0}^{k-1} Q_s F_s^{\dagger} P_{\gamma(s)}^*,$$

so (17) implies that  $D = A^{\dagger}$ .

If m = n, S = R, and  $d_1 = d_2$ , the results of Sections 5 and 6 can be applied to analyze the spectral properties of A in (34).

We close with the following theorem, which generalizes the well known formulas for the eigenvalues and eigenvectors of the standard circulant matrix  $A = [a_{(s-r) \pmod k}]_{r,s=0}^{k-1}$ .

**Theorem 18** If  $a_0, \ldots, a_{k-1} \in \mathbb{C}$ , then the eigenvalues and associated eigenvectors of  $A = [a_{\rho^{-\sigma(r)}(s)}]_{r,s=0}^{k-1}$  are

$$f_{s} = \sum_{m=0}^{k-1} a_{m} \zeta^{s\sigma(m)} \quad and \quad u_{s} = \frac{1}{\sqrt{k}} \begin{bmatrix} 1 \\ \zeta^{s\sigma(1)} \\ \zeta^{s\sigma(2)} \\ \vdots \\ \zeta^{s\sigma(k-1)} \end{bmatrix}, \quad 0 \leq s \leq k-1. \quad (62)$$

PROOF. *A* is of the form (34) with  $\mu_1 = \mu_2 = 0$ ,  $\beta = -1$ , and  $A_s = a_s$ ,  $0 \le s \le k-1$ . Hence  $\gamma(s) = s$  (see (50)) and  $P_s = Q_s = u_s$ , from (52) with  $d_1 = d_2 = 1$ . Hence, from (51),  $A = \sum_{s=0}^{k-1} f_s u_s u_s^*$  with  $f_s$  as in (62) (see (53)).  $\Box$ 

### References

- [1] C. M. Ablow, J. L. Brenner, Roots and canonical forms for circulant matrices, Trans. Amer. Math. Soc. 107 (1963) 360–376.
- [2] A. L. Andrew, Eigenvectors of certain matrices, Linear Algebra Appl. 7 (1973) 151–162.
- [3] C. L. Bell, Generalized inverses of circulant and generalized circulant matrices, Linear Algebra Appl. 39 (1981) 133–142.
- [4] C. Y. Chao, A remark on eigenvalues of generalized circulants, Portugal. Math. 37 (1981) 135–144.
- [5] H.-C. Chen, Circulative matrices of degree  $\theta$ , SIAM J. Matrix Anal. Appl. 13 (1992) 1172–1188.

- [6] P. J. Davis, Circulant Matrices, Wiley, New York, 1979.
- [7] D. Fasino, Circulative properties revisited: Algebraic properties of a generalization of cyclic matrices, Italian J. Pure Appl. Math 4 (1998) 33–43.
- [8] H. Karner, J. Schneid, C. W. Ueberhuber, Spectral decomposition of real circulant matrices, Linear Algebra Appl. 367 (2003) 310–311.
- [9] A. J. Lazarus, Eigenvectors of circulant matrices of prime dimension, Linear Algebra Appl. 221 (1995) 111–116.
- [10] W. T. Stallings, T. L. Boullion, The pseudoinverse of an *r*-circulant matrix, Proc. Amer. Math. Soc. 34 (1972) 385–388.
- [11] W. T. Stallings, T. L. Boullion, A strong spectral inverse for an *r*-circulant matrix, SIAM J. Appl. Math. 27 (1974) 322–325.
- [12] W. F. Trench, Characterization and properties of matrices with generalized symmetry or skew symmetry, Linear Algebra Appl. 377 (2004) 207-218.
- [13] W. F. Trench, Minimization problems for (R, S)-symmetric and (R, S)-skew symmetric matrices, Linear Algebra Appl. 389 (2004) 23–31.
- [14] W. F. Trench, Characterization and properties of (R, S)-symmetric, (R, S)-skew symmetric, and (R, S)-conjugate matrices, SIAM J. Matrix Anal. Appl. 26 (2005) 748–757.
- [15] W. F. Trench, Multilevel matrices with involutory symmetries and skew symmetries, Linear Algebra Appl. 403 (2005) 53–74.