# On matrices with rotative symmetries 

William F. Trench

Trinity University, San Antonio, Texas, USA

Note: This is paper is is poorly written and organized, so much so that
I voluntarily withdrew it from consideration for publication in 2006 .
However, it is the origin of ideas that I developed successfully in later
work.


#### Abstract

We say that a unitary matrix $R$ is rotative (specifically, $k$-rotative) if its minimal polynomial is $x^{k}-1$ for some $k \geq 2$. Let $R \in \mathbb{C}^{m \times m}$ and $S \in \mathbb{C}^{n \times n}$ be $k$-rotative, $\alpha, \beta, \mu \in\{0,1, \ldots, k-1\}$, and $\alpha \beta \neq 0$. Let $\zeta=e^{2 \pi i / k}$. We define $\mathcal{A}(R, S, \alpha, \beta, \mu)$ to be the class of matrices $A \in \mathbb{C}^{m \times n}$ such that $R^{\alpha} A S^{\beta}=\zeta^{\mu} A$. If $m=n$ and $S=R$, we denote the class by $\mathcal{A}(R, \alpha, \beta, \mu)$. We characterize the class $\mathcal{A}(R, S, \alpha, \beta, \mu)$ and discuss the problem of Moore-Penrose inversion of a wider class of matrices that includes $\mathcal{A}(R, S, \alpha, \beta, \mu)$. Under the additional assumption that $(\alpha, k)=(\beta, k)=1$, we give a representation of a matrix $A$ in $\mathcal{A}(R, S, \alpha, \beta, \mu)$ in terms of matrices $F_{s} \in \mathbb{C}^{c_{s} \times d_{s}}$, where $\sum_{s=0}^{k-1} c_{s}=m$ and $\sum_{s=0}^{k-1} d_{s}=n$, and show that Moore-Penrose inversion, singular value decomposition, and the least squares problem for such a matrix reduce respectively to the same problems for $F_{0}, \ldots, F_{k-1}$. We consider the eigenvalue problem for matrices in $\mathcal{A}(R, \alpha, \beta, \mu)$. We study a class of generalized circulants generated by blocks $A_{0}, \ldots, A_{k-1} \in \mathbb{C}^{d_{1} \times d_{2}}$, and show that they are in $\mathcal{A}(R, S, 1, \beta, \mu)$ for suitable choices of $R, S$, and $\mu$. In this case we give explicit formulas for $F_{0}, \ldots$, $F_{k-1}$ in terms of $A_{0}, \ldots, A_{k-1}$, and for $A^{\dagger}$ in terms of $F_{0}^{\dagger}, \ldots, F_{k-1}^{\dagger}$.


MSC: 15A18; 15A57
Keywords: Block circulant; Eigenvalue problem; Least squares; Moore-Penrose inverse; Rotative

## 1 Introduction

We say that a unitary matrix $R$ is rotative (specifically, $k$-rotative) if its minimal polynomial is $x^{k}-1$ for some $k \geq 2$. A rotative matrix is a special kind of circulation matrix, which was defined by Chen [5] to be a unitary matrix $R \neq I$ such that $R^{k}=I$ for some $k \geq 2$. The difference between the definitions is that ours requires the spectrum of $R$ to be $\left\{e^{2 \pi i r / k} \mid 0 \leq r \leq k-1\right\}$, while Chen's requires only that the spectrum of $R$ is some subset of $\left\{e^{2 \pi i r / k} \mid 0 \leq r \leq k-1\right\}$. Chen studied matrices $A$ such that $A=e^{i \theta} R^{*} A R$, where $R$ is a circulation matrix and $\theta \in[0, \pi)$. Fasino continued this study in [7].

Throughout this paper $R \in \mathbb{C}^{m \times m}$ and $S \in \mathbb{C}^{n \times n}$ are both $k$-rotative. We assume that $k>2$, since if $k=2$ our results do not improve on those already obtained in [12, 13, 14], of which this paper is an extension.

We assume throughout that $\alpha, \beta, \mu \in \mathbb{Z}_{k}=\{0,1, \ldots, k-1\}$ and $\alpha \beta \neq 0$. Let $\zeta=e^{2 \pi i / k}$. We define $\mathcal{A}(R, S, \alpha, \beta, \mu)$ to be the class of matrices $A \in \mathbb{C}^{m \times n}$ such that $R^{\alpha} A S^{\beta}=\zeta^{\mu} A$. If $m=n$ and $S=R$, we denote the class by $\mathcal{A}(R, \alpha, \beta, \mu)$.

This paper is influenced by the work of Ablow and Brenner [1], who considered the case where $m=n=k, R=S=$ the circulant with first row $\left[\begin{array}{ccccc}0 & 1 & 0 & \cdots & 0\end{array}\right]$, $\mu=0, \alpha=1$, and $\beta=k-g$, where $1 \leq g \leq k-1$. They showed that $A \in \mathbb{C}^{k \times k}$ is a $g$-circulant (i.e., $\left.A=\left[a_{(s-g r)(\bmod k)}\right]_{r, s=0}^{k-1}\right)$ if and and only if $R A R^{k-g}=A$, and used this to find the Jordan canonical form for $A$ in the case where $(g, k)=1$. They also considered the case where $(g, k) \neq 1$, and obtained results for a class of square block $g$-circulants. Other authors (see, e.g., $[4,6,8,9]$ ) have considered spectral decompositions of various kinds of circulant-like matrices. Moore-Penrose inversion of such matrices has also been studied (see, e.g., $[3,10,11]$ ).

In Section 2 we characterize the class $\mathcal{A}(R, S, \alpha, \beta, \mu)$ assuming only that $\alpha \beta \neq 0$, and we discuss Moore-Penrose inversion of a wider class of matrices that includes $\mathcal{A}(R, S, \alpha, \beta, \mu)$. Most of our results in Sections 3-7 require that $(\alpha, k)=(\beta, k)=$ 1. In Section 3, under this assumption, we give a more specific representation $A$ in $\mathcal{A}(R, S, \alpha, \beta, \mu)$ in terms of matrices $F_{s} \in \mathbb{C}^{c_{s} \times d_{s}}$, where $\sum_{s=0}^{k-1} c_{s}=m$ and $\sum_{s=0}^{k-1} d_{s}=n$, and show that $A^{\dagger}$ can be written in terms of $F_{0}^{\dagger}, \ldots, F_{k-1}^{\dagger}$ and a singular value decomposition of $A$ can be written in terms of singular value decompositions of $F_{0}, \ldots, F_{k-1}$. In Section 4 it is shown that the least squares problem for $A$ reduces to $k$ independent least squares problems for $F_{0}, \ldots, F_{k-1}$. In Section 5 we consider the eigenvalue problem for matrices in $\mathcal{A}(R, \alpha, \beta, \mu)$. In Section 6 we study the eigenvalue problem for $\mathcal{A}(R, 1, k-1,0)$, which is the set of matrices $A \in \mathbb{C}^{n \times n}$ such that $R A R^{*}=A$. In Section 7 we study a class of generalized circulants generated by blocks $A_{0}, \ldots, A_{k-1} \in \mathbb{C}^{d_{1} \times d_{2}}$, and show that they are in $\mathcal{A}(R, S, 1, \beta, \mu)$ for suitable choices of $R, S$, and $\mu$. Under the assumption that $(\beta, k)=1$, we give explicit formulas for $F_{0}, \ldots, F_{k-1}$ in terms of $A_{0}, \ldots, A_{k-1}$, and for $A^{\dagger}$ in terms of $F_{0}^{\dagger}, \ldots, F_{k-1}^{\dagger}$.

## 2 Preliminary considerations

Throughout this paper $\mathcal{E}_{B}(\lambda)$ denotes the $\lambda$-eigenspace of $B$. Let $c_{s}$ and $d_{s}$ be the dimensions of $\mathcal{E}_{R}\left(\zeta^{s}\right)$ and $\mathcal{E}_{S}\left(\zeta^{s}\right)$, respectively. Then $\sum_{s=0}^{k-1} c_{s}=m, \sum_{s=0}^{k-1} d_{s}=n$, and there are matrices $P_{s} \in \mathbb{C}^{m \times c_{s}}$ and $Q_{s} \in \mathbb{C}^{n \times d_{s}}$ such that

$$
\begin{gather*}
R P_{s}=\zeta^{s} P_{s}, \quad S Q_{s}=\zeta^{s} Q_{s}, \quad 0 \leq s \leq k-1  \tag{1}\\
P_{r}^{*} P_{s}=\delta_{r s} I_{c_{s}} \quad \text { and } \quad Q_{r}^{*} Q_{s}=\delta_{r s} I_{d_{s}}, \quad 0 \leq r, s \leq k-1 . \tag{2}
\end{gather*}
$$

Since $R^{*}=R^{-1}$ and $S^{*}=S^{-1}$,(1) implies that

$$
\begin{equation*}
R^{*} P_{s}=\zeta^{-s} P_{s} \quad \text { and } \quad S^{*} Q_{s}=\zeta^{-s} Q_{s}, \quad 0 \leq s \leq k-1 \tag{3}
\end{equation*}
$$

Let

$$
P=\left[\begin{array}{llll}
P_{0} & P_{1} & \cdots & P_{k-1}
\end{array}\right] \quad \text { and } \quad Q=\left[\begin{array}{llll}
Q_{0} & Q_{1} & \cdots & Q_{k-1} \tag{4}
\end{array}\right] .
$$

Then (1) implies that

$$
\begin{equation*}
R=P\left(I_{c_{0}} \oplus \zeta I_{c_{1}} \oplus \cdots \oplus \zeta^{k-1} I_{c_{k-1}}\right) P^{*} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
S=Q\left(I_{d_{0}} \oplus \zeta I_{d_{1}} \oplus \cdots \oplus \zeta^{k-1} I_{d_{k-1}}\right) Q^{*} \tag{6}
\end{equation*}
$$

Theorem $1 A \in \mathcal{A}(R, S, \alpha, \beta, \mu)$ if and only if

$$
\begin{equation*}
A=P C Q^{*} \quad \text { with } \quad C=\left[C_{r s}\right]_{r, s=0}^{k-1} \tag{7}
\end{equation*}
$$

where $C_{r s} \in \mathbb{C}^{c_{r} \times d_{s}}$ and

$$
\begin{equation*}
C_{r s}=0 \quad \text { if } \quad \alpha r+\beta s \not \equiv \mu \quad(\bmod k), \quad 0 \leq r, s \leq k-1 \tag{8}
\end{equation*}
$$

Proof. Any $A$ in $\mathbb{C}^{n \times n}$ can be written as in (7) with $C=P^{*} A Q$. From (1) and (3), $R^{\alpha} P=\left[\begin{array}{llll}P_{0} & \zeta^{\alpha} P_{1} & \cdots & \zeta^{(k-1) \alpha} P_{k-1}\end{array}\right] \quad$ and $\quad Q^{*} S^{\beta}=\left[\begin{array}{c}Q_{0}^{*} \\ \zeta^{\beta} Q_{1}^{*} \\ \vdots \\ \zeta^{(k-1) \beta} Q_{k-1}^{*}\end{array}\right]$,
so

$$
R^{\alpha} A S^{\beta}=P\left(\left[\zeta^{\alpha r+\beta s} C_{r s}\right]_{r, s=0}^{k-1}\right) Q^{*}=\zeta^{\mu} A=P\left[\zeta^{\mu} C_{r s}\right]_{r, s=0}^{k-1} Q^{*}
$$

if and only if (8) holds.
It can be seen from this proof that $\left\{A \in \mathbb{C}^{m \times n} \mid R^{\alpha} A S^{\beta}=c A\right\}=\left\{0_{m n}\right\}$ unless $c=\zeta^{\mu}$ for some $\mu \in \mathbb{Z}_{k}$.

The following theorem is valid for a class of matrices that includes $\mathcal{A}(R, S, \alpha, \beta, \mu)$ and the matrices studied by Chen [5] and Fasino [7].

Theorem 2 Let $c_{0}, \ldots, c_{k-1}, d_{0}, \ldots, d_{k-1}$ be positive integers with $k \geq 2$ and let $\mu$, $p_{0}, \ldots, p_{k-1}$, and $q_{0}, \ldots, q_{k-1}$ be integers such that the set

$$
\begin{equation*}
\mathcal{T}=\left\{(r, s) \in \mathbb{Z}_{k} \times \mathbb{Z}_{k} \mid p_{r}+q_{s} \equiv \mu \quad(\bmod k)\right\} \tag{9}
\end{equation*}
$$

is nonempty. Suppose that $C=\left[C_{r s}\right]_{r, s=0}^{k-1}$ with $C_{r s} \in \mathbb{C}^{c_{r} \times d_{s}}$ and

$$
\begin{equation*}
C_{r s}=0 \quad \text { if } \quad(r, s) \notin \mathcal{T} \tag{10}
\end{equation*}
$$

Then

$$
\begin{equation*}
C^{\dagger}=\left[D_{r s}\right]_{r, s=0}^{k-1} \quad \text { with } \quad D_{r s} \in \mathbb{C}^{d_{r} \times c_{s}} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{r s}=0 \quad \text { if } \quad(s, r) \notin \mathcal{T} \tag{12}
\end{equation*}
$$

Moreover, if $r \neq r^{\prime}$ and $s \neq s^{\prime}$ whenever $(r, s)$ and $\left(r^{\prime}, s^{\prime}\right)$ are distinct pairs in $\mathcal{T}$, then

$$
\begin{equation*}
D_{r s}=C_{s r}^{\dagger}, \quad(s, r) \in \mathcal{T} \tag{13}
\end{equation*}
$$

Proof. In any case, $C^{\dagger}$ can be written as in (11). Let

$$
R_{0}=\zeta^{p_{0}} I_{c_{0}} \oplus \zeta^{p_{1}} I_{c_{1}} \oplus \cdots \oplus \zeta^{p_{k-1}} I_{c_{k-1}}
$$

and

$$
S_{0}=\zeta^{-q_{0}} I_{d_{0}} \oplus \zeta^{-q_{1}} I_{d_{1}} \oplus \cdots \oplus \zeta^{-q_{k-1}} I_{d_{k-1}}
$$

Then

$$
R_{0} C S_{0}^{*}=\left[\zeta^{p_{r}+q_{s}} C_{r s}\right]_{r, s=0}^{k-1}=\zeta^{\mu} C
$$

where (9) and(10) imply the second equality; hence $C=\zeta^{-\mu} R_{0} C S_{0}^{*}$. Now let $D=$ $\zeta^{\mu} S_{0} C^{\dagger} R_{0}^{*}$. We will show that $C$ and $D$ satisfy the Penrose conditions. Since $R_{0}$ and $S_{0}$ are unitary,

$$
\begin{aligned}
C D= & R_{0} C C^{\dagger} R_{0}^{*}=(C D)^{*}, \quad D C=S_{0} C^{\dagger} C S_{0}^{*}=(D C)^{*} \\
& C D C=\zeta^{-\mu} R_{0} C C^{\dagger} C S_{0}^{*}=\zeta^{-\mu} R_{0} C S_{0}^{*}=C
\end{aligned}
$$

and

$$
D C D=\zeta^{\mu} S_{0} C^{\dagger} C C^{\dagger} R_{0}^{*}=\zeta^{\mu} S_{0} C^{\dagger} R_{0}^{*}=D
$$

Hence $D=C^{\dagger}$, so $C^{\dagger}=\zeta^{\mu} S_{0} C^{\dagger} R_{0}^{*}$. Hence,

$$
D_{r s}=\zeta^{\mu-q_{r}-p_{s}} D_{r s}, \quad 0 \leq r, s \leq k-1
$$

This and (9) imply (12).
If the second assumption holds, there is a permutation $\left\{r_{0}, r_{1}, \ldots, r_{k-1}\right\}$ of $\mathbb{Z}_{k}$ such that

$$
\mathcal{T} \subset\left\{\left(r_{0}, 0\right),\left(r_{1}, 1\right), \quad\left(r_{k-1}, k-1\right)\right\}
$$

Since $C_{r s}^{\dagger}=0_{s r}$ if $C_{r s}=0_{r s}$, (10), (12), and (13) imply that

$$
C=U\left(C_{r_{0}, 0} \oplus C_{r_{1}, 1} \oplus \cdots \oplus C_{r_{k-1}, k-1}\right)
$$

and

$$
D=\left(C_{r_{0}, 0}^{\dagger} \oplus C_{r_{1}, 1}^{\dagger} \oplus \cdots \oplus C_{r_{k-1}, k-1}^{\dagger}\right) U^{T}
$$

where $U$ is a permutation matrix. It is straightforward to verify that $C$ and $D$ satisfy the Penrose conditions.

Theorem 3 If $A \in \mathcal{A}(R, S, \alpha, \beta, \mu)$, then $\left(A^{\dagger}\right)^{*} \in \mathcal{A}(R, S, \alpha, \beta, \mu)$.
Proof. Let

$$
\mathcal{T}=\left\{(r, s) \in \mathbb{Z}_{k} \times \mathbb{Z}_{k} \mid \alpha r+\beta s \equiv \mu \quad(\bmod k)\right\}
$$

From Theorem 1, (7) holds with $C_{r s}=0$ if $(r, s) \notin \mathcal{T}$. Hence Theorem 2 implies that $\left(C^{\dagger}\right)^{*}=\left[E_{r s}\right]_{r, s=0}^{k-1}$, where $E_{r s}=D_{s r}^{*}=0$ if $(r, s) \notin \mathcal{T}$. Now apply Theorem 1 to $\left(A^{\dagger}\right)^{*}=P\left(C^{\dagger}\right)^{*} Q^{*}$ to obtain the conclusion.

## 3 The case where $(\alpha, k)=(\beta, k)=1$

Henceforth we assume that $(\alpha, k)=(\beta, k)=1$ except where stated otherwise. For $0 \leq s \leq k-1$, we define $\gamma(s)$ to be the unique member of $\mathbb{Z}_{k}$ such that

$$
\alpha \gamma(s)+\beta s \equiv \mu \quad(\bmod k)
$$

thus,

$$
\begin{equation*}
\gamma(s) \equiv \widehat{\alpha}(\mu-\beta s) \quad(\bmod k) \tag{14}
\end{equation*}
$$

where $\widehat{\alpha}$ is the unique member of $\mathbb{Z}_{k}$ such that $\widehat{\alpha} \alpha \equiv 1(\bmod k)$. Then $\gamma$ is a permutation of $\mathbb{Z}_{k}$.

Theorem 4 Let

$$
V_{\gamma}=\left[\begin{array}{llll}
P_{\gamma(0)} & P_{\gamma(1)} & \cdots & P_{\gamma(k-1)}
\end{array}\right]
$$

Then $A \in \mathcal{A}(R, S, \alpha, \beta, \mu)$ if and only if

$$
\begin{equation*}
A=V_{\gamma}\left(\bigoplus_{s=0}^{k-1} F_{s}\right) Q^{*}=\sum_{s=0}^{k-1} P_{\gamma(s)} F_{s} Q_{s}^{*} \tag{15}
\end{equation*}
$$

with

$$
\begin{equation*}
F_{s}=C_{\gamma(s), s}=P_{\gamma(s)}^{*} A Q_{s} \in \mathbb{C}^{c_{\gamma(s)} \times d_{s}}, \quad 0 \leq s \leq k-1 \tag{16}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
A^{\dagger}=Q\left(\bigoplus_{s=0}^{k-1} F_{s}^{\dagger}\right) V_{\gamma}^{*}=\sum_{s=0}^{k-1} Q_{s} F_{s}^{\dagger} P_{\gamma(s)}^{*} \tag{17}
\end{equation*}
$$

Proof. Since (4) and (7) imply that

$$
A\left[\begin{array}{llll}
Q_{0} & Q_{1} & \cdots & Q_{k-1}
\end{array}\right]=\left[\begin{array}{llll}
P_{0} & P_{1} & \cdots & P_{k-1}
\end{array}\right] C
$$

and $C_{r s}=0$ if $r \neq \gamma(s)$, it follows that $A Q_{s}=P_{\gamma(s)} C_{\gamma(s), s}$; hence (2) implies that $C_{\gamma(s), s}=P_{\gamma(s)}^{*} A Q_{s}$. Moreover,

$$
\left[\begin{array}{llll}
P_{0} & P_{1} & \cdots & P_{k-1}
\end{array}\right] C=V_{\gamma}\left(\bigoplus_{s=0}^{k-1} F_{s}\right)
$$

This implies (15), which in turn implies (17)
Since the following corollary deals with different values of $\mu$, we temporarily define $\gamma(s, \mu) \equiv \widehat{\alpha}(\mu-\beta s)(\bmod k)$.

Corollary 1 Any $A \in \mathbb{C}^{m \times n}$ can be written uniquely as

$$
A=\sum_{\mu=0}^{k-1} A^{(\mu)}
$$

where $A^{(\mu)} \in \mathcal{A}(R, S, \alpha, \beta, \mu), 0 \leq \mu \leq k-1$. Specifically, if $A$ is as in (7), then $A^{(\mu)}$ is given uniquely by

$$
A^{(\mu)}=P\left(\left[C_{r s}^{(\mu)}\right]_{r, s=0}^{k-1}\right) Q^{*}
$$

where

$$
C_{r s}^{(\mu)}=\left\{\begin{array}{ll}
0 & \text { if } r \neq \gamma(s, \mu), \\
C_{\gamma(s, \mu), s} & \text { if } r=\gamma(s, \mu),
\end{array} \quad 0 \leq s \leq k-1\right.
$$

Throughout this paper it is to be understood that, for fixed $\alpha, \beta$, and $\mu, F_{0}, \ldots$, $F_{k-1}$ are as in (16), where we have suppressed the dependence of $F_{s}$ on $\alpha, \beta$, and $\mu$ for simplicity of notation.

We say that $z \in \mathbb{C}^{n}$ is $(S, s)$-symmetric if $S z=\zeta^{s} z$ and $w \in \mathbb{C}^{m}$ is $(R, s)$ symmetric if $R w=\zeta^{s} w$. These definitions have their origins in Andrew's [2] definitions of symmetric and skew-symmetric vectors: $z \in \mathbb{C}^{n}$ is symmetric (skewsymmetric) if $J x=x(J x=-x)$, where $J=\left[\delta_{i, n-j+1}\right]_{i, j=1}^{n}$. (For other extensions of Andrew's definitions, see [12, 14, 15].)

Arbitrary $z \in \mathbb{C}^{n}$ and $w \in \mathbb{C}^{m}$ can be written uniquely as

$$
\begin{equation*}
z=\sum_{r=0}^{k-1} Q_{r} x_{r} \quad \text { and } \quad w=\sum_{s=0}^{k-1} P_{s} y_{s} \tag{18}
\end{equation*}
$$

with

$$
\begin{equation*}
x_{r}=Q_{r}^{*} z \in \mathbb{C}^{d_{r}} \quad \text { and } \quad y_{r}=P_{r}^{*} w \in \mathbb{C}^{c_{r}}, \quad 0 \leq r \leq k-1 \tag{19}
\end{equation*}
$$

From (1) and (18),

$$
S z=\sum_{r=0}^{k-1} \zeta^{r} Q_{r} x_{r}
$$

Therefore, (2) implies that $z$ is ( $S, s$ )-symmetric if and only if $z=Q_{s} x_{s}$ for some $x_{s} \in \mathbb{C}^{d_{s}}$. Similarly, $w$ is $(R, s)$-symmetric if and only if $w=P_{s} y_{s}$ for some $y_{s} \in$ $\mathbb{C}^{c_{s}}$.

Theorem 4 implies the following theorem.
Theorem 5 Suppose that $A \in \mathcal{A}(R, S, \alpha, \beta, \mu)$ and $F_{s}=\Omega_{s} \Sigma_{s} \Phi_{s}^{*}$ is a singular value decomposition of $F_{s}, 0 \leq s \leq k-1$. Then

$$
A=\Omega\left(\bigoplus_{s=0}^{k-1} \Sigma_{s}\right) \Phi^{*}
$$

with

$$
\Omega=\left[\begin{array}{llll}
P_{\gamma(0)} \Omega_{0} & P_{\gamma(1)} \Omega_{1} & \cdots & P_{\gamma(k-1)} \Omega_{k-1}
\end{array}\right]
$$

and

$$
\Phi=\left[\begin{array}{llll}
Q_{0} \Phi_{0} & Q_{1} \Phi_{1} & \cdots & Q_{k-1} \Phi_{k-1}
\end{array}\right]
$$

is a singular value decomposition of $A$. Thus, each singular value of $F_{s}$ is a singular value of $A$ associated with an $(R, \gamma(s))$-symmetric left singular vector and an $(S, s)$ symmetric right singular vector, $0 \leq s \leq k-1$.

Theorem 5 is related to [12, Theorems 11, 18], [13, Theorems 4.3, 5.3], and [15, Theorem3].

## 4 The least squares problem

Suppose that $G \in \mathbb{C}^{p \times q}$ and consider the least squares problem for $G$ : If $u \in \mathbb{C}^{p}$, find $v \in \mathbb{C}^{q}$ such that

$$
\begin{equation*}
\|G v-u\|=\min _{\xi \in \mathbb{C}^{q}}\|G \xi-u\| \tag{20}
\end{equation*}
$$

where $\|\cdot\|$ is the 2-norm. It is well known that this problem has a unique solution if and only if $\operatorname{rank}(G)=q$. In this case, $v=\left(G^{*} G\right)^{-1} G^{*} u$. In any case, the optimal solution of (20) is the unique $n$-vector $v_{0}$ of minimum norm that satisfies (20); thus, $v_{0}=G^{\dagger} u$. The general solution of (20) is $v=v_{0}+q$ with $q$ in the null space of $G$, and

$$
\|G v-u\|=\left\|\left(G G^{\dagger}-I\right) u\right\|
$$

for all such $v$.
We now consider the least squares problem for a matrix $A \in \mathcal{A}(R, S, \alpha, \beta, \mu)$. From (15) and (18),

$$
A z-w=\sum_{s=0}^{k-1} P_{\gamma(s)} F_{s} x_{s}-\sum_{s=0}^{k-1} P_{s} y_{s}=\sum_{s=0}^{k-1} P_{\gamma(s)}\left(F_{s} x_{s}-y_{\gamma(s)}\right),
$$

so (2) implies that

$$
\|A z-w\|^{2}=\sum_{s=0}^{k-1}\left\|F_{s} x_{s}-y_{\gamma(s)}\right\|^{2}
$$

This implies the following theorem.
Theorem 6 Suppose that $A \in \mathcal{A}(R, S, \alpha, \beta, \mu)$. Let $w \in \mathbb{C}^{m}$ be given as in (18). Then $z \in \mathbb{C}^{n}$, written as in (18), satisfies

$$
\begin{equation*}
\|A z-w\|=\min _{\xi \in \mathbb{C}^{n}}\|A \xi-w\| \tag{21}
\end{equation*}
$$

if and only if

$$
\left\|F_{s} x_{s}-y_{\gamma(s)}\right\|=\min _{\psi_{s} \in C^{d s}}\left\|F_{s} \psi_{s}-y_{\gamma(s)}\right\|, \quad 0 \leq s \leq k-1
$$

with $F_{S}$ as in (16). Therefore (21) has a unique solution, given by

$$
z=\sum_{s=0}^{k-1} Q_{s}\left(F_{s}^{*} F_{s}\right)^{-1} F_{s}^{*} y_{\gamma(s)}
$$

if and only $\operatorname{rank}\left(F_{s}\right)=d_{s}, 0 \leq s \leq k-1$. In any case, the optimal solution of (21) is

$$
z_{0}=\sum_{s=0}^{k-1} Q_{s} F_{s}^{\dagger} y_{\gamma(s)}
$$

The general solution of (21) is $z=z_{0}+\sum_{s=0}^{k-1} Q_{s} u_{s}$, where $F_{s} u_{s}=0,0 \leq s \leq k-1$, and

$$
\|A z-w\|^{2}=\sum_{s=0}^{k-1}\left\|\left(F_{s} F_{s}^{\dagger}-I_{c_{\gamma}(s)}\right) y_{\gamma(s)}\right\|^{2}
$$

for all such $z$.

## 5 The case where $m=n$ and $R=S$

In this section we assume that $m=n, S=R$, and $A \in \mathcal{A}(R, \alpha, \beta, u)$. Hence, (15) becomes

$$
\begin{equation*}
A=\sum_{s=0}^{k-1} P_{\gamma(s)} F_{s} P_{s}^{*} \tag{22}
\end{equation*}
$$

and we can replace (18) and (19) by

$$
\begin{equation*}
z=\sum_{r=0}^{k-1} P_{r} x_{r} \quad \text { and } \quad w=\sum_{s=0}^{k-1} P_{s} y_{s} \tag{23}
\end{equation*}
$$

with

$$
x_{r}=P_{r}^{*} z \in \mathbb{C}^{c_{r}} \quad \text { and } \quad y_{r}=P_{r}^{*} w \in \mathbb{C}^{c_{r}}, \quad 0 \leq r \leq k-1
$$

Let

$$
\begin{equation*}
s_{R}=\bigcup_{s=0}^{k-1}\left\{z \in \mathbb{C}^{n} \mid R z=\zeta^{s} z\right\} \tag{24}
\end{equation*}
$$

thus, $z \in 丹_{R}$ if and only $z$ is $(R, s)$-symmetric for some $s \in \mathbb{Z}_{k}$.
Theorem 7 If $A$ is singular, then the null space of $A$ has a basis in $\wp_{R}$.
Proof. Let $\mathcal{N}(A)$ be the nullspace of $A$. From (2), (22), and (23), $z \in \mathcal{N}(A)$ if and only if $F_{s} x_{s}=0,0 \leq s \leq k-1$. Recall that $F_{s} \in \mathbb{C}^{c_{\gamma(s) \times c s}}, 0 \leq s \leq k-1$. Let $\mathcal{U}=\left\{s \in \mathbb{Z}_{k} \mid \operatorname{rank}\left(F_{s}\right)<c_{s}\right\}$. Since $A$ is singular, $\mathcal{U} \neq \emptyset$. If $s \in \mathcal{U}$ and
$\left\{x_{s}^{(1)}, x_{s}^{(2)}, \cdots, x_{s}^{\left(m_{s}\right)}\right\}$ is a basis for the null space of $F_{s}$, then $P_{s} x_{s}^{(1)}, P_{s} x_{s}^{(2)}, \ldots$, $P_{s} x_{s}^{\left(m_{s}\right)}$ are linearly independent $(R, s)$-symmetric vectors in $\mathcal{N}(A)$, and

$$
\bigcup_{s \in \mathcal{U}}\left\{P_{s} x_{s}^{(1)}, P_{s} x_{s}^{(2)}, \cdots, P_{s} x_{s}^{\left(m_{s}\right)}\right\}
$$

is a basis for $\mathcal{N}(A)$. $\quad$.
Now suppose that $\gamma$ has $m$ orbits $\mathcal{O}_{0}, \ldots, \mathcal{O}_{m-1}$. If $m=1$, then $\gamma$ is a $k$-cycle and $\mathbb{Z}_{k}=\left\{\gamma^{j}(0) \mid 0 \leq j \leq k-1\right\}$. In any case, there are unique integers $0=s_{0}<\cdots<$ $s_{m-1}$ such that

$$
\mathbb{Z}_{k}=\bigcup_{\ell=0}^{m-1} \mathcal{O}_{\ell}, \quad \text { where } \quad \mathcal{O}_{\ell}=\left\{\gamma^{j}\left(s_{\ell}\right) \mid 0 \leq j \leq k_{\ell}-1\right\}
$$

and $k_{0}+\cdots+k_{m-1}=k$. Now define

$$
\begin{gather*}
\Gamma_{\ell}=\sum_{j=0}^{k_{\ell}-1} P_{\gamma^{j+1}\left(s_{\ell}\right)} F_{\gamma^{j}\left(s_{\ell}\right)} P_{\gamma^{j}\left(s_{\ell}\right)}^{*}  \tag{25}\\
z_{\ell}=\sum_{j=0}^{k_{\ell}-1} P_{\gamma^{j}\left(s_{\ell}\right)} x_{\gamma^{j}\left(s_{\ell}\right)}, \quad \text { and } \quad w_{\ell}=\sum_{j=0}^{k_{\ell}-1} P_{\gamma^{j}\left(s_{\ell}\right)} y_{\gamma^{j}\left(s_{\ell}\right)} \tag{26}
\end{gather*}
$$

Then (15) and (18) can be written as

$$
A=\sum_{\ell=0}^{m-1} \Gamma_{\ell}, \quad z=\sum_{\ell=0}^{m-1} z_{\ell}, \quad \text { and } \quad w=\sum_{\ell=0}^{m-1} w_{\ell}
$$

This, (2), (25), and (26) imply that $A z=w$ if and only if

$$
\Gamma_{\ell} z_{\ell}=w_{\ell}, \quad 0 \leq \ell \leq m-1 .
$$

However, $\Gamma_{\ell} z_{\ell}=w_{\ell}$ if and only if

$$
\sum_{j=0}^{k_{\ell}-1} P_{\gamma^{j+1}\left(s_{\ell}\right)} F_{\gamma^{j}\left(s_{\ell}\right)} x_{\gamma^{j}\left(s_{\ell}\right)}=\sum_{j=0}^{k_{\ell}-1} P_{\gamma^{j}\left(s_{\ell}\right)} y_{\gamma^{j}\left(s_{\ell}\right)}=\sum_{j=0}^{k_{\ell}-1} P_{\gamma^{j+1}\left(s_{\ell}\right)} y_{\gamma^{j+1}\left(s_{\ell}\right)}
$$

which is equivalent to

$$
\begin{equation*}
F_{\gamma^{j}\left(s_{\ell}\right)} x_{\gamma^{j}\left(s_{\ell}\right)}=y_{\gamma^{j+1}\left(s_{\ell}\right)}, \quad 0 \leq j \leq k_{\ell}-1 \tag{27}
\end{equation*}
$$

This system can be written as

$$
F_{s_{\ell}} x_{s_{\ell}}=y_{s_{\ell}} \text { if } k_{\ell}=1, \quad\left[\begin{array}{cc}
0 & F_{\gamma\left(s_{\ell}\right)} \\
F_{s_{\ell}} & 0
\end{array}\right]\left[\begin{array}{c}
x_{s_{\ell}} \\
x_{\gamma\left(s_{\ell}\right)}
\end{array}\right]=\left[\begin{array}{c}
y_{s_{\ell}} \\
y_{\gamma\left(s_{\ell}\right)}
\end{array}\right] \text { if } k_{\ell}=2
$$

or

$$
\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & F_{\gamma^{k} \ell^{-1}\left(s_{\ell}\right)} \\
F_{s_{\ell}} & 0 & \cdots & 0 & 0 \\
0 & F_{\gamma\left(s_{\ell}\right)} & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & F_{\gamma^{k} \ell^{-2}\left(s_{\ell}\right)} & 0
\end{array}\right]\left[\begin{array}{c}
x_{s_{\ell}} \\
x_{\gamma\left(s_{\ell}\right)} \\
x_{\gamma^{2}\left(s_{\ell}\right)} \\
\vdots \\
x_{\gamma^{k} \ell^{-1}\left(s_{\ell}\right)}
\end{array}\right]=\left[\begin{array}{c}
y_{s_{\ell}} \\
y_{\gamma\left(s_{\ell}\right)} \\
y_{\gamma^{2}\left(s_{\ell}\right)} \\
\vdots \\
y_{\gamma^{k}{ }^{k}-1}\left(s_{\ell}\right)
\end{array}\right]
$$

if $k_{\ell}>2$. In any case, let us abbreviate this system as $H_{\ell} \phi_{\ell}=\psi_{\ell}$. Then we have proved the following theorem.
Theorem 8 If $w=\sum_{s=0}^{k-1} P_{s} y_{s}$, then the system $A z=w$ has a solution $z=\sum_{s=0}^{k-1} P_{s} x_{s}$ if and only if the systems $H_{\ell} \phi_{\ell}=\psi_{\ell}, 0 \leq \ell \leq m-1$, all have solutions. Morever, if $\phi_{\ell}$ is a $\lambda$-eigenvector of $H_{\ell}$, then $z_{\ell}=\sum_{j=0}^{k_{\ell}-1} P_{\gamma^{j}\left(s_{\ell}\right)} x_{\gamma^{j}\left(s_{\ell}\right)}$ is a $\lambda$-eigenvector of $A$.
Theorem 9 Suppose $k_{\ell}>1$. If $\lambda \neq 0$, then $\phi_{\ell}$ is a $\lambda$-eigenvector of $H_{\ell}$ if and only if $x_{s_{\ell}} \neq 0$ and

$$
\begin{equation*}
F_{\gamma^{k} \ell-1}\left(s_{\ell}\right) \cdots F_{\gamma\left(s_{\ell}\right)} F_{s_{\ell}} x_{s_{\ell}}=\lambda^{k_{\ell}} x_{s_{\ell}} \tag{28}
\end{equation*}
$$

In this case,

$$
\begin{equation*}
x_{\gamma^{j+1}\left(s_{\ell}\right)}=\frac{1}{\lambda} F_{\gamma^{j}\left(s_{\ell}\right)} x_{\gamma^{j}\left(s_{\ell}\right)}, \quad 0 \leq j \leq k_{\ell}-2, \tag{29}
\end{equation*}
$$

and $x_{s_{\ell}}, \ldots, x_{\gamma^{k_{\ell}-1}\left(s_{\ell}\right)}$ are all nonzero.
Proof. We note from (16) with $d_{s}=c_{s}$ that $F_{\gamma^{k} \ell^{-1}\left(s_{\ell}\right)} \cdots F_{\gamma\left(s_{\ell}\right)} F_{s_{\ell}} x_{s_{\ell}} \in \mathbb{C}^{c_{s_{\ell}} \times c_{s_{\ell}}}$. (Recall that $\gamma^{k}\left(s_{\ell}\right)=s_{\ell}$.) From (27), $H_{\ell} \phi_{\ell}=\lambda \phi_{\ell}$ if and only

$$
\begin{equation*}
x_{\gamma^{j+1}\left(s_{\ell}\right)}=\frac{1}{\lambda} F_{\gamma^{j}\left(s_{\ell}\right)} x_{\gamma^{j}\left(s_{\ell}\right)} \tag{30}
\end{equation*}
$$

for all $j$, because of the periodicity of $\gamma^{j}\left(s_{\ell}\right)$ with respect to $j$. Hence, if $x_{\gamma^{j}\left(s_{\ell}\right)}=0$ for some $j_{0}$, then $x_{\gamma^{j}\left(s_{\ell}\right)}=0$ for all $j$. Therefore, $x_{s_{\ell}} \neq 0$ if $\phi_{\ell}$ is a $\lambda$-eigenvector of $H_{\ell}$. Applying (30) for $0 \leq j \leq k_{\ell}-1$ and noting that $x_{\gamma^{k} \ell\left(s_{\ell}\right)}=x_{s_{\ell}}$ yields (28).
Corollary 2 If $k_{\ell}>1, \zeta_{\ell}=e^{2 \pi i / k_{\ell}}$, and

$$
\phi_{\ell}^{(0)}=\left[\begin{array}{c}
x_{s_{\ell}} \\
x_{\gamma\left(s_{\ell}\right)} \\
x_{\gamma^{2}\left(s_{\ell}\right)} \\
\vdots \\
x_{\gamma^{k} \ell^{-1}\left(s_{\ell}\right)}
\end{array}\right]
$$

is a $\lambda$-eigenvector of $H_{\ell}$ with $\lambda \neq 0$, then

$$
\phi_{\ell}^{(r)}=\left[\begin{array}{c}
x_{s_{\ell}} \\
\zeta_{\ell}^{-r} x_{\gamma\left(s_{\ell}\right)} \\
\zeta_{\ell}^{-2 r} x_{\gamma^{2}\left(s_{\ell}\right)} \\
\vdots \\
\zeta_{\ell}^{-\left(k_{\ell}-1\right) r} x_{\gamma^{k}-1}\left(s_{\ell}\right)
\end{array}\right]
$$

is $\lambda \zeta_{\ell}^{r}$-eigenvector of $H_{\ell}, 0 \leq r \leq k_{\ell}-1$.
Proof. Replacing $\lambda$ by $\zeta^{r} \lambda$ in (28) and (29) leaves the former unchanged. This implies the conclusion.

The results in this section take a particularly simple form if $n=k$, so that $c_{s}=$ $d_{s}=1,0 \leq s \leq k-1$. In this case, let $\left\{p_{1}, \ldots, p_{k}\right\} \subset \mathbb{C}^{k}$ be an orthonormal set such that $R p_{s}=\zeta^{s} p_{s}, 0 \leq s \leq k-1$. Theorems 8,9 , and Corollary 2 with $P_{s}=p_{s}$ and $F_{s}=p_{\gamma(s)}^{*} A p_{s}$ imply the following theorem, which is related to [1, Lemma 4.3].

Theorem 10 Suppose that $n=k$. If $k_{\ell}=1$, then $\lambda=p_{s_{\ell}}^{*} A p_{s_{\ell}}$ is an eigenvalue of $H_{\ell}$ with associated eigenvector $p_{s_{\ell}}$. If $k_{\ell}>1$, let

$$
\Delta_{\ell}=\prod_{t=0}^{k_{\ell-1}} p_{\gamma^{t+1}\left(s_{\ell}\right)}^{*} A p_{\gamma^{t}\left(s_{\ell}\right)}
$$

If $\Delta_{\ell} \neq 0$, let $\lambda_{\ell}=\Delta_{\ell}^{1 / k_{\ell}}$ and define

$$
x_{s_{\ell}}=1 \quad \text { and } \quad x_{\gamma^{j+1}\left(s_{\ell}\right)}=\lambda_{\ell}^{-j-1} \prod_{t=0}^{j} p_{\gamma^{t+1}\left(s_{\ell}\right)}^{*} A p_{\gamma^{t}\left(s_{\ell}\right)}, \quad 0 \leq j \leq k_{\ell}-2 .
$$

Then $\lambda_{\ell} \zeta_{\ell}^{r}$ is an eigenvalue of $A$ with associated eigenvector

$$
z_{\ell r}=\sum_{j=0}^{k_{\ell-1}} \zeta_{\ell}^{-r j} x_{\gamma^{j}\left(s_{\ell}\right)} p_{\gamma^{j}\left(s_{\ell}\right)}, \quad 0 \leq r \leq k_{\ell}-1
$$

Any nonzero eigenvalue of $A$ must be of the form just defined for some $\ell \in\{0, \ldots, m-$ 1\}. A is singular if and only if the set $\mathcal{M}=\left\{s \mid p_{s}^{*} A p_{s}=0\right\}$ is nonempty, in which case $\left\{p_{s} \mid s \in \mathcal{M}\right\}$ is a basis for $\mathcal{N}(A)$.

## $6 \quad R$-symmetric matrices

In this section we consider the special case where $m=n, S=R, \mu=0, \alpha=1$, and $\beta=k-1$. Since $R^{k-1}=R^{-1}=R^{*}, \mathcal{A}(R, 1, k-1,0)$ is the set of matrices $A \in \mathbb{C}^{n \times n}$ such that $R A R^{*}=A$. We will say that such a matrix is $R$-symmetric. This is related to a definition in [12].

Our assumptions imply that $\gamma(s)=s, 0 \leq s \leq k-1$ (see (14)), so Theorem 4 implies that $A$ is $R$-symmetric if and only if

$$
\begin{equation*}
A=P\left(\bigoplus F_{s}\right) P^{*}=\sum_{s=0}^{k-1} P_{s} F_{s} P_{s}^{*} \tag{31}
\end{equation*}
$$

with

$$
F_{s}=P_{s}^{*} A P_{s} \in \mathbb{C}^{c_{s} \times c_{s}}, \quad 0 \leq s \leq k-1
$$

The next two theorems are immediate consequences of (31).

Theorem 11 If $A$ is $R$-symmetric, then $\lambda$ is an eigenvalue of $A$ if and only if $\lambda$ is an eigenvalue of one or more of the matrices $F_{0}, F_{1}, \ldots, F_{k-1}$. Assuming this to be true, let

$$
S_{A}(\lambda)=\left\{s \in \mathbb{Z}_{k} \mid \lambda \text { is an eigenvalue of } F_{s}\right\} .
$$

If $s \in S_{A}(\lambda)$ and $\left\{x_{s}^{(1)}, x_{s}^{(2)}, \cdots, x_{s}^{\left(m_{s}\right)}\right\}$ is a basisfor $\mathcal{E}_{A_{s}}(\lambda)$, then $P_{s} x_{s}^{(1)}, P_{s} x_{s}^{(2)}, \ldots$, $P_{s} x_{s}^{\left(m_{s}\right)}$ are linearly independent $(R, s)$-symmetric $\lambda$-eigenvectors of $A$. Moreover,

$$
\bigcup_{s \in \mathcal{S}_{A}(\lambda)}\left\{P_{s} x_{s}^{(1)}, P_{s} x_{s}^{(2)}, \cdots, P_{s} x_{s}^{\left(m_{s}\right)}\right\}
$$

is a basis for $\mathcal{E}_{A}(\lambda)$. Finally, $A$ is diagonalizable if and only if $F_{0}, F_{1}, \ldots, F_{k-1}$ are all diagonalizable. In this case, $A$ has $c_{s}$ linearly independent $(R, s)$-symmetric eigenvectors, $0 \leq s \leq k-1$.

Theorem 12 If $A$ is $R$-symmetric, then $A$ is normal if and only if $F_{s}$ is normal, $0 \leq s \leq$ $k-1$. In this case, if $F_{s}=\Omega_{s} D_{s} \Omega_{s}^{*}$ is a spectral representation of $A_{s}, 0 \leq s \leq k-1$, then

$$
A=\Omega\left(\bigoplus_{s=0}^{k-1} D_{s}\right) \Omega^{*}
$$

with

$$
\Omega=\left[\begin{array}{llll}
P_{0} \Omega_{0} & P_{1} \Omega_{1} & \cdots & P_{k-1} \Omega_{k-1}
\end{array}\right]
$$

is a spectral representation of $A$. Hence, $A$ has $c_{s}$ linearly independent $(R, s)$-symmetric eigenvectors, $0 \leq s \leq k-1$.

The next theorem is a generalization of Andrew's theorem [2, Theorem 2]. For other generalizations of Andrew's theorem, see [12, 14, 15].

## Theorem 13

(i) If $A$ is $R$-symmetric and $\lambda$ is an eigenvalue of $A$, then $\mathcal{E}_{A}(\lambda)$ has a basis in $\wp_{R}$ (recall (24)).
(ii) If $A$ has $n$ linearly independent eigenvectors in $\oint_{R}$, then $A$ is $R$-symmetric.

Proof. (i) Theorem 11.
(ii) Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of $A$ with associated linearly independent eigenvectors $z_{1}, \ldots, z_{n}$ in $夕_{R}$. It suffices to show that $R A R^{*} z_{j}=A z_{j}, 1 \leq j \leq n$. This is true, since if $A z_{j}=\lambda_{j} z_{j}$ and $R z_{j}=\zeta^{s} z_{j}$, then

$$
R A R^{*} z_{j}=\zeta^{-s} R A z_{j}=\zeta^{-s} \lambda_{j} R z_{j}=\zeta^{-s} \zeta^{s} \lambda_{j} z_{j}=A z_{j}
$$

## 7 Generalized block circulants

Henceforth $\rho$ is a $k$-cyclic permutation of $\mathbb{Z}_{k}$ and $\sigma$ is the permutation of $\mathbb{Z}_{k}$ such that

$$
\begin{equation*}
\rho^{\sigma(s)}(0)=s, \quad 0 \leq s \leq k-1 . \tag{32}
\end{equation*}
$$

For example, if $k=7$ and $\rho=(0,5,6,2,3,4,1)$, then

$$
\sigma=\left(\begin{array}{lllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
0 & 6 & 3 & 4 & 5 & 1 & 2
\end{array}\right)
$$

Let

$$
\begin{equation*}
\nu(r, s)=\rho^{\sigma(s)+\beta \sigma(r)}(0)=\rho^{\beta \sigma(r)}(s), \quad 0 \leq r, s \leq k-1 \tag{33}
\end{equation*}
$$

We study matrices of the form

$$
\begin{equation*}
A=\left[\zeta^{\mu_{1} \sigma(s)+\mu_{2} \sigma(r)} A_{\nu(r, s)}\right]_{r, s=0}^{k-1}, \quad \text { where } \quad A_{0}, \ldots, A_{k-1} \in \mathbb{C}^{d_{1} \times d_{2}} \tag{34}
\end{equation*}
$$

For example, if $\rho=(0,1, \ldots, k-1)$, then $\sigma(s)=s, 0 \leq s \leq k-1$, so

$$
A=\left[\zeta^{S \mu_{1}+r \mu_{2}} A_{(s+\beta r)(\bmod k)}\right]_{r, s=0}^{k-1} .
$$

Hence, if $\mu_{1}=\mu_{2}=0$, then $A$ is a block $\beta$-anticirculant if $\beta>0$, or a block $|\beta|$-circulant if $\beta<0$. (Note that we do not assume here that the blocks are square).

We will need the following lemma.
Lemma 1 Let

$$
E=\left[\begin{array}{llll}
e_{\rho^{-1}(0)} & e_{\rho^{-1}(1)} & \cdots & e_{\rho^{-1}(k-1)} \tag{35}
\end{array}\right],
$$

where $\left[\begin{array}{llll}e_{0} & e_{1} & \cdots & e_{k-1}\end{array}\right]=I_{k}$. Then $E=U D U^{*}$, where

$$
D=\operatorname{diag}\left(1, \zeta, \ldots, \zeta^{k-1}\right)
$$

and

$$
U=\left[\begin{array}{llll}
u_{0} & u_{1} & \cdots & u_{k-1}
\end{array}\right]=\frac{1}{\sqrt{k}}\left[\zeta^{s \sigma(r)}\right]_{r, s=0}^{k-1} .
$$

Proof. If $q$ is an arbitrary integer, then

$$
\begin{equation*}
\sigma\left(\rho^{q}(r)\right) \equiv \sigma(r)+q \quad(\bmod k), \quad 0 \leq r \leq k-1, \tag{36}
\end{equation*}
$$

since (32) implies that

$$
\rho^{\sigma\left(\rho^{q}(r)\right)}(0)=\rho^{q}(r)=\rho^{q}\left(\rho^{\sigma(r)}(0)\right)=\rho^{\sigma(r)+q}(0)
$$

Therefore,

$$
E U=\frac{1}{\sqrt{k}}\left[\zeta^{s \sigma(\rho(r))}\right]_{r, s=0}^{k-1}=\frac{1}{\sqrt{k}}\left[\zeta^{s(\sigma(r)+1)}\right]_{r, s=0}^{k-1}=U D
$$

where (36) with $q=1$ implies the second equality. Since $U U^{*}=I_{k}$, it follows that $E=U D U^{*}$.

The following two theorem do not require that $(\beta, k)=1$.

Theorem 14 Let

$$
\begin{equation*}
R=E \otimes I_{d_{1}} \quad \text { and } \quad S=E \otimes I_{d_{2}} \tag{37}
\end{equation*}
$$

Let $H=\left[H_{r s}\right]_{r, s=0}^{k-1}$, where $H_{r s} \in \mathbb{C}^{d_{1} \times d_{2}}, 0 \leq r, s \leq k-1$. Then

$$
\begin{equation*}
R H S^{\beta}=\zeta^{\mu_{2}-\beta \mu_{1}} H \tag{38}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
H_{r s}=\zeta^{\mu_{1} \sigma(s)+\mu_{2} \sigma(r)} A_{\nu(r, s)}, \quad 0 \leq r, s \leq k-1 \tag{39}
\end{equation*}
$$

where $A_{0}, \ldots, A_{k-1} \in \mathbb{C}^{d_{1} \times d_{2}}$. In this case,

$$
\begin{equation*}
A_{s}=\zeta^{-\mu_{1} \sigma(s)} H_{0 s}, \quad 0 \leq s \leq k-1 . \tag{40}
\end{equation*}
$$

Proof. Let $P$ and $Q$ be as in (4), with

$$
P_{s}=u_{s} \otimes I_{d_{1}}, \text { and } Q_{s}=u_{s} \otimes I_{d_{2}}, \quad 0 \leq s \leq k-1
$$

Then (1) holds, which implies (5) and (6). From (35) and (37), it is straightforward to verify that

$$
\begin{equation*}
R H S^{\beta}=\left[H_{\rho(r), \rho^{-\beta}(s)}\right]_{r, s=0}^{k-1} \tag{41}
\end{equation*}
$$

If (39) holds, then

$$
\begin{equation*}
R H S^{\beta}=\left[\zeta^{\mu_{1} \sigma\left(\rho^{-\beta}(s)\right)+\mu_{2} \sigma(\rho(r))} A_{\nu\left(\rho(r), \rho^{-\beta}(s)\right)}\right]_{r, s=0}^{k-1} \tag{42}
\end{equation*}
$$

However, from (36),

$$
\begin{equation*}
\mu_{1} \sigma\left(\rho^{-\beta}(s)\right)+\mu_{2} \sigma(\rho(r)) \equiv \mu_{1} \sigma(s)+\mu_{2} \sigma(r)-\beta \mu_{1}+\mu_{2}, \quad(\bmod k) \tag{43}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma\left(\rho^{-\beta}(s)\right)+\beta \sigma(\rho(r)) \equiv \sigma(s)+\beta \sigma(r) \quad(\bmod k) \tag{44}
\end{equation*}
$$

Now (39), (42), (43), and (44) imply (38).
Conversely, suppose that (38) holds. Then (41) implies that

$$
\begin{equation*}
H_{\rho(r), \rho^{-\beta}(s)}=\zeta^{\mu_{2}-\beta \mu_{1}} H_{r s}, \quad 0 \leq r, s \leq k-1 \tag{45}
\end{equation*}
$$

We will show by induction on $r$ that

$$
\begin{equation*}
H_{\rho^{r}(0), s}=\zeta^{\mu_{1} \sigma(s)+r \mu_{2}} A_{\rho^{r \beta}(s)}, \quad 0 \leq s \leq k-1, \tag{46}
\end{equation*}
$$

with $A_{0}, \ldots, A_{s}$ as in (40); thus, (46) holds for $r=0$. Now suppose $r \geq 0$ and (46) holds. Replacing $r$ by $\rho^{r}(0)$ and $s$ by $\rho^{\beta}(s)$ in (45) yields

$$
H_{\rho^{r+1}(0), s}=\zeta^{\mu_{2}-\beta \mu_{1}} H_{\rho^{r}(0), \rho^{\beta}(s)}
$$

Therefore, from (46) with $s$ replaced by $\rho^{\beta}(s)$,

$$
H_{\rho^{r+1}(0), s}=\zeta^{\mu_{2}-\beta \mu_{1}+\mu_{1}\left(\sigma\left(\rho^{\beta}(s)\right)+r \mu_{2}\right)} A_{\rho^{(r+1) \beta}(s)}=\zeta^{\mu_{1} \sigma(s)+(r+1) \mu_{2}} A_{\rho^{(r+1) \beta}(s)}
$$

where the last equality is a consequence of (36). This completes the induction, so (46) holds for $0 \leq r \leq k-1$. Replacing $r$ by $\sigma(r)$ in (46) and recalling (32) and (33) yields (39).

Theorem 15 If

$$
A=\left[\zeta^{\mu_{1} \sigma(s)+\mu_{2} \sigma(r)} A_{\rho^{\beta \sigma(r)}(s)}\right]_{r, s=0}^{k-1}
$$

and

$$
B=\left[\zeta^{\nu_{1} \sigma(s)+\nu_{2} \sigma(r)} B_{\rho^{\delta \sigma(r)}(s)}\right]_{r, s=0}^{k-1}
$$

where $A_{0}, \ldots, A_{k-1}, B_{0}, \ldots, B_{k-1} \in \mathbb{C}^{d \times d}$, then

$$
\begin{equation*}
A B=\left[\zeta^{\nu_{1} \sigma(s)+\tau \sigma(r)} C_{\rho^{-\beta \delta \sigma(r)}(s)}\right] \tag{47}
\end{equation*}
$$

where

$$
\tau=\mu_{2}-\beta \mu_{1}-\beta \nu_{2}
$$

and

$$
\begin{equation*}
C_{s}=\sum_{j=0}^{k-1} \zeta^{\left(\mu_{1}+\nu_{2}\right) \sigma(j)} A_{j} B_{\rho^{\delta \sigma(j)}(s)}, \quad 0 \leq s \leq k-1 \tag{48}
\end{equation*}
$$

Proof. We apply Theorem 14 with $d_{1}=d_{2}=d$, so that $R=S$ (see (37)). Theorem 14 implies that

$$
\begin{equation*}
\text { (i) } R A=\zeta^{\mu_{2}-\beta \mu_{1}} A R^{-\beta} \quad \text { and } \quad \text { (ii) } R B=\zeta^{\nu_{2}-\delta \nu_{1}} B R^{-\delta} . \tag{49}
\end{equation*}
$$

From (ii) and induction,

$$
R^{-\beta} B=R^{k-\beta} B=\zeta^{(k-\beta)\left(\nu_{2}-\delta \nu_{1}\right)} R^{-(k-\beta) \delta}=\zeta^{-\beta\left(\nu_{2}-\delta \nu_{1}\right)} B R^{\beta \delta}
$$

From this and (49)(i),

$$
R A B=\zeta^{\mu_{2}-\beta \mu_{1}} A R^{-\beta} B=\zeta^{\mu_{2}-\beta \mu_{1}-\beta\left(\nu_{2}-\delta \nu_{1}\right)} A B R^{\beta \delta}
$$

Now Theorem 14 with $\beta, \mu_{1}$, and $\mu_{2}$ replaced by $k-\beta \delta, \nu_{1}$, and $\tau$ implies (47). It is straightforward to verify (48), since (40) with appropriate substitutions implies that $C_{s}=\zeta^{-\nu_{1} \sigma(s)}(A B)_{0 s}$.

Theorem 15 generalizes [1, Theorem 3.1]; namely, that the product of a $g$-circulant and an $h$-circulant is a $g h$-circulant. However, [1] does not specify the entries in the product, as in (48).

Theorem 16 Suppose that $A$ is as in (34) and $(\beta, k)=1$. Define

$$
\begin{equation*}
\gamma(s) \equiv \mu_{2}-\beta\left(\mu_{1}+s\right) \quad(\bmod k) \tag{50}
\end{equation*}
$$

Then

$$
\begin{equation*}
A=\sum_{s=0}^{k-1} P_{\gamma(s)} F_{s} Q_{s}^{*} \tag{51}
\end{equation*}
$$

with

$$
P_{s}=u_{s} \otimes I_{d_{1}}, \quad Q_{s}=u_{s} \otimes I_{d_{2}}, \quad u_{s}=\frac{1}{\sqrt{k}}\left[\begin{array}{c}
1  \tag{52}\\
\zeta^{s \sigma(1)} \\
\zeta^{s \sigma(2)} \\
\vdots \\
\zeta^{s \sigma(k-1)}
\end{array}\right]
$$

and

$$
\begin{equation*}
F_{s}=\sum_{m=0}^{k-1} \zeta^{\left(\mu_{1}+s\right) \sigma(m)} A_{m}, \quad 0 \leq s \leq k-1 \tag{53}
\end{equation*}
$$

independent of $\beta$ and $\mu_{2}$. Conversely, if $A$ is as in (51) with given $F_{0}, \ldots, F_{k-1} \in$ $\mathbb{C}^{d_{1} \times d_{2}}$, then $A$ is as in (34) with

$$
\begin{equation*}
A_{m}=\frac{1}{k} \sum_{s=0}^{k-1} \zeta^{-\left(\mu_{1}+s\right) \sigma(m)} F_{s}, \quad 0 \leq s \leq k-1 \tag{54}
\end{equation*}
$$

Proof. If $A$ is as (34), then Theorem 14 implies the assumptions of Theorem 1 with $\alpha=1$ and $\mu=\mu_{2}-\beta \mu_{1}$. If in addition $(\beta, k)=1$, then Theorem 4 implies (51), where, from (16), (34), and (52),

$$
F_{s}=P_{\gamma(s)}^{*} A Q_{s}=\frac{1}{k} \sum_{\ell, m=0}^{k-1} \zeta^{\left(\mu_{2}-\gamma(s)\right) \sigma(\ell)+\left(\mu_{1}+s\right) \sigma(m)} A_{\nu(\ell, m)}, \quad 0 \leq s \leq k-1
$$

However, from (50),

$$
\mu_{2}-\gamma(s) \equiv \beta\left(\mu_{1}+s\right) \quad(\bmod k)
$$

so

$$
\left(\mu_{2}-\gamma(s)\right) \sigma(\ell)+\left(\mu_{1}+s\right) \sigma(m) \equiv \xi(\ell, m) \quad(\bmod k) .
$$

where

$$
\begin{equation*}
\xi(\ell, m)=\left(\mu_{1}+s\right)(\beta \sigma(\ell)+\sigma(m)) . \tag{55}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
F_{s}=\frac{1}{k} \sum_{\ell, m=0}^{k-1} \zeta^{\xi(\ell, m)} A_{\nu(\ell, m)} \tag{56}
\end{equation*}
$$

We want to rearrange the terms of this double sum to collect the coefficients of $A_{0}, \ldots$, $A_{k-1}$. Our strategy for accomplishing this is motivated by the congruence

$$
\sigma\left(\rho^{\beta \ell}(m)\right)+\beta\left(\sigma\left(\rho^{-\ell}(0)\right) \equiv(\sigma(m)+\beta \ell)+\beta(\sigma(0)-\ell) \equiv \sigma(m) \quad(\bmod k)\right.
$$

(recall (36) and note that $\sigma(0)=0$, from (32)) which, from (33) and (55), implies that

$$
\begin{equation*}
\nu\left(\rho^{-\ell}(0), \rho^{\beta \ell}(m)\right) \equiv m \quad(\bmod k) \tag{57}
\end{equation*}
$$

and

$$
\begin{equation*}
\xi\left(\rho^{-\ell}(0), \rho^{\beta \ell}(m)\right) \equiv\left(\mu_{1}+s\right) \sigma(m) \quad(\bmod k) \tag{58}
\end{equation*}
$$

Replacing $\ell$ by $\rho^{-\ell}(0)$ in (56) yields

$$
F_{s}=\frac{1}{k} \sum_{\ell=0}^{k-1}\left(\sum_{m=0}^{k-1} \zeta^{\xi\left(\rho^{-\ell}(0), m\right)} A_{\nu\left(\rho^{-\ell}(0), m\right)}\right)
$$

For each $\ell$ we now replace $m$ by $\rho^{\beta \ell}(m)$ in the sum in parentheses to obtain

$$
F_{s}=\frac{1}{k} \sum_{\ell, m=0}^{k-1} \zeta^{\xi\left(\rho^{-\ell}(0), \rho^{\beta \ell}(m)\right)} A_{\nu\left(\rho^{-\ell}(0), \rho^{\beta \ell}(m)\right)}
$$

Hence, (57) and (58) imply (53). Since (53) and (54) are equivalent, the converse also holds.

Theorem 17 If $A$ is as in (34), then $\left(A^{\dagger}\right)^{*} \in \mathcal{A}\left(R, S, 1, \beta, \mu_{2}-\beta \mu_{1}\right)$. If in addition $(\beta, k)=1$, then

$$
A^{\dagger}=\left[\zeta^{-\mu_{1} \sigma(r)-\mu_{2} \sigma(s)} D_{\nu(s, r)}\right]_{r, s=0}^{k-1}
$$

where

$$
\begin{equation*}
D_{m}=\frac{1}{k} \sum_{s=0}^{k-1} \zeta^{\left(\mu_{1}+s\right) \sigma(m)} F_{s}^{\dagger}, \quad 0 \leq m \leq k-1 \tag{59}
\end{equation*}
$$

and $F_{s}$ is as in (53).
Proof. Theorems 3 and 14 imply the first assertion. Now suppose $(\beta, k)=1$. Temporarily, denote

$$
D=\left[\zeta^{-\mu_{1} \sigma(r)-\mu_{2} \sigma(s)} D_{\nu(s, r)}\right]_{r, s=0}^{k-1} .
$$

Since

$$
D^{*}=\left[\zeta^{\mu_{1} \sigma(s)+\mu_{2} \sigma(r)} D_{v(r, s)}^{*}\right]_{r, s=0}^{k-1},
$$

the argument used to obtain (38) shows that $R D^{*} S^{\beta}=\zeta^{\mu_{2}-\beta \mu_{1}} D^{*}$. Hence, Theorem 4 with $A$ replaced by $D^{*}$ implies that

$$
\begin{equation*}
D^{*}=\sum_{s=0}^{k-1} P_{\gamma(s)} G_{s} Q_{s}^{*} \tag{60}
\end{equation*}
$$

with

$$
G_{s}=P_{\gamma(s)}^{*} D_{s}^{*} Q_{s}, \quad 0 \leq s \leq k-1 .
$$

By the argument used to obtain (53),

$$
\begin{equation*}
G_{s}=\sum_{m=0}^{k-1} \zeta^{\left(\mu_{1}+s\right) \sigma(m)} D_{m}^{*}, \quad 0 \leq s \leq k-1 \tag{61}
\end{equation*}
$$

However, (59) is equivalent to

$$
F_{s}^{\dagger}=\sum_{m=0}^{k-1} \zeta^{-\left(\mu_{1}+s\right) \sigma(m)} D_{m}, \quad 0 \leq s \leq k-1
$$

Comparing this with (61) shows that $G_{s}=\left(F_{S}^{\dagger}\right)^{*}$. This and (60) imply that

$$
D=\sum_{s=0}^{k-1} Q_{s} F_{s}^{\dagger} P_{\gamma(s)}^{*}
$$

so (17) implies that $D=A^{\dagger}$.
If $m=n, S=R$, and $d_{1}=d_{2}$, the results of Sections 5 and 6 can be applied to analyze the spectral properties of $A$ in (34).

We close with the following theorem, which generalizes the well known formulas for the eigenvalues and eigenvectors of the standard circulant matrix $A=\left[a_{(s-r)(\bmod k)}\right]_{r, s=0}^{k-1}$.

Theorem 18 If $a_{0}, \ldots, a_{k-1} \in \mathbb{C}$, then the eigenvalues and associated eigenvectors of $A=\left[a_{\rho^{-\sigma(r)}(s)}\right]_{r, s=0}^{k-1}$ are

$$
f_{s}=\sum_{m=0}^{k-1} a_{m} \zeta^{S \sigma(m)} \quad \text { and } \quad u_{s}=\frac{1}{\sqrt{k}}\left[\begin{array}{c}
1  \tag{62}\\
\zeta^{S \sigma(1)} \\
\zeta^{S \sigma(2)} \\
\vdots \\
\zeta^{S \sigma(k-1)}
\end{array}\right], \quad 0 \leq s \leq k-1
$$

Proof. $A$ is of the form (34) with $\mu_{1}=\mu_{2}=0, \beta=-1$, and $A_{s}=a_{s}, 0 \leq s \leq k-1$. Hence $\gamma(s)=s$ (see (50)) and $P_{s}=Q_{s}=u_{s}$, from (52) with $d_{1}=d_{2}=1$. Hence, from (51), $A=\sum_{s=0}^{k-1} f_{s} u_{s} u_{s}^{*}$ with $f_{s}$ as in (62) (see (53)).

## References

[1] C. M. Ablow, J. L. Brenner, Roots and canonical forms for circulant matrices, Trans. Amer. Math. Soc. 107 (1963) 360-376.
[2] A. L. Andrew, Eigenvectors of certain matrices, Linear Algebra Appl. 7 (1973) 151-162.
[3] C. L. Bell, Generalized inverses of circulant and generalized circulant matrices, Linear Algebra Appl. 39 (1981) 133-142.
[4] C. Y. Chao, A remark on eigenvalues of generalized circulants, Portugal. Math. 37 (1981) 135-144.
[5] H.-C. Chen, Circulative matrices of degree $\theta$, SIAM J. Matrix Anal. Appl. 13 (1992) 1172-1188.
[6] P. J. Davis, Circulant Matrices, Wiley, New York, 1979.
[7] D. Fasino, Circulative properties revisited: Algebraic properties of a generalization of cyclic matrices, Italian J. Pure Appl. Math 4 (1998) 33-43.
[8] H. Karner, J. Schneid, C. W. Ueberhuber, Spectral decomposition of real circulant matrices, Linear Algebra Appl. 367 (2003) 310-311.
[9] A. J. Lazarus, Eigenvectors of circulant matrices of prime dimension, Linear Algebra Appl. 221 (1995) 111-116.
[10] W. T. Stallings, T. L. Boullion, The pseudoinverse of an $r$-circulant matrix, Proc. Amer. Math. Soc. 34 (1972) 385-388.
[11] W. T. Stallings, T. L. Boullion, A strong spectral inverse for an $r$-circulant matrix, SIAM J. Appl. Math. 27 (1974) 322-325.
[12] W. F. Trench, Characterization and properties of matrices with generalized symmetry or skew symmetry, Linear Algebra Appl. 377 (2004) 207-218.
[13] W. F. Trench, Minimization problems for $(R, S)$-symmetric and $(R, S)$-skew symmetric matrices, Linear Algebra Appl. 389 (2004) 23-31.
[14] W. F. Trench, Characterization and properties of $(R, S)$-symmetric, $(R, S)$ skew symmetric, and $(R, S)$-conjugate matrices, SIAM J. Matrix Anal. Appl. 26 (2005) 748-757.
[15] W. F. Trench, Multilevel matrices with involutory symmetries and skew symmetries, Linear Algebra Appl. 403 (2005) 53-74.

