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Abstract

We say that a unitary matrix R is rotative (specifically, k-rotative) if its min-
imal polynomial is x¥ — 1 for some k > 2. Let R € C"™*™ and S € C"™*" be
k-rotative, o, B, u € {0,1,...,k — 1}, andaf # 0. Let ¢ = e27i/k We define
A(R, S, a, B, 1) to be the class of matrices A € C™*" such that R*ASB = HA.
If m = nand S = R, we denote the class by A(R,a, B, ). We characterize
the class A(R, S, «, B, 1) and discuss the problem of Moore—Penrose inversion
of a wider class of matrices that includes A(R, S, «, 8, ). Under the additional
assumption that(e, k) = (B,k) = 1, we give a representation of a matrix A in
A(R, S, a, B, 1) in terms of matrices Fy € Ces*ds  where le:é ¢g = m and
le:é ds = n, and show that Moore—Penrose inversion, singular value decom-
position, and the least squares problem for such a matrix reduce respectively to
the same problems for Fp, ..., Fi_1. We consider the eigenvalue problem for
matrices in A(R, a, B, ). We study a class of generalized circulants generated by
blocks Ao, ..., Ap_1 € Cled2, and show that they are in A(R, S, 1, 8, u) for
suitable choices of R, S, and u. In this case we give explicit formulas for Fyp, ...,
Fj_q in terms of Ao, ..., Ay_1, and for AT in terms of FOT, cees FkT—l'
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1 Introduction

We say that a unitary matrix R is rotative (specifically, k-rotative) if its minimal polyno-
mial is x¥ — 1 for some k > 2. A rotative matrix is a special kind of circulation matrix,
which was defined by Chen [5] to be a unitary matrix R # I such that R* = I for
some k > 2. The difference between the definitions is that ours requires the spectrum
of R to be {ezmr/k |O <r<k- 1}, while Chen’s requires only that the spectrum
of R is some subset of {ezmr/k | 0<r<k- 1}. Chen studied matrices A such that
A = ¢! R* AR, where R is a circulation matrix and 6 € [0, 7). Fasino continued this
study in [7].

Throughout this paper R € C™*™ and S € C"*" are both k-rotative. We assume
that k > 2, since if k = 2 our results do not improve on those already obtained in
[12, 13, 14], of which this paper is an extension.

We assume throughout that «, 8, u € Zx = {0,1,...,k — 1} and ¢ # 0. Let
¢ = e?™/* We define A(R, S, a, B, i) to be the class of matrices A € C"™" such
that R*AS# = " A. If m = n and S = R, we denote the class by A(R, a, B, 1).

This paper is influenced by the work of Ablow and Brenner [1], who considered the
case where m = n = k, R = S = the circulant with first row [ o100 --- 0 ],
uw=00a=1andp =k —g, wherel <g <k — 1. They showed that A € C**¥
is a g-circulant (i.e., A = [a(s_g,)(modk)]lr‘;io) if and and only if RARK™¢ = 4,
and used this to find the Jordan canonical form for A in the case where (g, k) = 1.
They also considered the case where (g,k) # 1, and obtained results for a class of
square block g-circulants. Other authors (see, e.g., [4, 6, 8, 9]) have considered spectral
decompositions of various kinds of circulant-like matrices. Moore—Penrose inversion
of such matrices has also been studied (see, e.g.,[3, 10, 11]).

In Section 2 we characterize the class A(R, S, «, 8, ;t) assuming only that o # 0,
and we discuss Moore—Penrose inversion of a wider class of matrices that includes
A(R, S, o, B, 1). Most of our results in Sections 3—7 require that (o, k) = (B,k) =
1. In Section 3, under this assumption, we give a more specific representation A
in A(R, S, o, B, ) in terms of matrices Fy € Ces¥ds  where le:é ¢s = m and
le:é d; = n, and show that AT can be written in terms of FOT, - FkT_1 and a
singular value decomposition of A can be written in terms of singular value decompo-
sitions of Fy, ..., Fx—;. In Section 4 it is shown that the least squares problem for A
reduces to k independent least squares problems for Fy, ..., Fr_;. In Section 5 we
consider the eigenvalue problem for matrices in A(R, «, 8, t). In Section 6 we study
the eigenvalue problem for A(R, 1,k — 1,0), which is the set of matrices A € C**"
such that RAR* = A. In Section 7 we study a class of generalized circulants gener-
ated by blocks Ag, ..., Ax—1 € C41xd2 and show that they are in A(R, S, 1, B, 1)
for suitable choices of R, S, and . Under the assumption that (8, k) = 1, we give
explicit formulas for Fy, ..., Fr_; in terms of Ay, ..., Ag—1, and for AT in terms of
JAN A
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2 Preliminary considerations

Throughout this paper &g (1) denotes the A-eigenspace of B. Let ¢s and dy be the
dimensions of &g (¢*) and Eg (), respectively. Then le:é s =m, le:é ds = n,
and there are matrices Py € C™*% and Q; € C™*4s guch that

RPS:é'SPSa SQS:é'SQSa 0<s=<k-1, (1

PYPs =68psle;, and QrQs =6rslg,, 0<r,s<k-—1. (2)
Since R* = R~! and S* = S~!, (1) implies that

R*P, =0 P; and S*Q;=(7°Q;, 0=<s=<k-1. 3)
Let
P=[P P -+ Py ]| and O0=[Q0 01 -+ Or1 ]. &
Then (1) implies that
R=Pley ®le, & ® L o )P 5)
and
S =0Ua ®la & @y )0 (©)

Theorem 1 A € A(R, S, o, B, 1) if and only if
A=PCQ* with C =[CrlkL,. (7
where Crg € Cr %% and

Cs=0 if ar+fs#u (modk), 0<r,s<k-—1. )

PROOF. Any A in C"*" can be written as in (7) with C = P*AQ. From (1) and (3),

O
¢f o7
RP=[ P ¢*Py --- ¢*kVep ] and 0*SP = ) ;
k—1)4
;( )BQZ_1
SO

k—1

ROASP — P ([;M“’sc”] 0) 0* = thA = PG5l 07

rs=
if and only if (8) holds. O

It can be seen from this proof that {A e Ccmxn | RYASP = CA} = {Omn} unless
¢ = ¢ for some pu € Zg.

The following theorem is valid for a class of matrices that includes A(R, S, «, B, i)
and the matrices studied by Chen [5] and Fasino [7].
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Theorem 2 Let cg, ..., Ck—1, do, - .., dx—1 be positive integers with k > 2 and let .,
Do, -, Pk—1,and qo, ..., qx—1 be integers such that the set
T ={(ns) €Zk xZi | pr +qs = (mod k)} ©)

is nonempty. Suppose that C = [Crs]]f;io with Crg € Cr*% and

Cs=0 if (r,9) ¢ T. (10)

Then
CT = [Dn]f5Ly  with Dy, € C47es an

and
D,y =0 if (s,1) ¢ T. (12)
Moreover, if r # 1’ and s # s’ whenever (r,s) and (r', ') are distinct pairs in T, then
Drs = STr’ (S, r) cT. (13)

PROOF. In any case, C' can be written as in (11). Let
RO — ;POICO @ ;Pl IL‘] @ e @ ;Pk—l ICk—l
and
SO — é'—‘IOIdO ® é'—‘Il Idl D---P é'_‘Ik—l Idk—l .
Then

k—1
r,s=0

ROCS(T — [é«pr+qs C”] =HC,
where (9) and(10) imply the second equality; hence C = {7 RoCSy. Now let D =
*SoC TR; . We will show that C and D satisfy the Penrose conditions. Since Ry and
So are unitary,
CD = RyCCTR} = (CD)*, DC = S,CTCS; = (DC)*,
CDC = MRyCCTCSy = L*RyCSy = C,
and
DCD = *SoCTCCTRE = ¢#SoCTRE = D.
Hence D = CT,so CT = {“SOCTR;. Hence,
Dy :é-M—IIr—PsD”’ 0<rs<k-1.

This and (9) imply (12).

If the second assumption holds, there is a permutation {rg, r1, ..., rx—1 } of Zj such
that

T C {(rOaO)v(rlal)’ (rk—lvk_l)}‘
Since C,Ts = Oy, if Cps = Oy, (10), (12), and (13) imply that
c=U (CrOaO &Cr1®--® Crk—lak_l)

and
)u’
where U is a permutation matrix. It is straightforward to verify that C and D satisfy
the Penrose conditions. [

rr—1,k—1

D= (cj(),o@cjhl @--acCh
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Theorem 3 If A € A(R, S, a, B, 1), then (AT)* € A(R, S, a, B, ju).

PROOF. Let
T ={(r.s) € Zg x Zg |ar + Bs = p  (mod k)} .

From Theorem 1, (7) holds with C,s = 0 if (r,s) ¢ 7. Hence Theorem 2 implies that
(chH* = [E,s]lr‘;io, where E,; = D}, = 0if (r,s) ¢ 7. Now apply Theorem 1 to
(A")* = P(CT)* Q* to obtain the conclusion. [

3 The case where (a, k) = (B,k) =1

Henceforth we assume that (o, k) = (8,k) = 1 except where stated otherwise. For
0 <s <k — 1, we define y(s) to be the unique member of Z; such that

ay(s) + fs =p  (mod k);

thus,

y(s) = a(pn—ps) (mod k), (14)
where @ is the unique member of Zj such that @a = 1 (mod k). Then y is a permu-
tation of Zy.

Theorem 4 Let

Vy = [ Pyoy Pyay 0 Pyae-n ]
Then A € A(R, S,a, B, 1) if and only if
k—1 k—1
A=y (EB Fs) 0" =Y PyoF 0}, (15)
s=0 s=0
with
Fs=Cyp)s = P;(S)AQS 1= CCV(S)de’ 0<s<k—1. (16)
Hence,

k—1 k—1
=0 (EB FJ) Vy =) OsFlP). (17
s=0 s=0
PROOF. Since (4) and (7) imply that

A[ Qo 01 -+ Qi1 |=[Po P -+ Py |C

and Crs = 0if r # y(s), it follows that AQy = P, (5yCy(s),s; hence (2) implies that
Cy(s),s = Py AQs. Moreover,

[ Po P - Pk_l]czvy(kéﬂ).

§s=0

This implies (15), which in turn implies (17) O
Since the following corollary deals with different values of p, we temporarily de-
fine y(s, u) = @(u — Bs) (mod k).
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Corollary 1 Any A € C™*" can be written uniquely as
k—1
A= Z AW
n=0
where AW € A(R,S,a, B, 11),0 < u < k — 1. Specifically, if A is as in (7), then

AW s given uniquely by
k—1
AW — p [C(u)] *
( rs rs=0 Q

0 ifr #y(s, p,
Cys.s  ifr =yls, ),

where

cWw = 0<s<k-—1

Throughout this paper it is to be understood that, for fixed «, 8, and u, Fo, ...,
Fy_4 are as in (16), where we have suppressed the dependence of Fy on «, 8, and u
for simplicity of notation.

We say that z € C” is (S, s)-symmetric if Sz = (*z and w € C” is (R, s)-
symmetric if Rw = ¢*w. These definitions have their origins in Andrew’s [2] def-
initions of symmetric and skew-symmetric vectors: z € C” is symmetric (skew-
symmetric) if Jx = x (Jx = —x), where J = [8,',,,_‘,-4_1]2/.:1. (For other extensions
of Andrew’s definitions, see [12, 14, 15].) ‘

Arbitrary z € C" and w € C™ can be written uniquely as

k—1 k—1
2= 0rx, and w=)_ Py, (18)
=0 =0

with
Xp = Q;kZ S Cdr and Vr = Pr*w c CL‘r’ 0 <r< k—1. (19)

From (1) and (18),
k—1
Sz=Y ¢ 0rx,.
r=0

Therefore, (2) implies that z is (S, s)-symmetric if and only if z = Q;x, for some
xs € C%. Similarly, w is (R, s)-symmetric if and only if w = Pyy, for some y; €
Cs.

Theorem 4 implies the following theorem.

Theorem 5 Suppose that A € A(R,S,a, B, 1) and Fs = 2,3} is a singular
value decomposition of Fs,0 < s <k — 1. Then

k—1
A= 9( zs) o
§s=0
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with
2=[ P02 Py - Py |
and

D = [ Qoq)() qu)l Qk—lq)k—l ]

is a singular value decomposition of A. Thus, each singular value of Fy is a singular
value of A associated with an (R, y(s))-symmetric left singular vector and an (S, s)-
symmetric right singular vector, 0 < s <k — 1.

Theorem 5 is related to [12, Theorems 11, 18], [13, Theorems 4.3, 5.3], and [15,
Theorem3].
4 The least squares problem

Suppose that G € CP*9 and consider the least squares problem for G: If u € C?, find
v € C4 such that

|Gv—ul| = min ||GE — u|, (20)
EeCq
where || - || is the 2-norm. It is well known that this problem has a unique solution if

and only if rank(G) = ¢. In this case, v = (G*G)~!G*u. In any case, the optimal
solution of (20) is the unique n-vector vy of minimum norm that satisfies (20); thus,
vo = GTu. The general solution of (20) is v = vg + ¢ with ¢ in the null space of G,
and

IGv —ull = I(GGT = Dul|

for all such v.
We now consider the least squares problem for a matrix A € A(R, S, o, B, 1).
From (15) and (18),

k—1 k—1 k—1
Az —w = Z Py(s)sts - Z Psys = Z Py(s)(sts - Yy(s))a
s=0 s=0 s=0
so (2) implies that
k—1
14z = wl = 3 I Fsx, — vyl
s=0

This implies the following theorem.

Theorem 6 Suppose that A € A(R, S, «, B, 11). Let w € C™ be given as in (18). Then
z € C", written as in (18), satisfies

|[Az — w| = min ||A§ — w]|| (21)
Eecn
if and only if

||sts_)’y(s)||: min ||Fs1/fs_)’y(s)||a 0<s=<k-1,
stecds
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with Fg as in (16). Therefore (21) has a unique solution, given by

k—1

2= Os(FSF) ™ F vy,
s=0

if and only rank(Fs) = ds, 0 < s < k — 1. In any case, the optimal solution of (21) is

k—1
20 = Z QSFsTyJ/(S)‘

§s=0

The general solutionof (21)isz = Z0+le:é Qsus, where Fsug = 0,0 <s <k-—1,
and

k—1
1Az —wl? = Y NEFS = I, ) vy I1?
=0

for all such z.

5 The casewherem =nand R = S

In this section we assume thatm = n, S = R, and A € A(R,®, B,u). Hence, (15)
becomes

k-1
A=) Py FPy (22)
§s=0
and we can replace (18) and (19) by
k-1 k-1
7= Z Prx, and w = Z Py ys. (23)
—0 =0
with
x,=Pz€C” and y,=PfweC”, 0<r<k-1.
Let
k-1
sr=|J{zeC"|Rz=¢2}; (24)
s=0

thus, z € 8g if and only z is (R, s)-symmetric for some s € Z.
Theorem 7 If A is singular, then the null space of A has a basis in 8g.

PROOF. Let N (A) be the nullspace of A. From (2), (22), and (23), z € N (A) if and
only if Fyxg = 0,0 < s < k — 1. Recall that Fy € Cv&xes, 0 < 5 < k — 1.
Let U = {s € Ly | rank(Fy) < cs}. Since A is singular, U # @. If s € U and
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{xs(l),xs(z),--- ,xs(m“)} is a basis for the null space of Fy, then Psxs(l), Psxs(z), e

Psxs(m‘v) are linearly independent (R, s)-symmetric vectors in N (A), and

U {Psxs(l)’ Psxs(z)’ . Psxs(mx)}
seU

is a basis for N (4). O

Now suppose that y has m orbits Oy, ..., O—1. If m = 1, then y is a k-cycle and
Ly = {yj 0) | 0<j<k- 1}. In any case, there are unique integers 0 = 5o < --- <
Sm—1 such that

m—1
Ly = U Oy, where ;= {yj(s@)|05j <ky— 1}
=0

and kg + -+ + k;u—1 = k. Now define

ke—1
e = Z Pyivis) Fyi s Py sy (25)
j=0
ke—1 ke—1
2= ) PGy ad we= D Py (26)
Jj=0 j=0

Then (15) and (18) can be written as

m—1 m—1 m—1
A:ZFK, ZZZZ(, and w=Zw5.
£=0 £=0 £=0
This, (2), (25), and (26) imply that Az = w if and only if

Ijzg =wy, 0<{<m-—1.

However, I'yzy = wy if and only if

ke—1 ke—1 ke—1
Y P FricoXrico = 2 Prico¥yien = 2 Pritieo¥yitis
=0 j=0 j=0

which is equivalent to
Eyis)Xyitse) = Vyitisps 0=J =ke—1. )

This system can be written as

. 0 F X y .
Fy, x5, = s, if kg =1, VW)H Se }:[ Se :|1fk =2,
s Xsy Vs 14 [ F, 0 Xy(s0) Yy(se) 14
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or
0 0 0 Fyke—l(w) Xs, Vs
Fy, 0 0 0 Xy(se) Yy(se)
0 Fysp - 0 0 X2 | = Yr26o0
0 0 Fykz—z(w) 0 X ke=1(5,) Yyke=1(s,)

if kg > 2. In any case, let us abbreviate this system as Hy¢y = ¢. Then we have
proved the following theorem.

Theorem 8 Ifw = Zf;(l) Psys, then the system Az = w has a solutionz = Zf;(l) Poxg
if and only if the systems Hy¢py = Yy, 0 < £ < m — 1, all have solutions. Morever, if

@y is a A-eigenvector of Hy, then 7y = Z];e:_ol Py j(s)Xyi (sp) IS @ A-eigenvector of A.

¥
Theorem 9 Suppose ky > 1. If A # 0, then ¢¢ is a A-eigenvector of Hy if and only if
X5, # 0 and
Foio=1(5y+* Fyisg) FseXsp = Mg, (28)
In this case,
Xyitis) = %ij(se)xyj(se)’ 0=<j=ke-2. (29)
and xg,, ..., Xy kp—1(g,) are all nonzero.

PROOF. We note from (16) with d; = ¢, that Fyke—lw) v Fysp) Fsp X5, € CO0765e,
(Recall that y*(s¢) = s¢.) From (27), Hy¢py = A if and only
1
Xyitiso = 37 FyieoXyieo (30)

for all j, because of the periodicity of y/ (s¢) with respect to j. Hence, if Xy io(sy) = 0
for some jo, then x,,j () = O for all j. Therefore, x5, # 0 if ¢ is a A-eigenvector of
H,. Applying (30) for 0 < j < k¢ — 1 and noting that Xy ke (s,) = Xsg yields (28). O

Corollary 2 Ifk, > 1, ¢y = 2™ /¢ _and

Xsp
Xy (se)
o = Y60

Yyke=t(se)
is a A-eigenvector of Hy with A # 0, then
Xs,

é(;rxy(se)
¢é’) = 8y xy2(sy)

—(ke=1)r
A rxyke—‘(sz)
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is A, -eigenvector of Hy, 0 <1 < kg — 1.

PROOF. Replacing A by £" A in (28) and (29) leaves the former unchanged. This implies
the conclusion. [

The results in this section take a particularly simple form if n = k, so that ¢; =
ds =1,0 <s <k—1.Inthiscase, let {p1,..., px} C Ck be an orthonormal set such
that Rps = ¢°ps, 0 < s < k — 1. Theorems 8, 9, and Corollary 2 with Py = p; and
Fy = p;(s) Aps imply the following theorem, which is related to [1, Lemma 4.3].

Theorem 10 Suppose thatn = k. If kg = 1, then A = pg, Aps, is an eigenvalue of
Hy with associated eigenvector p,. If kg > 1, let
ke—1
A= 1_[ p;[+l(S4)ApV[(Se)‘
1=0

If Ay #0, let Ay = Az/ke and define

J
—i-1 .
xsp =1 and  x,j+14,) = Ay / 1_[ P;:HW)APWW» 0<j<kg—2.
t=0

Then A¢8; is an eigenvalue of A with associated eigenvector

ke—1
Zer = Z é'g_rjxyj(se)l?yj(se), 0<r<k;—1.
j =0

Any nonzero eigenvalue of A must be of the form just defined for some £ € {0, ..., m—
1}. A is singular if and only if the set M = {s | prAps = O} is nonempty, in which
case {ps | s € M} is a basis for N (A).

6 R-symmetric matrices

In this section we consider the special case where m = n, S = R, u = 0,0 = 1,
and B = k — 1. Since RF-1 = R~! = R*, A(R, 1,k — 1,0) is the set of matrices
A € C™" such that RAR* = A. We will say that such a matrix is R-symmetric. This
is related to a definition in [12].

Our assumptions imply that y(s) = 5,0 < s < k — 1 (see (14)), so Theorem 4
implies that A is R-symmetric if and only if

k—1
A= P(@Fs) P*=Y PP} G1)
s=0

with
Fs=PfAP; e C&*%, 0<s<k-—1.

The next two theorems are immediate consequences of (31).



W. E Trench 12

Theorem 11 If A is R-symmetric, then A is an eigenvalue of A if and only if A is an
eigenvalue of one or more of the matrices Fy, F, ..., Fx_1. Assuming this to be true,
let

Sa(A) = {s € Ly | A is an eigenvalue ost} .

Ifs € S4(1) and{xs(l), x@ . ,xs(m“)} is a basis for €4, (1), then PxV, Px? ..,

Psxs(m‘v) are linearly independent (R, s)-symmetric A-eigenvectors of A. Moreover,

U {Psxs(l)’ Psxs(z)’ . Psxs(mx)}
SES 4(A)

is a basis for &4(L). Finally, A is diagonalizable if and only if Fy, F1, ..., Fr_q
are all diagonalizable. In this case, A has cs linearly independent (R, s)-symmetric
eigenvectors, 0 < s <k — 1.

Theorem 12 If A is R-symmetric, then A is normal if and only if Fg isnormal,0 < s <
k — 1. In this case, if Fs = 23 Ds82} is a spectral representation of A;,0 < s < k—1,

then
k—1
A= (QB Ds) *
s=0
with

Q2= P20 P21 -+ P12 |

is a spectral representation of A. Hence, A has cs linearly independent (R, s)-symmetric
eigenvectors, 0 < s <k — 1.

The next theorem is a generalization of Andrew’s theorem [2, Theorem 2]. For
other generalizations of Andrew’s theorem, see [12, 14, 15].

Theorem 13

(1) If A is R-symmetric and ) is an eigenvalue of A, then & 4(1) has a basis in g
(recall (24)).
(i) If A has n linearly independent eigenvectors in Sg, then A is R-symmetric.

PROOF. (i) Theorem 11.

(ii) Let Aq, ..., A, be the eigenvalues of A with associated linearly independent
eigenvectors z1, ..., Z, in g. It suffices to show that RAR*z; = Az;,1 < j < n.
This is true, since if Az; = A;z; and Rz; = {*z;, then

RAR'z; =P RAz; =7AjRz; = {0 A 2, = Az [

7 Generalized block circulants
Henceforth p is a k-cyclic permutation of Z and o is the permutation of Z such that

p°90)=s, 0<s<k—1. (32)
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For example, if k = 7 and p = (0,5, 6,2, 3,4, 1), then
o= 01 2 3 4 5 6
“\N0 6 3 4 5 1 2 )

u(r,s) = p? OB Q) = pPoW(g), 0<rs<k—1. (33)

Let

We study matrices of the form
A= [gro@tio g o oLy, where  Ag,... Ag_g €CR. (34)
For example, if p = (0, 1,...,k — 1), thena(s) =5,0<s <k —1,s0

A= [EF2 AL Brymod k)]]f;io .

Hence, if u; = puy = 0, then A4 is a block SB-anticirculant if § > 0, or a block
| B|-circulant if B < 0. (Note that we do not assume here that the blocks are square).
We will need the following lemma.

Lemma 1 Let
E=[eri ¢y = €igen | 35)

where [ ey e1r -0 ep—_1 ] = I;. Then E = UDU¥, where
D = diag(1,¢, ...,

and

1 k—1
U=[uo ur - ugy |= ﬁ[fsa(r)]rs= :

PROOF. If ¢ is an arbitrary integer, then
o(p?(r))=0(r)+q (modk), O0=<r=<k-1, (36)

since (32) implies that

P71 0) = pT(r) = p (o7 (0) = p7 (0.
Therefore,

1 k—1 1 k—1
EU = _[ m(p(r))] _ _[ s(a(r)+1)] = UD.
v \/E é‘ r,s=0 \/E é‘ r,s=0 v

where (36) with ¢ = 1 implies the second equality. Since UU* = I, it follows that
E=UDU*. O
The following two theorem do not require that (8, k) = 1.
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Theorem 14 Let

R=E®I; and S=E®Ig,. (37)
Let H = [Hy k5L, where Hyy € Ch1 %420 < 1,5 <k — 1. Then
RHSP = ¢gro=Prr g, (38)
if and only if
Hys = o100 FTm2o g o0 0<rs<k—1, (39)
where Ao, ..., Ap_1 € C4>92 Iy this case,
Ay =M H 0<s<k-—1. (40)

PROOF. Let P and Q be as in (4), with
Ps=us;®14,and Oy =u;® 1, 0<s=<k-—1

Then (1) holds, which implies (5) and (6). From (35) and (37), it is straightforward to
verify that

B _ k—1
RHSP = [Hpy) p-8(9)],1—o - 4D
If (39) holds, then
s k—1
RHSP — [;ma(p (s))+uza(p(r))Av(p(r),p_ﬁ(s))]rs=0. (42)

However, from (36),

110 (PP () + 120 (p(r) = p10(5) + p20(r) = By + pa, (mod k). (43)
and
o(p~P () + Bo(p(r) = o(s) + fo(r)  (mod k). (44)
Now (39), (42), (43), and (44) imply (38).
Conversely, suppose that (38) holds. Then (41) implies that

Hp(r),p_ﬁ(s) = ;MZ_ﬁMl Hrs, 0 <rs=< k — 1. (45)

We will show by induction on r that

Hyroy,s = £19OFH2 4 g0 0<s <k—1, (46)
with Ay, ..., Ay as in (40); thus, (46) holds for r = 0. Now suppose » > 0 and (46)
holds. Replacing r by p” (0) and s by pP (s) in (45) yields

— ;Mz—ﬁm

Hpr410),5 Hpr (0),08(s)-

Therefore, from (46) with s replaced by p? (s),

- 8
Hyt1(g)s = 2 Buitpi(o(o (s))+rM2)Ap(r+l)[3(s) — {“‘”(SH(’H)MZAp(r+1)1s(s),

where the last equality is a consequence of (36). This completes the induction, so (46)
holds for 0 < r < k — 1. Replacing r by o (r) in (46) and recalling (32) and (33) yields
39). 0O
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Theorem 15 If
k-1
A= I:é-mU(S)+M20(V)Apﬁg(r)(s)j|

r,s=0
and
VIU(S)-I-VzU(r)B k-1
B = [ o(r ] 5
é- poer(s) r,s=0
where Ay, ..., Ak—1, Bo, ..., Br—1 € C¥*4 then
AB = [£17O00C, gy | 47
where
T =z — Bur — B2
and
k—1
CS = Z ;(M1+v2)0(</)AJ- Bp&r(j)(s), 0 <s =< k—1. (48)
Jj=0

PROOF. We apply Theorem 14 with d; = d, = d, so that R = S (see (37)). Theo-
rem 14 implies that

(i) RA=¢""PrigR=P and (i) RB = ¢">7%"1 BR7S. (49)

From (ii) and induction,

RPB =RFBB = é-(k—ﬁ)(m—b’w)R—(k—ﬁ)b’ — ;—ﬁ(l&—b’w)BRﬁb’_
From this and (49)(i),
RAB = ;Mz—ﬁmAR—ﬁB — ;Mz—ﬁm—ﬁ(m—b’w)ABRﬁb’

Now Theorem 14 with 8, w1, and u» replaced by k — B8, vy, and t implies (47). It
is straightforward to verify (48), since (40) with appropriate substitutions implies that
Cs = é_le(S)(AB)Os-

Theorem 15 generalizes [1, Theorem 3.1]; namely, that the product of a g-circulant
and an h-circulant is a gh-circulant. However, [1] does not specify the entries in the
product, as in (48).

Theorem 16 Suppose that A is as in (34) and (B, k) = 1. Define

y(s) = p2 — B(u1 +5) (mod k). (50)
Then
k—1
A=) PyyF 0} (51)

§s=0
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with
1
é—scr(l)
1 2
Po=ug®la. Os=us®la us= S )
é—sa(}c—l)
and
k—1
Fy=) ¢urootmy,  0<s<k-—1, (53)
m=0

independent of B and 1. Conversely, if A is as in (51) with given Fy, ..., Fr_, €
Ca1%42 then A is as in (34) with
1 k—1
Ay = E Yoo p - 0<s <k—1. (54)
s=0

PROOF. If A is as (34), then Theorem 14 implies the assumptions of Theorem 1 with
o = land u = pp — Puy. If in addition (B, k) = 1, then Theorem 4 implies (51),
where, from (16), (34), and (52),

k—1
1 - ¢
Fy = PigAQs = 1 Y (U rIsrtataom g 0 <5 <k 1.
£,m=0

However, from (50),

p2—y(s) = B(ur +s) (mod k),

S0
(n2 —y($)o () + (1 + s)o(m) = §(E, m) (mod k).
where
§(,m) = (1 + s)(Bo () + o(m)). (55)
Therefore,
Fy= 5 Eem) 4 56
s =7 (an;of v(Lm)- (56)

We want to rearrange the terms of this double sum to collect the coefficients of Ay, ..
Aj—1. Our strategy for accomplishing this is motivated by the congruence

o (pPt(m)) + B(a(p™(0)) = (o(m) + BE) + B(0(0) —£) = o(m) (mod k),

(recall (36) and note that o(0) = 0, from (32)) which, from (33) and (55), implies that

.

v(p~£(0). pPE(m)) =m  (mod k) (57)
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and
E(p4(0), pPEm)) = (w1 + s)o(m)  (mod k). (58)

Replacing £ by p~¢(0) in (56) yields

1 k-1 [k—1 .
Fo=7 (Z i (O)’m)Av(p—f(O),m)) :

(=0 \m=0
For each £ we now replace m by p*(m) in the sum in parentheses to obtain

k—1

1 — Be
Fy= o 3 0O A, o) gty
{,m=0

Hence, (57) and (58) imply (53). Since (53) and (54) are equivalent, the converse also
holds. 0O

Theorem 17 If A is as in (34), then (AY)* € A(R, S, 1, B, 2 — Bu1). If in addition
(B.k) =1, then

k—1
At = [;—Mlﬂ(r)—usz(S)Dv(s’r):lrS=0 ,
where
1 k—1
D=7 S guaroempt 0 <m <k -1, (39)
=0

and Fy is as in (53).

PROOF. Theorems 3 and 14 imply the first assertion. Now suppose (8,k) = 1. Tem-

porarily, denote
10— 1120(5) k-
D= I:é- R =H204 Dv(s,r):| .
r,s=0
Since

D* — [;ma(s)ﬂm(r)D* ]"‘1

v(r.s) rs=0
s

the argument used to obtain (38) shows that RD*S# = ¢#2=Br1 D* Hence, Theo-
rem 4 with A replaced by D* implies that

k—1
D* =" Py GsQF (60)

s=0
with
GS:P;(S)D:QS’ Ofsfk—l
By the argument used to obtain (53),
k—1
Gy= ) tWtotmpr  0<s<k-1 (61)

m=0
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However, (59) is equivalent to

k-1
Ff =3 "¢ mtomp,  0<s<k-1.

m=0

Comparing this with (61) shows that Gy = (F; ST)*. This and (60) imply that
k—1
D =) 0:F Py,
=0

so (17) implies that D = AT, O

Ifm =n,S = R, and d; = d», the results of Sections 5 and 6 can be applied to
analyze the spectral properties of A in (34).

We close with the following theorem, which generalizes the well known formulas
for the eigenvalues and eigenvectors of the standard circulant matrix A = [a(s—r)(mod k)]]f, ;;0.

Theorem 18 If ay, ..., ax—1 € C, then the eigenvalues and associated eigenvectors
of A= [ap_a'(r)(s)]]:’;io are

1
so (1)
k-t 1 ;m(z)
fi=Y " amt*™ and u; = — , 0<s<k—1. (62)
vk .
m=0 .
;sa(}c—l)

PROOF. A is of the form (34) with i1 = up = 0,8 = —1l,and Ay = a,,0 < s < k—1.
Hence y(s) = s (see (50)) and P; = Q5 = uy, from (52) with d; = d, = 1. Hence,
from (51), A = le:é Sfsusui with f; asin (62) (see (53)). O
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