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A Toeplitz matrix, named after the German mathematician

Otto Toeplitz (1881-1940), is of the form T D Œtr�s�n�1
r;sD0.

(It’s ok, and convenient for Toeplitz matrices, to number

rows and columns from 0 to n � 1.) A symmetric Toeplitz

matrix is of the form Tn D Œtjr�sj�
n�1
r;sD0. For example,

T5 D
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4

t0 t1 t2 t3 t4
t1 t0 t1 t2 t3
t2 t1 t0 t1 t2
t3 t2 t1 t0 t1
t4 t3 t2 t1 t0

3
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5

is a 5 � 5 symmetric Toeplitz matrix. We will assume that

t0, t1, . . . , tk�1 are all real numbers. From your linear al-

gebra course you know that a symmetric matrix with real

entries has real eigenvalues and is always diagonalizable;

that is, Tn has real eigenvalues and n linearly independent

eigenvectors.



A Toeplitz matrix is said to be banded if there is an integer

d < n � 1 such that t` D 0 if ` > d . In this case, we say

that T has bandwidth d . For example,

T5 D

2
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6

6

6

4

t0 t1 t2 0 0

t1 t0 t1 t2 0

t2 t1 t0 t1 t2
0 t2 t1 t0 t1
0 0 t2 t1 t0

3
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7

7

7

5

is a 5 � 5 banded symmetric Toeplitz matrix with band-

width 2.



The eigenvalue problem for very large (n can be in the

thousands!) symmetric banded Toeplitz matrices pops up

in many statistical problems. In your linear algebra course

you learned to solve the eigenvalue problem for a matrix A

by factoring its characteristic polynomial

p.�/ D det.A � �I /:

Sorry, that’s impossible for big matrices. In general there

is no computationally useful way to obtain the character-

istic polynomial of a large symmetric matrix (or any other

large matrix). All methods for finding a single eigenvalue

of an arbitrary n � n symmetric matrix carry a computa-

tional cost (it’s called complexity) proportional to n3. So,

if you double the size of the matrix you make the problem

of obtaining a single eigenvalue eight times more difficult.

However, the situation is different for banded symmetric

Toeplitz matrices.



Let’s start with the simplest case: d D 1.

Tn D
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t0 t1 0 0 � � � 0 0 0

t1 t0 t1 0 � � � 0 0 0

0 t1 t0 t1 � � � 0 0 0
::: ::: ::: ::: : : : ::: ::: :::

0 0 0 0 � � � t1 t0 t1
0 0 0 0 � � � 0 t1 t0
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n�n

with t1 ¤ 0. This is a symmetric tridiagonal Toeplitz ma-

trix. A vector

x D

2

6

6

4

x0

x1
:::

xn�1
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is a �-eigenvector of Tn if and only if

t0x0 C t1x1 D �x0

t1xj �1 C t1x0 C t1xj C1 D �xj ; 1 � j � n � 1;

t1xn�1 C t0xn D �xn

which we can rewrite as

t1xj �1 C .t0 � �/xj C t1xj C1 D 0; 0 � j � n;

(a homogeneous difference equation) if we define x0 D

xnC1 D 0 (boundary conditions).



The characteristic polynomial of the difference equation

t1xj �1 C .t0 � �/xj C t1xj C1 D 0 (DE)

is

p.´I �/ D t1C.t0��/´Ct1´2 D t1.´�´1.�//.´�´2.�//I

thus, p.´1.�// D p.´2.�// D 0. (We don’t know ´1.�/

and ´2.�/ yet; be patient.) If we let

xj D c1´
j
1 .�/ C c2´

j
2 .�/

where c1 and c2 are arbitrary constants, then the left side of

(DE) equals

c1´
j �1
1 p.´1.�// C c2´

j �1
2 p.´2.�// D 0

for any choice of c1 and c2. Now let’s work on the boundary

conditions. Since x0 D 0 if and only if c2 D �c1,

xj D c.´
j
1 .�/ � ´

j
2 .�//:

Now xnC1 D 0 if and only if .´1.�/=´2.�//nC1 D 1,

which is true if and only if

´1.�/ D 
q exp

�

q�i

n C 1

�

and ´2.�/ D 
q exp

�

�q�i

n C 1

�

;

where exp.i�/ D ei� D cos� C i sin � , q D 1; : : : ; n and


q is to be determined. (Letting q D 0 does not produce an

eigenvector because if ´1.�/ D ´2.�/) then xj D 0 for all

j ).



Taking note that are q possibilities, the eigenvectors have

the form

xq D

2
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4

x0q

x1q
:::

xn�1;q
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where

xjq D c.´
j
1 .�q/ � ´

j
2 .�q//;

´1q.�/ D 
q exp

�

q�i

n C 1

�

; and ´2q.�/ D 
q exp

�

�q�i

n C 1

�

;

so

xjq D c

�

exp
jq�i

n C 1
� exp

jq�i

n C 1

�

D 2ci sin
jq�

n C 1
:

Since c is arbitrary, it makes sense to let c D 1=2
qi .

(Don’t worry that maybe 
q D 0; we’ll see that it isn’t.)

Then

xjq D sin
jq�

n C 1
; 0 � j � n � 1:

ALL SYMMETRIC TRIDIAGONAL TOEPLITZ MATRI-

CES HAVE THE SAME EIGENVECTORS!



Now let’s find �q, the eigenvalue associated with q.

t1 C .t0 � �q/ C t1´2 D t1.´ � ´1.�//.´2 � ´2.�//

which equals

t1

�

´2 � .´1.�/ C ´2.�//´ C ´1.�/´2.�/
�

Since

´1.�/ D 
q exp

�

q�i

n C 1

�

and ´2.�/ D 
q exp

�

�q�i

n C 1

�

;

t1C.t0��q/´Ct1´2 D t1

�

´2 � 2
q´ cos

�

q�

n C 1

�

C 
2
q

�

:

Equating coefficients on the two sides yields 
q D 1 and

�q D t0 C 2t1 cos

�

q�

n C 1

�

; 1 � q � n:



Now suppose d > 1. To see where we’re going, a nonzero

vector

x D

2
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6

4

x0

x1

x2

x3

x4
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is a �-eigenvector of

T5 D
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6

6

4

t0 t1 t2 0 0

t1 t0 t1 t2 0

t2 t1 t0 t1 t2
0 t2 t1 t0 t1
0 0 t2 t1 t0

3

7

7

7

7

5

if and only if
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6

6

4

t0 t1 t2 0 0

t1 t0 t1 t2 0

t2 t1 t0 t1 t2
0 t2 t1 t0 t1
0 0 t2 t1 t0

3

7

7

7

7

5
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x0
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x3

x4
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D �

2
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6
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4

x0

x1

x2

x3

x4
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5

;

or, equivalently,

t0x0 C t1x1 C t2x2 D �x0

t1x0 C t0x1 C t1x2 C t2x3 D �x1

t2x0 C t1x1 C t2x2 C t3x3 C t4x4 D �x2

t2x1 C t1x2 C t0x3 C t1x4 D �x3

t2x2 C t1x3 C t0x4 D �x4;



(repeated for clarity)

t0x0 C t1x1 C t2x2 D �x0

t1x0 C t0x1 C t1x2 C t2x3 D �x1

t2x0 C t1x1 C t2x2 C t3x3 C t4x4 D �x2

t2x1 C t1x2 C t0x3 C t1x4 D �x3

t2x2 C t1x3 C t0x4 D �x4;

or, equivalently,

t2x�2 C t1x�1 C t0x0 C t1x1 C t2x2 D �x0

t2x�1 C t1x0 C t0x1 C t1x2 C t2x3 D �x1

t2x0 C t1x1 C t0x2 C t1x3 C t2x4 D �x2

t2x1 C t1x2 C t0x3 C t1x4 C t2x5 D �x3

t2x2 C t1x3 C t0x4 C t1x5 C t2x6 D �x4

if we impose the boundary conditions

x�2 D x�1 D x5 D x6 D 0:

Better yet,

2
X

`D�2

tj`jx`Cr D �xr ; 0 � r � 4:



(repeated for clarity)

2
X

`D�2

tj`jx`Cr D �xr ; 0 � r � 4;

with boundary conditions

x�2 D x�1 D x5 D x6 D 0:

For the general case where Tn D Œtjr�sj�
n�1
r;sD0 with t` D 0

if ` > d , the eigenvalue problem can be written as

d
X

`D�d

tj`jx`Cr D �xr ; 0 � r � n � 1; (DE)

subject to

xr D 0; �d � r � �1; n � r � n C d � 1: (BC)

Eqn. (DE) is a difference equation and the conditions in

(BC) are called boundary conditions. Obviously, (DE) and

(BC) both hold for any � if xr D 0 for �d � r � nCd �1.

However, that’s not interesting, since an eigenvector must

be nonzero. Finding the values of � for which (DE) has

nonzero solutions that satisfy (BC) is a boundary value problem.



The characteristic polynomial of the difference equation

d
X

`D�d

tj`jx`Cr D �xr ; 0 � r � n � 1; (DE)

is

P.´; �/ D

d
X

`D�d

tj`j´
` � �:

The zeros of P.´; �/ are continuous functions of � and,

since P.´; �/ D P.1=´; �/, they occur in reciprocal pairs

.´1.�/; 1=´1.�//; : : : ; .´d .�/; 1=´d .�//:

It can be shown (don’t you hate that?) that these zeros are

distinct except for at most finitely many “bad values” of

�. We’ll assume that none of these bad values are actually

eigenvalues of Tn. (This is a pretty safe bet.) Then (DE)

holds if

xr D

d
X

sD1

�

as´
r
s.�/ C bs´

�r
s .�/

�

; �d � r � n C d � 1;

where a1, . . . , ad and b1, . . . , bd are arbitrary constants.



PROOF. Recall that P.´; �/ D

d
X

`D�d

tj`j´
` � �. If

xr D

d
X

sD1

�

as´
r
s.�/ C bs´

�r
s .�/

�

; �d � r � nCd�1; then

d
X

`D�d

tj`jx`Cr � �xr D

d
X

`D�d

tj`j

d
X

sD1

�

as´`Cr
s C bs´

�`�r
s

�

��

d
X

sD1

�

as´
r
s.�/ C bs´

�r
s .�/

�

D

d
X

sD1

as´
r
s.�/

0

@

d
X

`D�d

tj`j´
`
s.�/ � �

1

A

C

d
X

sD1

bs´
�r
s .�/

0

@

d
X

`D�d

tj`j´
�`
s .�/ � �

1

A

D

d
X

sD1

�

as´
r
s.�/P.´s.�/; �/ C bs´

�r
s .�/P.1=´s.�/; �/

�

D 0

(look at the top of this page) for all r . Note that a1, . . . , ad
and b1 , . . . , bd are completely arbitrary up to this point.



Now we must choose them to satisfy the boundary condi-

tions

xr D 0; �d � r � �1; n � r � n C d � 1I (BC)

that is,

d
X

sD1

�

as´
r
s.�/ C bs´

�r
s .�/

�

D 0;

for �d � r � �1 and n � r � n C d � 1. For example, if

d D 2, we must have
2

6

6

6

4

´�1
1 .�/ ´�1

2 .�/ ´1.�/ ´2.�/

´�2
1 .�/ ´�2

2 .�/ ´2
1.�/ ´2

2.�/

´n
1.�/ ´n

2.�/ ´�n
1 .�/ ´�n

2 .�/

´nC1
1 .�/ ´nC1

2 .�/ ´�n�1
1 .�/ ´�n�1

2 .�/

3

7

7

7

5

2

6

6

4

a1

a2

b1

b2

3

7

7

5

D

2

6

6

4

0

0

0

0

3

7

7

5

:



For clarity,
2

6

6

6

4

´�1
1 .�/ ´�1

2 .�/ ´1.�/ ´2.�/

´�2
1 .�/ ´�2

2 .�/ ´2
1.�/ ´2

2.�/

´n
1.�/ ´n

2.�/ ´�n
1 .�/ ´�n

2 .�/

´nC1
1 .�/ ´nC1

2 .�/ ´�n�1
1 .�/ ´�n�1

2 .�/

3

7

7

7

5

2

6

6

4

a1

a2

b1

b2

3

7

7

5

D 0:

Let

P.�/ D

�

´�1
1 � ´�1

2 .�/

´�2
1 � ´�2

2 .�/

�

; Q.�/ D

�

´1� ´2.�/

´2
1� ´2

2.�/

�

Rn.�/ D

�

´n
1� ´n

2.�/

´nC1
1 � ´nC1

2 .�/

�

;

Sn.�/ D

�

´�n
1 � ´�n

2 .�/

´�n�1
2 � ´�n�1

2 .�/

�

;

a D

�

a1

a2

�

; b D

�

b1

b2

�

:

Then the boundary conditions are satisfied if and only if
�

P.�/ Q.�/

Rn.�/ Sn.�/

� �

a

b

�

D 0:



In general, let

P.�/ D Œ´�r
s .�/�dr;sD1; Q.�/ D Œ´r

s.�/�;

Rn.�/ D Œ´nCr�1
s .�/�; Sn.�/ D Œ´�nCr�1

s .�/�

a D

2

6

6

4

a1

a2
:::

ad

3

7

7

5

and b D

2

6

6

4

b1

b2
:::

bd

3

7

7

5

:

Then the boundary conditions are satisfied if and only if
�

P.�/ Q.�/

Rn.�/ Sn.�/

� �

a

b

�

D 0: (S)

Let

Dn.�/ D

ˇ

ˇ

ˇ

ˇ

P.�/ Q.�/

Rn.�/ Sn.�/

ˇ

ˇ

ˇ

ˇ

(determinant).

An eigenvector of Tn must be a nonzero vector. Since (S)

has only the trivial solution

�

a

b

�

D

�

0

0

�

if Dn.�/ ¤

0, it follows that � is an eigenvalue of Tn if and only if

Dn.�/ D 0. For ways to find the zeros of Dn.�/, see

my papers RP-44, 61, 63, and 78. Since Dn.�/ doesn’t

become more complicated as n increases, the difficulty of

finding individual eigenvalues of Tn is independent of n.



We can take this a little further. The eigenvectors of a sym-

metric Toeplitz matrix have a special property that I haven’t

mentioned. To identify this property, let Jn be the “flip ma-

trix,” which has 1’s on its secondary diagonal and 0’s else-

where. For example,

J5 D

2

6

6

6

6

4

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

3

7

7

7

7

5

:

Note that

J 2
5 D

2

6

6

6

6

4

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

3

7

7

7

7

5

2

6

6

6

6

4

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

3

7

7

7

7

5

D

2

6

6

6

6

4

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

3

7

7

7

7

5

D I5:

In general, J 2
n D In; that is, Jn is its own inverse.



Multiplying a vector by Jn reverses (“flips”) the compo-

nents of the vector. For example, if

x D

2

6

6

6

6

4

x0

x1

x2

x3

x4

3

7

7

7

7

5

;

then

J5x D

2

6

6

6

6

4

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

3

7

7

7

7

5

2

6

6

6

6

4

x0

x1

x2

x3

x4

3

7

7

7

7

5

D

2

6

6

6

6

4

x4

x3

x2

x1

x0

3

7

7

7

7

5

:

In general, if

x D

2

6

6

6

6

4

x0

x1
:::

xn�2

xn�1

3

7

7

7

7

5

then Jnx D

2

6

6

6

6

4

xn�1

xn�2
:::

x1

x0

3

7

7

7

7

5



We say that a vector x is symmetric if Jnx D x, or skew-

symmetric if Jnx D �x. Adding symmetric vectors pro-

duces a symmetric vector, and multiplying a symmetric vec-

tor by a real number produces a symmetric vector; hence,

the symmetric vectors in R
n form a subspace of R

n. Sim-

ilarly, the skew-symmetric vectors form a subspace of R
n.

If n D 2m then each of these subspaces has dimension m.

If n D 2m C 1 then the subspace of symmetric vectors has

dimension m C 1 and the subspace of skew symmetric vec-

tors has dimension m. The zero vector is the only vector

that is both symmetric and skew-symmetric.

For example, if n D 4 then
2

6

6

4

1

0

0

1

3

7

7

5

and

2

6

6

4

0

1

1

0

3

7

7

5

form a basis for the subspace of symmetric vectors, while
2

6

6

4

1

0

0

�1

3

7

7

5

and

2

6

6

4

0

1

�1

0

3

7

7

5

form a basis for the subspace of skew-symmetric vectors.



If n D 5 then
2

6

6

6

6

4

1

0

0

0

1

3

7

7

7

7

5

;

2

6

6

6

6

4

0

1

0

1

0

3

7

7

7

7

5

; and

2

6

6

6

6

4

0

0

1

0

0

3

7

7

7

7

5

form a basis for the subspace of symmetric vectors, while
2

6

6

6

6

4

1

0

0

0

�1

3

7

7

7

7

5

and

2

6

6

6

6

4

0

1

0

�1

0

3

7

7

7

7

5

form a basis for the subspace of skew-symmetric vectors.

In general, if n D 2m then the subspace of symmetric vec-

tors and the subspace of skew-symmetric vectors are both

m-dimensional. If n D 2m C 1 then the subspace of sym-

metric vectors is .m C 1/-dimensional and the subspace of

skew-symmetric vectors is m-dimensional.



Multiplying a matrix on the left by Jn reverses the rows of

the matrix, so

J5T5 D

2

6

6

6

6

4

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

3

7

7

7

7

5

2

6

6

6

6

4

t0 t1 t2 t3 t4
t1 t0 t1 t2 t3
t2 t1 t0 t1 t2
t3 t2 t1 t0 t1
t4 t3 t2 t1 t0

3

7

7

7

7

5

D

2

6

6

6

6

4

t4 t3 t2 t1 t0
t3 t2 t1 t0 t1
t2 t1 t0 t1 t2
t1 t0 t1 t2 t3
t0 t1 t2 t3 t4

3

7

7

7

7

5



Multiplying a matrix on the right by Jn reverses the columns

of the matrix, so

J5T5J5 D .J5T5/J5

D

2

6

6

6

6

4

t4 t3 t2 t1 t0
t3 t2 t1 t0 t1
t2 t1 t0 t1 t2
t1 t0 t1 t2 t3
t0 t1 t2 t3 t4

3

7

7

7

7

5

2

6

6

6

6

4

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

3

7

7

7

7

5

D

2

6

6

6

6

4

t0 t1 t2 t3 t4
t1 t0 t1 t2 t3
t2 t1 t0 t1 t2
t3 t2 t1 t0 t1
t4 t3 t2 t1 t0

3

7

7

7

7

5

D T5:

In general, JnTnJn D Tn. What does this tell us about the

eigenvectors of Tn?



First, suppose � is an eigenvalue of Tn with multiplicity

one, so the associated eigenspace is one-dimensional, and

suppose that Tnx D �x with x ¤ 0. Then JnTnx D

�Jnx. Since JnJn D In, it follows that .JnTnJn/.Jnx/ D

�Jnx. Therefore Tn.Jnx/ D �.Jnx/, because JnTnJn D

Tn. Since the �-eigenspace of Tn is one-dimensonal, it fol-

lows that Jnx D cx for some constant c. Therefore, since

kJnxk D kxk (that is, x and Jnx have the same length),

it follows that c D ˙1; that is, x is either symmetric or

skew-symmetric. The situation is more complicated if � is

a repeated eigenvalue of Tn with multiplicity k. However,

it can be shown that if k D 2` then the �-eigenspace of Tn

has a basis consisting of ` symmetric and ` skew-symmetric

vectors, while if k D 2` C 1 then the �-eigenspace has

a basis consistng of either ` symmetric and ` C 1 skew-

symmetric eigenvectors or ` C 1 skew-symmetric and `-

symmetric eigenvectors. In any case, if n D 2k then Tn

has k symmetric linearly independent eigenvectors and k

linearly independent skew-symmetric eigenvectors, while

if n D 2k C 1 then Tn has k C 1 linearly independent

symmetric eigenvectors and k linearly independent skew-

symmetric vectors.



Recall that the components of the eigenvectors of Tn satisfy

d
X

`D�d

tj`jx`Cr D �xr ; 0 � r � n � 1; (DE)

subject to

xr D 0; �d � r � �1; n � r � n C d � 1; (BC)

and are therefore of the form

xr D

d
X

sD1

�

as´
r
s.�/ C bs´

�r
s .�/

�

; �d � r � n C d � 1:

(A)

However, we now know that we can assume at the out-

set that the eigenvectors of Tn are either symmetric, which

means that xn�rC1 D xr , or skew-symmetric, which means

that xn�rC1 D �xr . So let’s build this into (A) at the start!



For clarity

xr D

d
X

sD1

�

as´
r
s.�/ C bs´

�r
s .�/

�

; �d � r � n C d � 1:

To get a symmetric eigenvector, let

bs D as´
nC1
s .�/ so xr D

d
X

sD1

as

�

´r
s.�/ C ´n�rC1

s .�/
�

:

Since n � .n � r C 1/ � 1 D r , xn�rC1 D xr . As for the

boundary conditions

xr D 0; �d � r � �1; n � r � n C d � 1; (BC)

it is enough to require that xr D 0 for �d � r � �1, since

this and the equality xn�rC1 D xr implies that xr D 0 for

n � r � n C d � 1.

Therefore, � is an eigenvalue with an associated symmetric

eigenvector if and only if

det

�

h

´�r
s .�/ C ´nCrC1

s .�/
id

r;sD1

�

D 0:



For clarity

xr D

d
X

sD1

�

as´
r
s.�/ C bs´

�r
s .�/

�

; �d � r � n C d � 1:

To get a skew-symmetric eigenvector, let

bs D �as´
nC1
s .�/ so xr D

d
X

sD1

as

�

´r
s.�/ � ´n�rC1

s .�/
�

:

Therefore, � is an eigenvalue with an associated skew-symmetric

eigenvector if and only if

det

�

h

´�r
s .�/ � ´nCrC1

s .�/
id

r;sD1

�

D 0:


