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R is a real or complex n x n matrix-valued function on an
interval J that can be written as

R = PDP!
wheren| + -+ + ny = n,

P=[P P, -+ P ], PeC]), 1 <L<k,

D = diag(,ullnl, waln,, ..., Mklnk)

and wi(t), ..., ui(t) are distinct for every t € 4. Thus,
R is diagonalizable and has k distinct eigenvalues for all
t € 4, with constant multiplicitiesny, ..., ny.

Our objective: To consider differential systems x’ = A(t)x
where A € C;™"(d) and RA = AR on .

Later we’ll add another condition on R. First, what are the
consequences of the commutativity?



We can write

_ ﬁl —_
—1 P2 =

P — . Whel’e Prpszgrslnr, 1 SF,SSk

Py

Theorem 1 RA = AR ond if and only if

k
A = Pdiag(F\.....Fp)P~' = PiFy P,

{=1
with

Fy= PjAP;, 1<{<k.

PROOF. We can always write

 Ci1 Crip -+ Cyp
4—pcp-lop| €21 €2 = Cy | pi
Cr1 Ck2 -+ Cik

with Crg € C'r*1s(4). Just let C = P~LAP and partition

C into blocks. (This is purely conceptual;, we don'’t really
have to do it.) Then



RA = (pDP HypPcP Y= prPDCP!

- w1Cir piCra - pwiCrg |
_ p /L2.C21 Mz?zz Mz?zk p-1
| ukCr1 kCr2 o Gk
and
AR = (pcP~YHprDP Y= PcDP!
n1Crir pw2Cr2 -+ Gk
_ p| M€ paCn MeCok | p-1
| u1Crr u2Cro oo G|

Hence RA = AR if and only if

wrCrs = nsCrs, 1=<r,s <k. (1)
Since ur # g ifr # s, (1) is equivalent to C,y = 0 if
r #s,1 <r,s <k. For better notation, write
CM = Fg € CWXW and F = diag(Fl, F2, c e Fk)-

We have now shown that RA = AR on d if and only if
P~1AP = F or, equivalently, A = PFP1;ie, R and A
have the same block diagonal form with respect to P (for
allt € d).



Now we want a formula for Fy, ..., Fj.. Since A = PFP !
AP = PF;ipe,

| APy APy, --- AP, |=| P\F\ PyFy -+ Py F |,

s0 APy = PyFy, 1 <{ < k. Since P Py = I,, it follows
that Fp = PpAPy, 1 <l <k. [

Example: (Variable block circulant system) If P is con-
stant we can use this result to simplify the solution of x’ =
A(t)x. For example, consider the block circulant matrix
function

Ao A1 Ay - Apo Ar
Ag—1 Ao At -+ Ag-3 Ag Cdsied
A=| Ag—2 A1 Ao -+ Ag—g A3 | €( (4)
A A2 Az e A Ao

with Ag, Ay, ..., Ax_1 € C&*4(4). Then RA = AR if

0 I, 0 - 0 0
0 0 I; - 0 0
SRR
0 0 0 - 0 I,

' I; 0 0 - 0 0

(replace A1 by 14, all other Ay’s by 0 4).



Denote { = ¢2™i/k_ Then

R = Pdiag(Iy.01;.8% 4. ... .05 P!

where P =| P P, --- Py | with
_ y _
1 -1y
Py = N/ gz(ﬁ—:l)ld , 1 <e<k.
fk=D=Dp

Therefore Theorem 1 implies that

k
A = Pdiag(Fy.....Fp)P™' = PiFy P,
(=1
with
1 k—1
_ D _ = (L—1)m
Fg—PgAPg—kaO§ Am, 1<L<k,

(after some computation). Therefore, x’ = A(t)x if and
only if
k
X = Z Pyyy where yé = Fp(t)y, 1=<{<k.
(=1



Therefore, the only way to understand x’ = A(t)x (what-
ever we mean by this), is to understand the component
systems y, = Fy(t)y,, 1 < £ < k. For example, if
d = |a, 00) a standard theorem of Bécher says that if

/OO |A()|| dt < o0

then every nonzero solution of x’ = A(t)x approaches a
nonzero limit ast — oo, or, equivalently, if & € Ck4 then
x" = A(t)x has a unique solution x such that

Zgrgox(t) =
This theorem is not directly applicable to x’ = A(t)x if
0
[ IFar = o
forsome { € {1,...,k}, which implies that

f JA()] di = oo.

However, if

8={€\/ |Fo(t)|| dt < oot # @



anduy € C4,¢ € 8, then applying the theorem separately
to y, = Fy(t)yg, L € 8, shows that x" = A(t)x has a
unique solution

x =Y Py, suchthat lim y,(t) =u;. (€S,
les [—00

To carry this over to the case where P is a variable matrix,
we need another assumption:

/I . ; nygXny.
P’" = P diag(Uy, Uy, ..., Uy) with Uy E(CO ;
l.e.,
P, = PUgpwith Up, 1<{<k.

Thus, for eacht, P;(t) is in the column space of P(t) (the
Wi (t)-eigenspace of R(t)). In this case we say that R is
spectrally separated. (I'm open to suggestions of better
terminology.)




To solve

x''=A(t)x + f(1), x(t9) = xo,

write
k
XQ = Z Pyyoe with yop = Pyxg € C™¢
=1
and
k
£ =3 Py with g = Pif €0,
(=1

and solve the k initial value problems

e = (Fe(@)=Uy(t))yg+he(@), ye(to) = you. 1 <€ < k.



Recall that A = PFP~! where F = diag(Fy...., F}).
Denote U = diag(Uy,...,U), so P’ = PU. To solve
x" = A(t)x, write

-
— — Y2 - ny
X—Py—[Pl P, --. Pk] : Wlthygé(co ().

| Yk
Since
Ax = (PFP Y (Py) = PFy
and

x'"=Py'+ Py =Py + PUy = P(y' +Uy)
it follows that x" = A(t)x if and only if
y + Uy =Fy < y' = (F-U)y,

which is equivalent to

ve = (Fe(t) = Up(t))y, 1=<L=k.



Recall that a fundamental matrix for x’ = A(t)x is an in-
vertible n x n matrix function X such that X' = A(t)X.

Theorem 2 If RA = AR ond and Y = @_, Y, where
Yy, Yo, ..., Y, are fundamental matrices for the systems
yé = (Fp(t) —Up(t))yy, 1 <€ <k,thenX = PY isa
fundamental matrix for x’ = A(t)x. Moreover, ifty €
and xo € C" then the solution of the initial value problem
x' = A(t)x, x(ty) = xp, Is

k

x(t) =Y Pu(t)Ye(t)Y; (to)yor where yog = Py(to)xo,
(=1

1 < £ < k. The general solution of x' = A(t)x is
k
x(t) = Y Py(t)Yy(t)c; where cp e C", 1< <k
(=1



Theorem 3 Suppose A € C"*"'(4) is R-symmetric, f €
C"'(J), and ty € d. Let Y1, Yr, ..., Y be fundamental

matrices for the systems y, = (Fy(t) — Uy(t))yg, 1 <€ <
k. Then the solution of

x'=A@t)x + f{t). x(t0) = xo.

IS
k t

()= 3 Py Y0 (Yg_l(fo)yOz - [ Y[l(r)hw)dr) |
(=1 fo

where

Yoo = Pylto)xo and hy= Pof, 1<({<k.



Theorem 4 Suppose A € C"*"(J). Let
84 =1{x e CP"() | x'(r) = A(t)x(1), t € I}

(solution set of x' = A(t)x) and

k

Er = J {x e CP W) | R(O)x(1) = pe(0)x (1), t € I}
{=1

(union of the time-varying eigenspaces of R). Then A is
R-symmetric if and only if § 4 has a basis in &Ep.

PROOF. If RA = AR on J then the general solution of
x = At)x is x = Zlgzl Ppyy. Since RPp = g Py,
1 < { < k. This implies necessity.



For sufficiency, if 8 4 has a basis in &g then x’ = Ax has
a fundamental matrix of the form

X=PY=[P P -+ P |diag(Yy,Ys,....Y),
where

Yo and Y, e C1(), 1<e <k

Therefore APY = (PY) = P'Y + PY/, so

A = (PY+PY)Y lpl=pplypyy Hhp!
= pr P+ pYY Hp]
= PU+YY hpl=prp]

(since P' = PU ), with
k—1
~1 —1
F=U+YY '=W,+ 1)y, h.
£=0

Hence RA = AR on d, by Theorem 1.



Closing comment on x’" = A(t)x:

Suppose 4 = [a,o0) and RA = AR on J. Since the
general solution of x’ = A(t)x is of the form

k
y =) _ Py where y; = (Fyt)—Uyt))ye.
(=1
it seems that the best (only?) way to study the asymptotic
behavior of solutions of x’ = A(t)x is to study the sepa-
rate behaviors of the components y1, ..., V-

For example, Bocher's theorem implies the following result.

Theorem Suppose that RA = AR on d and

[N Fp — Uyg|ldt < oo for all £ in a nonempty sunset -8 of
{1,...,k}. Foreacht € § letuy, € C"t be given. Then
x" = A(t)x has a unique solution x = Y _,.¢ Pgy; such
that lim; 00 yp(t) = uy, £ € 8.



DISCRETE FORMULATION
Let 7+ be the set of nonnegative integers and consider
linear systems of difference equations

X411 = (I +A))x:, te€Zy, xo=2E§,

where [ + A; € C"*" s invertible for allt > 0. Let

where Py, € C"™(Zy), Py, € CeX(Z),
and Py P = 8ppln,, 1 <lm <k, t€Zy. Let

Ry = Py diag(iys Inygs - - s g Ing )P Y,
where (L1, ..., Wiy are distinct fort € Z. Finally, let
P, 1 =P+ Uy), where Uy = diag(Uyy, . .., Ug;) with
Uy, € C'VM(Z4), 1 <€ <k, and I + U; invertible for
all't € Z_|_.



Theorem 5 R;A; = A;R; forallt € Z if and only if

k-1
A =PRI = Py Fy, Py (2)
(=0
with

Fy; = Py, AiPy, e CPO"(ZL), 1<U<k, teZy.



Now suppose RA = AR on d and want to solve
Xe41 = + Ap)xg, t>0. (3)

Write x, = Pry; = Y k_, Py, yg;. Then

k k
Xt+1 = Z Porr1Yer+1 = Z Poi(Iny + Ug)ye 111
(=1 (=1
and
k k

I+ A)x; = | > PyUng+ Fe) Py || Y Prtyme

(=1 =1

k

= Z Poi(Iny + For)yer-
(=1

Therefore (3) holds if only if
Ung+Ue)ye i1 = Ung+Fe)yey, 1<k, tely,
or, equivalently,

Yei+1 = (Inﬁ—l_UEt)_l(Ing_'_Fﬁ[)y&, I < 14 < k, IS Z+.



Theorem 6 Suppose R;A; = A;R; forallt € Z4 and let

r—1
Qu =Py [ | Un+U)) ' Uny+Fj). 1 €Ly, Qo= In,,

J=1
1 <{¢ <k Then
X =| 0w Qu -+ O] t>0, Xo=1

is a fundamental matrix for the system

Xf1] = (I + Ap)x:, te€Z.



The discrete analog of Bocher’s theorem can be adapted
to prove the following theorem.

Theorem 7 Suppose R;A; = AsR; forallt € Z4 and

o0
> N Ung + Ug) ™I + Fyp) = Iny |l < o0
t=0
for all £ in a nonempty subset 8 of {1,...,k}. For each
¢ € 8 let uy be a given vector in C"*t. Then the system
X;+1 = (I + Ar)x: has a unique solution
X = Z Py;yp; suchthat lim yy, =uy, {€3.

I—0o0
les



AN ITERESTING QUESTION

Consider
x'=A@)x, t> 1, (4)

where A € C"'[ty, 00) (continuous) but has no partic-
ular structure. A system like this is “nice” if it has lin-
ear asymptotic equilibrium (every nontrivial solution ap-
proaches a nonzero limit), which is true, for example, if
[ A@)| dt < oo. However, suppose that [ || A(1)| dt
oo. In this case it seems reasonable to look for a con-
tinuously differentiable and invertible matrix P = P(t)
such that every nontrivial solution of (1) can be written as
x = Py, where y approaches a nonzero limit ast — 0.
In this case Id like to say that P is a preconditioner for (4).

An easy sufficient (but not necessary) condition: Since
x'"= Py + P’y and Ax = APy, x’ = Ax if and only if
u' = P~Y(4P — P’). Hence P is a preconditioner for (1)
if

o0
/ 1P~LAP — P))| dt < oo.



Some other definitions that can extended in this way:

Definition 1 Let I = [a,00), A € C;;*"(d) , and let 54 be
the solution set of (4). Then:

(a) Eqn. (4) 1s stable if there 1s a constant M such that
|x(®)] < M|x(a)| forall x € 84.

(b) Eqn. (4) is strictly stable if there is a constant M such
that | x(?)|| < M||x(z)| forall x € 4 and ¢, T > a.

(c) x’ = A(t)x is uniformly stable if there is a constant M
such that || x ()| < ||x(7)| forallx € §4andt >t >a €

g,

(d) Eqgn. (4) is uniformly asymptotically stable if there are
constants M and v > 0 such that || x (7)| < [|x(z)[le" "¢~
forallx e §4andt >t > a.

(e)Eqgn. (4) has linear asymptotic equilibrium if every non-
trivial solution of x’ = A(¢)x approaches a nonzero con-
stant vector as f — oQ.



Definitions (¢) and (d) can be combined in the following
definition, which may be new. Let p be continuous and
positive on {(¢, 7 |t > © > a} and suppose that

p(t,t) =1 andp(t,t) < p(t,s)p(s, 1) ift >s>1>a.

We say that (4) is p-stable if there is a constant M such
that

_ k@l
@l ===

forall x €e §4 andt > t > a.



Definition 2 Suppose P € C7*"(d). Then:

(a) Eqn. (4) is stable relative to P if there 1s a constant M
such that

1P~ )x ()| < M||P (@)x(a)|

(b) Eqn. (4) 1s strictly stable relative to P if there 1s a con-
stant M such that

1P~ e)x(@)| < MIPT (0)x(0)]| forall x e 8y
and f, 7 > a.

(c) Eqn. (4) 1s p-stable relative to P if there is a constant K
such that

| P~ (0)x(7)|
p(t,7)

1P x| <M forall x € 84

andf > 1t > a.

(d) Eqn. (4) has linear asymptotic equilibrium relative to
P if lim;—o0 P 1 (¢)x(7) exists and is nonzero for every
nontrivial x € & 4.



