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R is a real or complex n � n matrix-valued function on an
interval I that can be written as

R D P DP �1

where n1 C � � � C nk D n,

P D
�

P1 P2 � � � Pk

�
; P` 2 Cn�n`

1 .I/; 1 � ` � k;

D D diag.�1In1; �2In2; : : : ; �kInk
/

and �1.t/, . . . , �k.t/ are distinct for every t 2 I. Thus,
R is diagonalizable and has k distinct eigenvalues for all
t 2 I, with constant multiplicities n1, . . . , nk.

Our objective: To consider differential systems x0 D A.t/x

where A 2 Cn�n
0 .I/ and RA D AR on I.

Later we’ll add another condition on R. First, what are the
consequences of the commutativity?



We can write

P �1
D

26664
bP1bP2
:::bPk

37775 where bPrPs D ırsInr ; 1 � r; s � k:

Theorem 1 RA D AR on I if and only if

A D P diag.F1; : : : ; Fk/P �1
D

kX
`D1

P`F`
bP`

with

F` D bP`AP`; 1 � ` � k:

PROOF. We can always write

A D P CP �1
D P

2664
C11 C12 � � � C1k

C21 C22 � � � C2k
::: ::: : : : :::

Ck1 Ck2 � � � Ckk

3775 P �1

with Crs 2 Cnr�ns.I/. Just let C D P �1AP and partition
C into blocks. (This is purely conceptual; we don’t really
have to do it.) Then



RA D .P DP �1/.P CP �1/ D P DCP �1

D P

2664
�1C11 �1C12 � � � �1C1k

�2C21 �2C22 � � � �2C2k
::: ::: : : : :::

�kCk1 �kCk2 � � � �kCkk

3775 P �1

and

AR D .P CP �1/.P DP �1/ D P C DP �1

D P

2664
�1C11 �2C12 � � � �kC1k

�1C21 �2C22 � � � �kC2k
::: ::: : : : :::

�1Ck1 �2Ck2 � � � �kCkk

3775 P �1:

Hence RA D AR if and only if

�rCrs D �sCrs; 1 � r; s � k: (1)

Since �r ¤ �s if r ¤ s, (1) is equivalent to Crs D 0 if
r ¤ s, 1 � r; s � k. For better notation, write

C`` D F` 2 Cn`�n` and F D diag.F1; F2; : : : ; Fk/:

We have now shown that RA D AR on I if and only if
P �1AP D F or, equivalently, A D P FP �1; i.e., R and A

have the same block diagonal form with respect to P (for
all t 2 I).



Now we want a formula for F0, . . . , Fk. Since A D PFP �1,
AP D PF ; i,e,�

AP1 AP2 � � � APk

�
D

�
P1F1 P2F2 � � � PkFk

�
;

so AP` D P`F`, 1 � ` � k. Since bP`P` D In`
, it follows

that F` D bP`AP`, 1 � ` � k.

Example: (Variable block circulant system) If P is con-
stant we can use this result to simplify the solution of x0 D

A.t/x. For example, consider the block circulant matrix
function

A D

266664
A0 A1 A2 � � � Ak�2 Ak�1

Ak�1 A0 A1 � � � Ak�3 Ak�2

Ak�2 Ak�1 A0 � � � Ak�4 Ak�3
::: ::: ::: : : : ::: :::

A1 A2 A3 � � � Ak�1 A0

377775 2 Ckd�kd
0 .I/

with A0, A1, . . . , Ak�1 2 Cd�d
0 .I/. Then RA D AR if

R D

26666664
0 Id 0 � � � 0 0

0 0 Id � � � 0 0

0 0 0 � � � 0 0
::: ::: ::: : : : ::: :::

0 0 0 � � � 0 Id

Id 0 0 � � � 0 0

37777775
(replace A1 by Id , all other A`’s by 0d�d ).



Denote � D e2�i=k. Then

R D P diag.Id ; �Id ; �2Id ; : : : ; �k�1Id /P �1

where P D
�

P1 P2 � � � Pk

�
with

P` D
1

p
k

2666664
Id

�`�1Id

�2.`�1/Id
:::

�.k�1/.`�1/Id

3777775 ; 1 � ` � k:

Therefore Theorem 1 implies that

A D P diag.F1; : : : ; Fk/P �1
D

kX
`D1

P`F`
bP`

with

F` D bP`AP` D
1

k

k�1X
mD0

�.`�1/mAm; 1 � ` � k;

(after some computation). Therefore, x0 D A.t/x if and
only if

x D

kX
`D1

P`y` where y0

` D F`.t/y; 1 � ` � k:



Therefore, the only way to understand x0 D A.t/x (what-
ever we mean by this), is to understand the component
systems y0

`
D F`.t/y`, 1 � ` � k. For example, if

I D Œa; 1/ a standard theorem of Bôcher says that ifZ
1

kA.t/k dt < 1

then every nonzero solution of x0 D A.t/x approaches a
nonzero limit as t ! 1, or, equivalently, if � 2 Ckd then
x0 D A.t/x has a unique solution x such that

lim
t!1

x.t/ D �:

This theorem is not directly applicable to x0 D A.t/x ifZ
1

kF`.t/k dt D 1

for some ` 2 f1; : : : ; kg, which implies thatZ
1

kA.t/k dt D 1:

However, if

S D

�
`

ˇ̌ Z
1

kF`.t/k dt < 1

�
¤ ;



and u` 2 Cd , ` 2 S , then applying the theorem separately
to y0

`
D F`.t/y`, ` 2 S , shows that x0 D A.t/x has a

unique solution

x D

X
`2S

P`y` such that lim
t!1

y`.t/ D u`: ` 2 S ;

To carry this over to the case where P is a variable matrix,
we need another assumption:

P 0
D P diag.U1; U2; : : : ; Uk/ with U` 2 Cn`�n`

0 I

i.e.,

P 0

` D P`U` with U`; 1 � ` � k:

Thus, for each t , P 0

`
.t/ is in the column space of P.t/ (the

�k.t/-eigenspace of R.t/). In this case we say that R is
spectrally separated. (I’m open to suggestions of better
terminology.)



To solve

x0
D A.t/x C f .t/; x.t0/ D x0;

write

x0 D

kX
`D1

P`y0` with y0` D bP`x0 2 Cn`

and

f D

kX
`D1

P`h` with h` D bP`f 2 Cn`.I/;

and solve the k initial value problems

y` D .F`.t/�U`.t//y` Ch`.t/; y`.t0/ D y0`; 1 � ` � k:



Recall that A D P FP �1 where F D diag.F1; : : : ; Fk/.
Denote U D diag.U1; : : : ; Uk/, so P 0 D P U. To solve
x0 D A.t/x, write

x D Py D
�

P1 P2 � � � Pk

� 2664
y1

y2
:::

yk

3775 with y` 2 Cn`
0 .I/:

Since

Ax D .P FP �1/.Py/ D PFy

and

x0
D Py0

C P 0y D Py0
C P Uy D P.y0

C Uy/

it follows that x0 D A.t/x if and only if

y0
C Uy D Fy () y0

D .F � U/y;

which is equivalent to

y0

` D .F`.t/ � U`.t//y; 1 � ` � k:



Recall that a fundamental matrix for x0 D A.t/x is an in-
vertible n � n matrix function X such that X 0 D A.t/X .

Theorem 2 If RA D AR on I and Y D
Lk

`D1 Y` where
Y1; Y2; . . . ; Yk are fundamental matrices for the systems
y0

`
D .F`.t/ � U`.t//y`, 1 � ` � k, then X D P Y is a

fundamental matrix for x0 D A.t/x. Moreover, if t0 2 I

and x0 2 Cn then the solution of the initial value problem
x0 D A.t/x; x.t0/ D x0; is

x.t/ D

kX
`D1

P`.t/Y`.t/Y �1
` .t0/y0` where y0` D bP`.t0/x0;

1 � ` � k: The general solution of x0 D A.t/x is

x.t/ D

kX
`D1

P`.t/Y`.t/c` where c` 2 Cn`; 1 � ` � k:



Theorem 3 Suppose A 2 Cn�n.I/ is R-symmetric; f 2

Cn.I/; and t0 2 I: Let Y1; Y2; . . . ; Yk be fundamental
matrices for the systems y0

`
D .F`.t/ � U`.t//y`; 1 � ` �

k: Then the solution of

x0
D A.t/x C f .t/; x.t0/ D x0;

is

x.t/ D

kX
`D1

P`.t/Y`.t/

�
Y �1

` .t0/y0` C

Z t

t0

Y �1
` .�/h`.�/ d�

�
;

where

y0` D bP`.t0/x0 and h` D bP`f; 1 � ` � k:



Theorem 4 Suppose A 2 Cn�n.I/: Let

SA D
˚
x 2 Cn�n

1 .I/
ˇ̌
x0.t/ D A.t/x.t/; t 2 I

	
.solution set of x0 D A.t/x/ and

ER D

k[
`D1

˚
x 2 Cn�n

1 .I/
ˇ̌
R.t/x.t/ D �`.t/x.t/; t 2 I

	
.union of the time-varying eigenspaces of R/. Then A is
R-symmetric if and only if SA has a basis in ER:

PROOF. If RA D AR on I then the general solution of
x0 D A.t/x is x D

Pk
`D1 P`y`. Since RP` D �`P`,

1 � ` � k. This implies necessity.



For sufficiency, if SA has a basis in ER then x0 D Ax has
a fundamental matrix of the form

X D P Y D
�

P1 P2 � � � Pk

�
diag.Y1; Y2; : : : ; Yk/;

where

Y` and Y �1
` 2 Cn`�n`

1 .I/; 1 � ` � k:

Therefore AP Y D .P Y/0 D P 0Y C P Y0, so

A D .P 0Y C P Y0/Y�1P �1
D P 0P �1

C P.Y0Y�1/P �1

D P.P �1P 0/P �1
C P.Y0Y�1/P �1

D P.U C Y0Y�1/P �1
D P FP �1

(since P 0 D P U ), with

F D U C Y0Y�1
D

k�1M
`D0

.U` C Y 0

`Y �1
` /:

Hence RA D AR on I, by Theorem 1.



Closing comment on x0 D A.t/x:

Suppose I D Œa; 1/ and RA D AR on I. Since the
general solution of x0 D A.t/x is of the form

y D

kX
`D1

P`y` where y0

` D .F`.t/ � U`.t//y`;

it seems that the best (only?) way to study the asymptotic
behavior of solutions of x0 D A.t/x is to study the sepa-
rate behaviors of the components y1, . . . , yk.

For example, Bôcher’s theorem implies the following result.

Theorem Suppose that RA D AR on I andR
1

kF` � U`kdt < 1 for all ` in a nonempty sunset S of
f1; : : : ; kg: For each ` 2 S let u` 2 Cn` be given. Then
x0 D A.t/x has a unique solution x D

P
`2S P`y` such

that limt!1 y`.t/ D u`; ` 2 S :



DISCRETE FORMULATION

Let ZC be the set of nonnegative integers and consider
linear systems of difference equations

xtC1 D .I C At/xt ; t 2 ZC; x0 D �;

where I C At 2 Cn�n is invertible for all t � 0. Let

Pt D
�

P1t P2t � � � Pkt

�
with P�1

t D

26664
bP1tbP2t
:::bPkt

37775 ;

where P`t 2 Cn�n`.ZC/, bP`t 2 Cn`�n.ZC/,
and bP`tPmt D ı`mIn`

, 1 � `; m � k, t 2 ZC. Let

Rt D Pt diag.�1tIn1; : : : ; �ktInk
/P�1

t ;

where �1t , . . . , �kt are distinct for t 2 ZC. Finally, let
PtC1 D Pt.I C Ut/, where Ut D diag.U1t ; : : : ; Ukt/ with
U`t 2 Cn`�n`.ZC/, 1 � ` � k, and I C Ut invertible for
all t 2 ZC.



Theorem 5 RtAt D AtRt for all t 2 ZC if and only if

At D PtFtP�1
t D

k�1X
`D0

P`tF`t
bP`t (2)

with

F`t D bP`tAtP`t 2 Cn`�n`.ZC/; 1 � ` � k; t 2 ZC:



Now suppose RA D AR on I and want to solve

xtC1 D .I C At/xt ; t > 0: (3)

Write xt D Ptyt D
Pk

`D1 P`ty`t : Then

xtC1 D

kX
`D1

P`;tC1y`;tC1 D

kX
`D1

P`t.In`
C U`t/y`;tC1

and

.I C At/xt D

0@ kX
`D1

P`t.In`
C F`t/ bP`t

1A 0@ kX
mD1

Pmtymt

1A
D

kX
`D1

P`t.In`
C F`t/y`t :

Therefore (3) holds if only if

.In`
CU`t/y`;tC1 D .In`

CF`t/y`t ; 1 � ` � k; t 2 ZC;

or, equivalently,

y`;tC1 D .In`
CU`t/

�1.In`
CF`t/y`t ; 1 � ` � k; t 2 ZC:



Theorem 6 Suppose RtAt D AtRt for all t 2 ZC and let

Q`t D P`t

t�1Y
j D1

.In`
CU j̀ /�1.In`

CF j̀ /; t 2 ZC; Q`0 D In`
;

1 � ` � k Then

Xt D
�

Q1t Q2t � � � Qkt

�
t > 0; X0 D I

is a fundamental matrix for the system

xtC1 D .I C At/xt ; t 2 ZC:



The discrete analog of Bôcher’s theorem can be adapted
to prove the following theorem.

Theorem 7 Suppose RtAt D AtRt for all t 2 ZC and

1X
tD0

k.In`
C U`t/

�1.I C F`t/ � In`
k < 1

for all ` in a nonempty subset S of f1; : : : ; kg: For each
` 2 S let u` be a given vector in Cn`: Then the system
xtC1 D .I C At/xt has a unique solution

xt D

X
`2S

P`ty`t such that lim
t!1

y`t D u`; ` 2 S :



AN ITERESTING QUESTION

Consider

x0
D A.t/x; t > t0; (4)

where A 2 Cn�nŒt0; 1/ (continuous) but has no partic-
ular structure. A system like this is “nice” if it has lin-
ear asymptotic equilibrium (every nontrivial solution ap-
proaches a nonzero limit), which is true, for example, ifR

1
kA.t/k dt < 1. However, suppose that

R
1

kA.t/k dt D

1. In this case it seems reasonable to look for a con-
tinuously differentiable and invertible matrix P D P.t/

such that every nontrivial solution of (1) can be written as
x D Py, where y approaches a nonzero limit as t ! 1.
In this case I’d like to say that P is a preconditioner for (4).

An easy sufficient (but not necessary) condition: Since
x0 D Py0 C P 0y and Ax D APy, x0 D Ax if and only if
u0 D P �1.AP � P 0/. Hence P is a preconditioner for (1)
if Z

1

kP �1.AP � P 0/k dt < 1:



Some other definitions that can extended in this way:

Definition 1 Let I D Œa; 1/, A 2 Cn�n
0 .I/ , and let sa be

the solution set of (4). Then:

(a) Eqn. (4) is stable if there is a constant M such that
jx.t/j � M jx.a/j for all x 2 SA.

(b) Eqn. (4) is strictly stable if there is a constant M such
that kx.t/k � Mkx.�/k for all x 2 SA and t; � � a:

(c) x0 D A.t/x is uniformly stable if there is a constant M

such that kx.t/k � kx.�/k for all x 2 SA and t � � � a 2

J:

(d) Eqn. (4) is uniformly asymptotically stable if there are
constants M and � > 0 such that kx.t/k � kx.�/ke��.t��/

for all x 2 SA and t � � � a:

(e)Eqn. (4) has linear asymptotic equilibrium if every non-
trivial solution of x0 D A.t/x approaches a nonzero con-
stant vector as t ! 1:



Definitions (c) and (d) can be combined in the following
definition, which may be new. Let � be continuous and
positive on

˚
.t; �

ˇ̌
t � � � a

	
and suppose that

�.t; t/ D 1 and �.t; �/ � �.t; s/�.s; �/ if t � s � � � a:

We say that (4) is �-stable if there is a constant M such
that

kx.t/k �
kx.�/k

�.s; t/
for all x 2 SA and t � � � a:



Definition 2 Suppose P 2 Cn�n
1 .I/. Then:

(a) Eqn. (4) is stable relative to P if there is a constant M

such that

kP �1.t/x.t/k � M kP �1.a/x.a/k

(b) Eqn. (4) is strictly stable relative to P if there is a con-
stant M such that

kP �1.t/x.t/k � MkP �1.�/x.�/k for all x 2 SA

and t; � � a.

(c) Eqn. (4) is �-stable relative to P if there is a constant K

such that

kP �1.t/x.t/k � M
kP �1.�/x.�/k

�.t; �/
for all x 2 SA

and t � � � a.

(d) Eqn. (4) has linear asymptotic equilibrium relative to
P if limt!1 P �1.t/x.t/ exists and is nonzero for every
nontrivial x 2 SA:


