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Following Andrew [1], we say that an n–vector x = [x1 x2 · · · xn]T is symmetric

if
xj = xn−j+1, 1 ≤ j ≤ n,

or skew–symmetric if
xj = −xn−j+1, 1 ≤ j ≤ n.

(Some authors call such vectors reciprocal and anti-reciprocal .)

The following theorems are special cases of results stated explicitly by Cantoni
and Butler [2], but already implicit in Andrew [1]. (It’s important to cite Andrew
in this way. Many authors – including Trench – have overlooked the full scope of
Andrew’s results.) These theorems imply that if T is an RST matrix of order n
then Rn has an orthonormal basis consisting of dn/2e symmetric and bn/2c skew–
symmetric eigenvectors of T . They also yield effficient methods for computing
eigenvalues and eigenvectors of real symmetric Toeplitz matrices.

In [3] I defined an eigenvalue λ of T to be even (odd) if T has a symmetric (skew–
symmetric) λ–eigenvector. In the following theorems Jm is the m× m matrix with
ones on the secondary diagonal and zeros elsewhere. In the proofs we rely heavily
on the relations

JJ = I and JT = TJ

if T is a symmetric Toeplitz matrix.

We can partition T2m as

T2m =

[

Tm JmHm

HmJm Tm

]

(1)

where Hm = (ti+j−1)
m
i,j=1.

We can partition T2m+1 as

T2m+1 =





Tm Jmum JmGm

ut
mJm t0 ut

m

GmJm um Tm



 (2)

where Gm = (ti+j)
m
i,j=1 and

um =











t1
t2
...

tm











.
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Theorem 1 Suppose that µ is an eigenvalue of

Am = Tm + Hm

with associated eigenvector x. Then µ is an even eigenvalue of T2m, with associated

symmetric eigenvector

p =

[

Jmx
x

]

.

Proof. From (1),

T2mp =

[

Tm JmHm

HmJm Tm

][

Jmx
x

]

=

[

(TmJm + JmHm)x
(Tm + Hm)x

]

=

[

Jm(Tm + Hm)x
(Tm + Hm)x

]

= µp.

Theorem 2 Suppose that ν is an eigenvalue of

Bm = Tm − Hm

with associated eigenvector y. Then ν is an odd eigenvalue of T2m, with associated

skew-symmetric eigenvector

q =

[

−Jmy
y

]

.

Proof. From (1),

T2mq =

[

Tm JmHm

HmJm Tm

] [

−Jmy
y

]

=

[

(−TmJm + JmHm)y
(Tm − Hm)y

]

=

[

−Jm(Tm − Hm)y
(Tm − Hm)y

]

= νp.

Theorem 3 Suppose that µ is an eigenvalue of

Cm =

[

t0
√

2ut
m√

2um Tm + Gm

]

,

with eigenvector

[

α
x

]

, where α is a scalar. Then µ is an even eigenvalue of T2m+1,

with associated symmetric eigenvector

p =





Jmx

α
√

2
x



 .
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Proof. From (2),

T2m+1p =





Tm Jmum JmGm

ut
mJm t0 ut

m

GmJm um Tm









Jmx

α
√

2
x





=





TmJmx + α
√

2Jmum + JmGmx

ut
mx + t0α

√
2 + ut

mx

Gmx + α
√

2um + Tmx



 = µp.

(Remember that TmJm = JmTm.)

Theorem 4 Suppose that ν is an eigenvalue of

Dm = Tm − Gm

with eigenvector y. Then ν is an odd eigenvalue of T2m+1, with associated skew-

symmetric eigenvector

q =





−Jmy
0
y



 .

Proof. From (2),

T2m+1q =





Tm Jmum JmGm

ut
mJm t0 ut

m

GmJm um Tm









−Jmy
0
y





=





−TmJmy + JmGmy
−ut

my + ut
my

−Gmy + Tmy



 = νq.

(Remember that TmJm = JmTm.)

Now assume that

tr =
1

π

∫ π

0

f(θ) dθ.

Then

ars =
1

π

∫ π

0

f(θ)[cos(r − s)θ + cos(r + s− 1)θ] dθ

=
2

π

∫ π

0

f(θ) cos(r − 1/2)θ cos(s − 1/2)θ dθ r, s = 1, . . . , n,

brs =
1

π

∫ π

0

f(θ)[cos(r − s)θ − cos(r + s − 1)θ] dθ

=
2

π

∫ π

0

f(θ) sin(r − 1/2)θ sin(s− 1/2)θ dθ r, s = 1, . . . , n,
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crs =
1

π

∫ π

0

f(θ)[cos(r − s)θ + cos(r + s)θ] dθ

=
2

π

∫ π

0

f(θ) cos rθ cos sθ dθ r, s = 1, . . . , n,

(the zeroth row and column of C are not included here), and

drs =
1

π

∫ π

0

f(θ)[cos(r − s)θ − cos(r + s)θ] dθ

=
2

π

∫ π

0

f(θ) sin rθ sin sθ dθ r, s = 1, . . . , n.
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