Notes on the Real Symmetric Toeplitz Eigenvalue Problem

W. F. Trench

Following Andrew [1], we say that an n-vector $x=\left[\begin{array}{llll}x_{1} & x_{2} & \cdots & x_{n}\end{array}\right]^{T}$ is symmetric if

$$
x_{j}=x_{n-j+1}, \quad 1 \leq j \leq n
$$

or skew-symmetric if

$$
x_{j}=-x_{n-j+1}, \quad 1 \leq j \leq n
$$

(Some authors call such vectors reciprocal and anti-reciprocal.)
The following theorems are special cases of results stated explicitly by Cantoni and Butler [2], but already implicit in Andrew [1]. (It's important to cite Andrew in this way. Many authors - including Trench - have overlooked the full scope of Andrew's results.) These theorems imply that if T is an RST matrix of order n then R^{n} has an orthonormal basis consisting of $\lceil n / 2\rceil$ symmetric and $\lfloor n / 2\rfloor$ skewsymmetric eigenvectors of T. They also yield effficient methods for computing eigenvalues and eigenvectors of real symmetric Toeplitz matrices.

In [3] I defined an eigenvalue λ of T to be even (odd) if T has a symmetric (skewsymmetric) λ-eigenvector. In the following theorems J_{m} is the $m \times m$ matrix with ones on the secondary diagonal and zeros elsewhere. In the proofs we rely heavily on the relations

$$
J J=I \quad \text { and } \quad J T=T J
$$

if T is a symmetric Toeplitz matrix.
We can partition $T_{2 m}$ as

$$
T_{2 m}=\left[\begin{array}{cc}
T_{m} & J_{m} H_{m} \tag{1}\\
H_{m} J_{m} & T_{m}
\end{array}\right]
$$

where $H_{m}=\left(t_{i+j-1}\right)_{i, j=1}^{m}$.
We can partition $T_{2 m+1}$ as

$$
T_{2 m+1}=\left[\begin{array}{ccc}
T_{m} & J_{m} u_{m} & J_{m} G_{m} \tag{2}\\
u_{m}^{t} J_{m} & t_{0} & u_{m}^{t} \\
G_{m} J_{m} & u_{m} & T_{m}
\end{array}\right]
$$

where $G_{m}=\left(t_{i+j}\right)_{i, j=1}^{m}$ and

$$
u_{m}=\left[\begin{array}{c}
t_{1} \\
t_{2} \\
\vdots \\
t_{m}
\end{array}\right]
$$

Theorem 1 Suppose that μ is an eigenvalue of

$$
A_{m}=T_{m}+H_{m}
$$

with associated eigenvector x. Then μ is an even eigenvalue of $T_{2 m}$, with associated symmetric eigenvector

$$
p=\left[\begin{array}{c}
J_{m} x \\
x
\end{array}\right]
$$

Proof. From (1),

$$
\begin{aligned}
T_{2 m} p & =\left[\begin{array}{cc}
T_{m} & J_{m} H_{m} \\
H_{m} J_{m} & T_{m}
\end{array}\right]\left[\begin{array}{c}
J_{m} x \\
x
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(T_{m} J_{m}+J_{m} H_{m}\right) x \\
\left(T_{m}+H_{m}\right) x
\end{array}\right]=\left[\begin{array}{c}
J_{m}\left(T_{m}+H_{m}\right) x \\
\left(T_{m}+H_{m}\right) x
\end{array}\right]=\mu p
\end{aligned}
$$

Theorem 2 Suppose that ν is an eigenvalue of

$$
B_{m}=T_{m}-H_{m}
$$

with associated eigenvector y. Then ν is an odd eigenvalue of $T_{2 m}$, with associated skew-symmetric eigenvector

$$
q=\left[\begin{array}{c}
-J_{m} y \\
y
\end{array}\right]
$$

Proof. From (1),

$$
\begin{aligned}
T_{2 m} q & =\left[\begin{array}{cc}
T_{m} & J_{m} H_{m} \\
H_{m} J_{m} & T_{m}
\end{array}\right]\left[\begin{array}{c}
-J_{m} y \\
y
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(-T_{m} J_{m}+J_{m} H_{m}\right) y \\
\left(T_{m}-H_{m}\right) y
\end{array}\right]=\left[\begin{array}{c}
-J_{m}\left(T_{m}-H_{m}\right) y \\
\left(T_{m}-H_{m}\right) y
\end{array}\right]=\nu p
\end{aligned}
$$

Theorem 3 Suppose that μ is an eigenvalue of

$$
C_{m}=\left[\begin{array}{cc}
t_{0} & \sqrt{2} u_{m}^{t} \\
\sqrt{2} u_{m} & T_{m}+G_{m}
\end{array}\right]
$$

with eigenvector $\left[\begin{array}{l}\alpha \\ x\end{array}\right]$, where α is a scalar. Then μ is an even eigenvalue of $T_{2 m+1}$, with associated symmetric eigenvector

$$
p=\left[\begin{array}{c}
J_{m} x \\
\alpha \sqrt{2} \\
x
\end{array}\right]
$$

Proof. From (2),

$$
\begin{aligned}
T_{2 m+1} p & =\left[\begin{array}{ccc}
T_{m} & J_{m} u_{m} & J_{m} G_{m} \\
u_{m}^{t} J_{m} & t_{0} & u_{m}^{t} \\
G_{m} J_{m} & u_{m} & T_{m}
\end{array}\right]\left[\begin{array}{c}
J_{m} x \\
\alpha \sqrt{2} \\
x
\end{array}\right] \\
& =\left[\begin{array}{c}
T_{m} J_{m} x+\alpha \sqrt{2} J_{m} u_{m}+J_{m} G_{m} x \\
u_{m}^{t} x+t_{0} \alpha \sqrt{2}+u_{m}^{t} x \\
G_{m} x+\alpha \sqrt{2} u_{m}+T_{m} x
\end{array}\right]=\mu p
\end{aligned}
$$

(Remember that $T_{m} J_{m}=J_{m} T_{m}$.)
Theorem 4 Suppose that ν is an eigenvalue of

$$
D_{m}=T_{m}-G_{m}
$$

with eigenvector y. Then ν is an odd eigenvalue of $T_{2 m+1}$, with associated skewsymmetric eigenvector

$$
q=\left[\begin{array}{c}
-J_{m} y \\
0 \\
y
\end{array}\right]
$$

Proof. From (2),

$$
\begin{aligned}
T_{2 m+1} q & =\left[\begin{array}{ccc}
T_{m} & J_{m} u_{m} & J_{m} G_{m} \\
u_{m}^{t} J_{m} & t_{0} & u_{m}^{t} \\
G_{m} J_{m} & u_{m} & T_{m}
\end{array}\right]\left[\begin{array}{c}
-J_{m} y \\
0 \\
y
\end{array}\right] \\
& =\left[\begin{array}{c}
-T_{m} J_{m} y+J_{m} G_{m} y \\
-u_{m}^{t} y+u_{m}^{t} y \\
-G_{m} y+T_{m} y
\end{array}\right]=\nu q .
\end{aligned}
$$

(Remember that $T_{m} J_{m}=J_{m} T_{m}$.)
Now assume that

$$
t_{r}=\frac{1}{\pi} \int_{0}^{\pi} f(\theta) d \theta
$$

Then

$$
\begin{aligned}
a_{r s} & =\frac{1}{\pi} \int_{0}^{\pi} f(\theta)[\cos (r-s) \theta+\cos (r+s-1) \theta] d \theta \\
& =\frac{2}{\pi} \int_{0}^{\pi} f(\theta) \cos (r-1 / 2) \theta \cos (s-1 / 2) \theta d \theta \quad r, s=1, \ldots, n \\
b_{r s} & =\frac{1}{\pi} \int_{0}^{\pi} f(\theta)[\cos (r-s) \theta-\cos (r+s-1) \theta] d \theta \\
& =\frac{2}{\pi} \int_{0}^{\pi} f(\theta) \sin (r-1 / 2) \theta \sin (s-1 / 2) \theta d \theta \quad r, s=1, \ldots, n
\end{aligned}
$$

$$
\begin{aligned}
c_{r s} & =\frac{1}{\pi} \int_{0}^{\pi} f(\theta)[\cos (r-s) \theta+\cos (r+s) \theta] d \theta \\
& =\frac{2}{\pi} \int_{0}^{\pi} f(\theta) \cos r \theta \cos s \theta d \theta \quad r, s=1, \ldots, n
\end{aligned}
$$

(the zeroth row and column of C are not included here), and

$$
\begin{aligned}
d_{r s} & =\frac{1}{\pi} \int_{0}^{\pi} f(\theta)[\cos (r-s) \theta-\cos (r+s) \theta] d \theta \\
& =\frac{2}{\pi} \int_{0}^{\pi} f(\theta) \sin r \theta \sin s \theta d \theta \quad r, s=1, \ldots, n
\end{aligned}
$$

References

[1] A. L. Andrew, Eigenvectors of certain matrices, Linear Algebra Appl., 7 (1973), pp. 151-162.
[2] A. Cantoni and F. Butler, Eigenvalues and eigenvectors of symmetric centrosymmetric matrices, Linear Algebra Appl., 13 (1976), pp. 275-288.
[3] W. F. Trench, Spectral evolution of a one-parameter extension of a real symmetric Toeplitz matrix, SIAM J. Matrix Anal. Appl. 11 (1990), 601-611.

